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Abstract 
Instead of the usual 256 rules Cellular Automata (CA) using two bits (black and white), a different type of CA 
having three symbols (“trits”) and 19,683 possible rules using three different colors (black or 0, gray or 1, and 
white or 2) is proposed. A score system (with four scores) is discussed, which allows to classify each universe 
for each different rule into “Blank”, “Pattern”, “One Cycle”, “Complex” or “Unclassified”. This is import-
ant because otherwise the overwhelming number of possible universes would make the results intractable. 
Also, a brief but wide literature review on CA is conducted. The constraint for “allowing” machines to have 
“free will”, consisting in giving them or denying them stochastic behavior is proposed. Finally, considering the 
recent advancements concerning Large Language Models (LLMs), the conclusion derived from CA regarding 
their “free will” is discussed for the case of LLMs and the achievement of Artificial General Intelligence (AGI) 
in the case of LLMs.
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Introduction
Interacting with cellular automata is like playing God. The 
world in which the cellular automata exist may be very simple, 
but that is due to the limited nature of human consciousness and 
existence. Consider there to exist a world of ten spaces for a 
given color of either black, gray, or white (a “trit” instead of a 
“bit”). Also, for this world to be finite yet unlimited, let us have 
the rightmost position linked to the leftmost position and vice 
versa. One would think individual “trits” would not notice such 
universe not to be infinite in nature due to their very limited exis-
tence. As time goes by, the colors in the grid change according to 
the rules set by the immediate past behavior. Only in a God’s like 
eye view of the grids as they change while time passes by gives 
an idea of how dull or beautifully complex any given universe is.

Also, a given and finite set of rules for the evolution of the al-
ternative universes that would rise make it clear God’s work is 
not necessarily impossible. There would be 39 = 19,683 possible 
universes or realities to be created. Finally, a scoring model to 
automatically classify these universes makes this BGW environ-

ment treatable. Although Wolfram thoroughly discusses cellular 
automata, he does not consider the BGW variant we are work-
ing with here and, more importantly, the scoring model used. 
Nevertheless, the cellular automata discussed in Wolfram’s work 
allows for considerable number, possibilities, uses and interpre-
tations of cellular automata [1].

This paper presents a novel way to classify the behavior of cel-
lular automata to find useful rules that can be applied in several 
scientific and engineering endeavors. Also, instead of the usual 
two-bit cellular automata, the three-bits (“trits”) cellular autom-
ata variation is introduced and the exponential growth in its pos-
sible rules explored. Cellular automata can be used in different 
applications. A brief but wide literature review was conducted 
on the creation, uses and applications of cellular automata.

Typically, cellular automata are used as special algorithms and 
models in a wide set of applications. Cellular automata serve as 
powerful algorithms and models because their core principles 
(discreteness, locality, and parallelism) perfectly mimic the dy-
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namics found in many complex natural and social systems [2, 
3]. As models, they distill phenomena like fluid flow, forest fire 
spread, or chemical reaction-diffusion into simple rules govern-
ing local cell interactions [4-7]. This method allows researchers 
to study emergent, macroscopic patterns (like turbulence or a 
wildfire's perimeter) that arise from tiny, microscopic decisions, 
often revealing insights that are difficult to capture with contin-
uous mathematics like differential equations [8-10]. Their sim-
plicity makes them computationally efficient and highly intuitive 
for visualization, making them excellent tools for simulating and 
predicting system behavior [11-15].

The utility of CA as special algorithms stems directly from their 
inherent parallelism. Since the transition rule for every cell is 
applied simultaneously and depends only on its local neighbor-
hood, a CA naturally maps to parallel hardware architectures 
[16, 17]. This characteristic is exploited in areas like image pro-
cessing, where local pixel filters can be modeled as CA rules for 
rapid tasks like noise reduction or edge detection. Furthermore, 
in computer science theory, the proof that certain CA (like Con-
way’s Game of Life) are Turing Complete establishes them as 
fundamental paradigms for computation itself, demonstrating 
that universal computing power can emerge from minimal, lo-
calized rules [18].

In essence, CA bridge the gap between simple rules and complex 
outcomes. Their ability to generate intricate patterns, from the 
self-replicating structures in biology [19, 20] to the formation 
of traffic jams on a highway, makes them indispensable across 
disciplines. They provide a non-linear, bottom-up modeling ap-
proach, contrasting with traditional top-down methods. Whether 
employed to design efficient encryption algorithms in cryptog-
raphy or to explore the theoretical boundaries of complexity in 
theoretical physics, CA remain a remarkably versatile tool for 
understanding the universe through computation [21-25].

The combination of cellular automata and simulation is also an-
other popular application. The marriage of cellular automata and 
simulation is a particularly potent application because CA are, 
by their very definition, discrete simulation engines. They pro-
vide a powerful framework for modeling systems where local 
interactions drive global, emergent behavior, which is difficult 
to capture with continuous mathematics [26-29]. For instance, 
simulating traffic flow involves simple rules for each car’s 
movement, and the CA framework naturally reveals complex 
phenomena like the spontaneous formation and dissolution of 
traffic jams. Similarly, in environmental modeling, simulating 
the spread of a forest fire or an epidemic relies on the CA grid to 
track the state of individual cells (tree/fire, healthy/infected) and 
apply transition rules over discrete time steps, offering a compu-
tationally efficient and visually intuitive method for predicting 
system evolution under varying initial conditions [30-33].

Some artificial intelligence techniques are sometimes combined 
with cellular automata. The combination of CA and Artificial 
Intelligence (AI), particularly Machine Learning (ML), creates 
powerful hybrid systems. CA rules, which dictate the complex 
evolution of the system, can be too intricate to design manually. 
AI techniques, such as Genetic Algorithms or Deep Reinforce-
ment Learning (DRL), are employed to discover or optimize 
these transition rules to achieve a desired global outcome. For 

example, a DRL agent might be tasked with finding the optimal 
CA rules to simulate a perfect self-healing material or to gener-
ate a specific complex pattern efficiently. Conversely, CA them-
selves can serve as efficient parallel computational substrates for 
AI tasks, providing a high-speed, localized processing architec-
ture for tasks like image recognition or simulating physical en-
vironments for training AI agents [34, 35].

Cellular automata sometimes are modified to include probabi-
listic or stochastic behaviors. The inclusion of probabilistic or 
stochastic behaviors represents a crucial modification to the 
standard, purely deterministic cellular automata framework, 
significantly expanding their modeling capabilities [36]. In 
a stochastic CA, the transition rule is not fixed but involves a 
probability distribution; for example, a cell might have a 90% 
chance of adopting a new state and a 10% chance of remaining 
in its current state, even if the deterministic rule suggests oth-
erwise. This modification is vital for accurately simulating sys-
tems where randomness and noise play a significant role, such 
as the spread of a disease where transmission might depend on 
random encounters, or complex physical processes like phase 
transitions, where individual particle decisions are probabilistic. 
By introducing chance, stochastic CA can generate more realis-
tic and less predictable patterns, making them superior models 
for natural phenomena with inherent uncertainty [37, 38].

Finally, cellular automata in one, two or three dimensions are 
created and used. The use of cellular automata across one, two, 
and three dimensions highlights their versatility and scalabili-
ty as modeling tools, with the choice of dimensionality directly 
corresponding to the complexity of the system being simulat-
ed. One-dimensional CA (e.g., Wolfram’s Rule 30 –which I call 
rule 31 in a 1 to 256 set of rules; it is rule 30 in a 0 to 255 
scale–, or traffic flow models) are the simplest, often used for 
theoretical studies of complexity, pseudorandom number gen-
eration, and linear processes. Two-dimensional CA (e.g., Con-
way’s Game of Life, forest fire models) are the most common, 
ideal for simulating phenomena that evolve on a planar surface, 
such as pattern formation, fluid dynamics on a grid, and image 
processing. Finally, three-dimensional CA extend these capabili-
ties into volumes, allowing for the realistic modeling of complex 
spatial phenomena, including crystal growth, biological tissue 
formation, and complex diffusion processes within materials, 
requiring significantly more computational power but providing 
richer, volumetric simulation data [39-46].

Theory
Typical cellular automata are drawn using two colors: black and 
white. That means using a binary numerical system with two 
numerical symbols: 0 and 1. In the case of three-colors based 
cellular automata, we require a trinary numerical system, that is, 
a numerical system with three numerical symbols. In this case, 
these symbols are: 0, 1 and 2. Therefore, the first number in such 
numerical system is 0 = 0 the second number is 1 = 1, then fol-
lows 2 = 2. After that we have 10 = 3, then 11 = 4, followed by 
12 = 5. Following we would have 20 = 6, then 21 = 7, then 22 
= 8. Then 100 = 9, 101 = 10, 102 = 11, 110 = 12, 111 = 13, fol-
lowed by 112 = 14. We then would continue counting using 120 
= 15, then 121 = 16, then 122 = 17, then 200 = 18, and so on.

We are going to use the previous and right-to-the-previous cell 
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with these three possible colors (BGW, that is black, gray and 
white, where 0 = black, 1 = gray and 2 = white), so that there are 
32 = 9 combinations for a rule (00, 01, 02, 10, 11, 12, 20, 21, 22) 
and 39 = 19,683 possible universes (possible number of rules). 

Figure 1 shows the arrangement for our BGW cellular automata 
mechanism. Notice that now instead of having “bits” we have 
“trits”: T0, T1, …, T8. These “trits” can take values of either 0, 
1 or 2.

Figure 1: BGW cellular automata “trit” (trinary) arrangement.

To find out the rule number, we should do the sum indicated in 
equation (1).
R = T0×30+T1×31+T2×32+T3×33+T4×34+T5×35+T6×36+T7×37

+T8×38	                                                                      (1)
The maximum value for R is given as Max(R) = 39-1 = 19,682, 
where the minimum value is Min(R) = 0. The rule number goes 
from 1 to R+1, that is, it goes from 1 to 39 = 19,683.

For a given rule number, to find out the components, where R 
= Rule-1, we can use the following sequence of equations: T0 
= R mod 3, T1 = (R div 3) mod 3, then we add another division 
resulting in T2 = ((R div 3) div 3) mod 3, and so on, where mod 
indicates obtaining the residual (module) of dividing by three 
and div means obtaining the integer part of a division by three. 
The use of the mod operator at the end makes sense because in 
that way the only possible results for a single “trit” are 0, 1 and 
2 (instead of the “bit” used in the usual cellular automata black 
and white arrangement where the numerical symbols are 0 and 
1).

Testing
Each rule leads to a given screen result. Each population of cel-
lular automata is arranged in a one-dimensional universe with 
256 possible pixels, where the pixel to the right of the rightmost 
position is the pixel at the leftmost position. It makes no sense to 
consider the pixel at the left of the leftmost position. This con-
stitutes the horizontal dimension. The vertical dimension is the 
time dimension. We have possible values for time going from 0 
to 511, that is, 512 pixels. For time 0, the initial population of 
cellular automata is having all black pixels from position 0 to 
position 253, a gray pixel at position 254 and a white pixel at 
position 255.

The problem with BGW cellular automata is the huge number of 
possible universes that require analysis (39 = 19,683). It is possi-
ble to have a blank screen as a result, a one cycle screen (a screen 
with a complex pattern that occurs only once and then vanish-
es), a pattern screen (the equivalent of a chessboard screen for 
the usual two-bit cellular automata), a complex screen (a screen 
showing inherent complexity) or an unclassified screen (a screen 
that has not fallen in any of the previous four categories). That 
means we need to use an automatic classification system to filter 
out the blank, one cycle, or pattern results from the results con-
sidered to show inherent complexity.

But how can we classify the results? In a two-bit cellular autom-
ata arrangement, that can easily be achieved using a score-based 
classification system. How can we calculate such score? Assign-
ing a black pixel to the number zero and a white pixel to the 
number one, we can calculate the percentage of black pixels (B) 
as indicated in equation (2) and the percentage of white pixels 
(W) as indicated in equation (3), where bj = 1 if there is a black 
pixel at position j and bj = 0 if there is a white pixel at position j 
for a given time t (where there are values for t = 0, …, 511). The 
squaring in equations (2) and (3) is simply for removing the sign 
in the expressions given.

	  	                                                          (2)

	 	                                          (3)
Notice that equation (4) must always be satisfied.
	 W = 1-B	                                                                         (4)
The combined percentage (C) is given as indicated in equation 
(5).
	 C = BW	                                                                           (5)
Substituting W from equation (4) into equation (5) results in a 
function based on B as indicated by equation (6).
	 	                                                (6)
Taking the derivative for B from equation (6) and equating to 
zero leads us to the maximum possible value for B, as shown in 
equations (7) and (8).
	 	                                                                (7)
	 B = ½ = 0.5	                                                            (8)
Since the maximum value for B is 0.5, from equation (4) we 
have that the maximum value for W is also 0.5. Thus, the max-
imum value for the combined score (C), that is, function f(B) is 
given by equation (9).
	 Max(C) = (½)×(½) = ¼ = 0.25	                          (9)
Thus, a numerical score (S) given as a value going from 0 to 10 
can be calculated according to equation (10).
		                                                                       (10)

Extrapolating into our “trit” numerical system, we have that the 
maximum number for a combined score (C) composed by the 
percentage of black pixels multiplied by the percentage of gray 
pixels multiplied by the percentage of white pixels is given as 
indicated in equation (11).
	 Max(C) = (1/3)×(1/3)×(1/3) = (1/27)	           (11)
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Let PB be the percentage of black pixels, PG be the percentage 
of gray pixels and PW be the percentage of white pixels. Then, 
the score (S) for our “trit” numerical system is given according 
to equation (12).

	 	                             (12)
However, if PB = 0, then the score would be given by equation 
(13), if PG = 0 the score would be given by equation (14) and 
if PW = 0 the score would be given according to equation (15).

	 	                              (13)

	                                            (14)

	             	                              (15)
A total of four scores is used. The first score (Score 1) is at one 
quarter of the time dimension going from the top of the screen 
to the bottom. The second score (Score 2) is at one half the time 
dimension. The third such score (Score 3) is at three quarters of 
the time dimension. Finally, the fourth score (Score 4) is at the 

bottom of the time dimension. According to my experience with 
two bits cellular automata, a score greater than 6 could be indic-
ative of a complex arrangement [47].

I used the experience obtained with my work on cellular au-
tomata of two bits, as well as simply viewing the first results 
of the arrangement for my universe of “trits”. If all four scores 
are equal to zero, I label the screen as “Blank”. Otherwise, if 
the last score (Score 4) is greater than 9.99, I label the screen as 
“Pattern”. If not, if the first score is greater than zero and either 
of all three remaining scores are equal to zero, I label the screen 
as “One Cycle”. Otherwise, if Score 1 > 3, Score 2 > 5, Score 3 
> 6 and Score 4 > 6, then I label the screen as “Complex”. Else, 
the screen is labeled as “Unclassified”.

Results
The 39 = 19,683 alternative universes are sorted based on the 
scoring system previously described. Each universe can be clas-
sified as: 1) Blank, 2) Pattern, 3) One Cycle, 4) Complex, and 5) 
Unclassified. Table 1 shows the frequency arrangement for this 
classification.

Table 1: Frequency arrangement for the three-colors (BGW) cellular automata classification system.
Frequency Percentage Actual Results

Blank 2451 12.45% 35.98%
Pattern 936 4.76% 13.74%

One Cycle 2127 10.81% 31.22%
Complex 1298 6.59% 19.05%

Unclassified 12871 65.39% 100.00%
19683 100.00% 6812

The column corresponding to Frequency in Table 1 lists the cor-
responding number of universes fitting any given classification 
with a total of 19,683 = 39 universes. The relative percentages 
for these five classification alternatives are shown in the follow-
ing column. Finally, the percentages for the universes that were 
classified (without counting the 12,871 unclassified universes) is 
shown in the Actual Results column of Table 1.

The given frequencies are plotted in Figure 2. Notice that most 
cases are “Unclassified” (12,871). Of the classified universes, 
most of them (2,451) are “Blank”, and there are 936 univers-

es classified as “Pattern”. The interesting ones are “One Cycle” 
(2,127) and “Complex” (1,298).

Figure 3 shows a pie chart with the relative percentages of the 
universes that were classified. From Table 1 we can see that most 
universes are “Blank” or “One Cycle” (35.98% and 31.22%, re-
spectively). The “Pattern” universes (13.74%) are of no interest. 
The interesting ones should be the ones classified as “Complex” 
(19.05%). That is, about one every five universes should be of 
interest (“Complex”).

Figure 2: Plotting the frequencies in a column chart.



 

www.mkscienceset.comPage No: 06 Wor Jour of Arti inte and Rob Res 2026

Figure 3: Relative percentages for the actual results obtained.

Discussion and Conclusion
The question, of course, is whether the classification scheme 
based on four scores works. To get an intuitive hint about this 
problem we should look at the universes sorted out this way. 
However, even if we only consider the 6,812 classified univers-
es, that is still too much to explore in detail. Thus, I am going 
to consider a subset of universes from the total of 39 = 19,683 
possible ones: the universes going between rules 1 and 256.

In that case, “Complex” universes are: 89, 137, 146, 155, 194, 
202 and 251. Not any one of these were wrongly classified. For 
“One Cycle” universes, these were: 31, 40, 43, 49, 51, 83, 92, 
101, 112, 121, 124, 130, and 205. As we can see, only 4 “One 
Cycle” universes (the ones striped) were not properly classified. 
What about “Blank” universes? Out of the total of 49 “Blank” 
universes classified, only universes 164 and 230 were not actu-

ally “Blank” universes (they look more like a set of horizontal 
lines of different colors). Finally, for “Pattern” universes be-
tween rules 1 and 256, there were no universes having a pat-
terned (chessboard like) look. Consequently, the scheme based 
on my four-score system seems to work properly, at least when 
considering the universes that can be classified.

What is the total number of different arrangements for our 256 
“trits” as time goes by? There is a maximum of 3256 possi-
ble combinations, after which, if we are following determinis-
tic rules, the universe must start repeating itself. However, we 
can consider a smaller case. How about universes with only 
10 “trits”? In that case, for a deterministic set of rules, after a 
maximum of 310 = 59,049 time-steps, the universe must start 
repeating itself.

Figure 4: Rule 31 universe having 256 “trits”.
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Is the set of rules shown in Figure 1 that are possible all that 
varying? To answer that question we are going to consider “One 
Cycle” rule 31, “Complex” rule 89 and “Complex” rule 146 (re-
member that in a “bit” based universe, rule 146 is always the one 
mentioned as showing incredible complexity and beauty) [48].

Figure 4 shows rule 31. We can see it is a triangular fractal, 
which clearly is a case of a “One Cycle” universe in which there 
is symmetrical complexity only at the beginning of such uni-
verse.

Figure 5: Rule 31 (000001010) universe having 10 “trits” for times between 0 and 30 and for times between 30 and 60.
To further explore this universe, we are going to consider the 
same rule (31), but for a 10 “trits” universe, as shown in Figure 
5. We can see in Figure 5 that time step 33 is equal to time step 3, 
so that after time step 33, the arrangement starts repeating itself. 
Certainly, it only lasted 33 steps, not the maximum possible of 
310 = 59,049 time steps!

What about a “Complex” arrangement. We are going to consider 
rule 89, which can be seen in Figure 6. The arrangement shown 
in Figure 6 has complexity, but is somewhat boring, since it con-
sists of the collection of two patterned arrangements that evolve 
through time.

Figure 6: Rule 89 universe having 256 “trits”.
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Figure 7 shows the same rule when applied to a universe of 10 “trits”. Time step 33 is equal to time step 8, so after step 33 the “trits” 
start repeating themselves.

Figure 7: Rule 89 (000010021) universe having 10 “trits” for times between 0 and 30 and for times between 30 and 60.

Figure 8 shows rule 146 (000012101). The arrangement for this 
rule exhibits true beauty. However, rule 146 in a “trits” universe 
is not the same one as rule 146 in a “bits” universe. We can see 
in Figure 8 that the complexity shown continues for several time 

steps as the arrangement develops. Also, notice that in a “trits” 
universe, there are three colors present: black, gray, and white, 
and not just black and white.

Figure 8: Rule 146 universe having 256 “trits”.

Figure 9 shows the time steps in a 10 “trits” arrangement for 
rule 146.

Rule 146 is certainly more complex, because in a 10 “trits” uni-

verse following rule 146, it is only at time step 55 that step 25 
starts repeating itself. Compared to the previous two cases, rule 
146 lasts longer without repetitions.
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Figure 9: Rule 146 (000012101) universe having 10 “trits” for times between 0 and 30 and for times between 30 and  60.

What does free will have to do with cellular automata? How 
the findings related to cellular automata can be generalized to 
artificial machines with natural intelligence (that is, showing Ar-
tificial General Intelligence or AGI)?

In the CA world, if the rules are deterministic, then it is not pos-
sible for the system to be anything more than a mindless ma-
chine. However, if we add a probabilistic or stochastic behavior 
to the CA system (as it would be the case for stochastic CA), 
then the possibility for “free will” to emerge arises.

Large Language Models (LLMs) have impressed both experts 
and common people. They seem to exhibit some intelligent 
behavior. So, it is important in our CA discussion to consider 
LLMs.

The relationship between Large Language Models and the pur-
suit of Artificial General Intelligence (AGI) has become one of 
the most significant scientific debates of the mid-2020s. At its 
core, the discussion centers on whether the current trajectory 
of scaling up transformer-based architectures can eventually 
result in a machine that possesses the same broad, adaptable, 
and autonomous cognitive abilities as a human [49, 50]. While 
the achievements of these models in creative writing, coding, 
and complex reasoning are undeniable, critics and proponents 
remain divided on whether these systems are merely sophisti-
cated “statistical parrots” or the first genuine sparks of a general 
intelligence [51].

Large Language Models operate primarily through the predic-
tion of sequential data, a process that allows them to internalize 
vast amounts of human knowledge encoded in text [52, 53]. This 
has led to the emergence of capabilities that were not explicitly 
programmed, such as the ability to translate languages or solve 
logic puzzles. Some researchers argue that by training on mul-

timodal data including video, audio, and sensorimotor inputs, 
these models are developing a “world model” that transcends 
simple word associations. They suggest that AGI is an emergent 
property of sufficient scale and data diversity, where the model 
eventually grasps the underlying causal structures of reality rath-
er than just the linguistic patterns used to describe them.

However, a significant portion of the academic community main-
tains that Large Language Models face fundamental architectur-
al barriers that prevent them from reaching true AGI. One pri-
mary concern is the “symbol grounding problem”, which refers 
to the fact that these models manipulate abstract symbols with-
out having a physical or experiential connection to what those 
symbols represent. A model can describe the taste of a peach 
or the physics of a falling glass perfectly, yet it has never tasted 
anything nor interacted with gravity. This lack of embodiment 
leads to “brittleness”, where a system might solve a Ph.D.-level 
physics problem but fail at a task requiring basic common sense 
or real-world intuition.

What do CA teach us about LLMs? Clearly, the trick in mak-
ing LLMs to exhibit “free will” lies in allowing them to behave 
probabilistically instead of deterministically. But a stochastic 
behavior in LLMs beyond the probabilistic nature of the way 
in which response words are connected would mean destroying 
their deterministic rule-based “reasoning” process [54]. Thus, 
the only way to make LLMs exhibit “free will” is by connect-
ing them to their human users [55]. However, that is already 
happening, since LLMs answer to human queries. That is the 
reason why LLMs seem intelligent. It is because we provide the 
intelligent input to the system.

Furthermore, the quest for AGI requires more than just high-lev-
el pattern recognition; it necessitates autonomous goal-setting, 
long-term memory, and the ability to learn from a single expe-
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rience [56]. Current models are largely static after their training 
phase and lack a persistent, evolving identity. While “agentic” 
frameworks have begun to wrap language models in loops that 
allow them to use tools and plan multi-step tasks, these are often 
seen as external scaffolds rather than internal cognitive shifts. 
The debate in 2026 has shifted toward hybrid systems that might 
combine the intuitive, associative power of neural networks 
with the rigorous, logical frameworks of symbolic AI. Whether 
the path to AGI is a straight line of scaling or a mountain range 
requiring entirely new architectural “base camps”, the journey 
continues to redefine our understanding of both artificial and hu-
man intelligence.
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