Q

£ SCIENCE SET

e —
OPEN ACCESS PUBLISHERS

ISSN: 3067-2384
Research Article

/ World Journal of Sensors Network Research

Photo Forensics and Similarity Calculation Using Python and C++

Programming LLanguages

Hadzib Salki¢”
CEPS — Center for Business Studies Kiseljak

“Corresponding author: Hadzib Salki¢, CEPS — Center for Business Studies Kiseljak.

Submitted: 13 September 2024 Accepted: 23 September 2024 Published: 07 October 2024

d_- | https://doi.org/10.63620/MKWJSNR.2024.1006

Citation: Hadzib, S. (2024). Photo Forensics and Similarity Calculation Using Python and C++ Programming Languages. Wor Jour of Sens

Net Res, 1(1), 01-03.

Abstract

This paper investigates the application of algorithms for comparing the similarity between two photographs using
Python and C++ programming languages. Through implementation using libraries such as OpenCV and NumPy, the
percentage similarity between two images is calculated. The paper shows the key steps in image processing, as well
as the evaluation of the results. It also analyzes the code in both programming languages and their advantages and

disadvantages.

Keywords: Forensics, Python, C++, Comparison

Introduction

Image comparison is an important task in image processing,
with applications in many fields such as biometrics, face recog-
nition, and image search. This paper presents a simple method
for comparing two images using histogram analysis and similar-
ity comparison.

Methodology

Introduction to Histogram analysis

Histogram analysis is often used to compare the distribution of
colors in two images. A histogram represents the distribution of
pixels in an image by color. By comparing the histogram distri-
butions of two images, a measure of similarity between them can
be obtained.

Implementation in Python

The code below shows the implementation steps:
python

Copy the code

import cv2 # Import OpenCV library

import numpy as np # Import the NumPy library

Function to load and calculate image histogram
def calculate histogram(image path):

image = cv2.imread(image path) # Load image from given
path

image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) #

Page No: 01 /

www.mkscienceset.com

Convert image from BGR to RGB format
histogram = cv2.calcHist([image], [0, 1, 2], None, [8, 8, 8], [0,
256, 0, 256, 0, 256]) # Calculating the histogram
cv2.normalize(histogram, histogram) # Normalize the histo-
gram
return histogram

Function to compare two histograms and calculate similarity
def compare_histograms (hist1, hist2):

similarity = cv2.compareHist(histl, hist2, cv2.HISTCMP
CORREL) # Comparing histograms using correlation return
similarity

The main part of the program
imagel path ='imagel.jpg' # Path to the first image
image2 path = 'image2.jpg' # Path to the second image

Loading images and calculating histograms
histogram1 = calculate histogram (imagel path)
histogram2 = calculate histogram (image2 path)

Histogram comparison
similarity = compare_histograms (histogram1, histogram2)

Print the results
print (f"Probability of similarity between images: {similarity *
100:.2f} %")

Wor Jour of Sens Net Res 2024

Results and Discussion

Through this simple algorithm, we get a numerical value that
represents the similarity between two images. Histogram analy-
sis is an effective method, but it has limitations, especially when
dealing with images with different lighting or perspective. Im-
age comparison using histogram analysis in Python is a simple
but powerful tool for calculating the similarity between two im-
ages. In future work, the use of more advanced techniques such
as feature-based methods or the application of neural networks
could be explored.

This example of a scientific paper covers the basic aspects of
creating an algorithm for image comparison using the Python
programming language. It can be extended by further research
and application of more advanced methods in image similarity
analysis. In order to compare the implementation of comparing
two images using the Python programming language with an-
other programming language, we will choose C++, one of the
most powerful and widely used image processing languages due
to its efficiency and speed. We will compare two approaches,
one in Python and the other in C++, in order to analyze their
specificities.

Python and Implementation

Python is popular for image processing due to its simplicity and
large number of libraries, such as OpenCV and NumPy. Let's
look at the Python code again:

python

Copy the code

import cv2 # Import OpenCV library

import numpy as np # Import the NumPy library

Function to load and calculate image histogram
def calculate histogram(image path):

image = cv2.imread(image_path) # Load image from given
path

image = cv2.cvtColor(image, cv2.COLOR BGR2RGB)

Convert image from BGR to RGB format histogram = cv2.
calcHist([image], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0,
256]) # Calculating the histogram cv2.normalize(histogram, his-
togram) # Normalize the histogram

return histogram

Function to compare two histograms and calculate similarity
def compare_histograms(histl1, hist2):
similarity = cv2.compareHist(histl, hist2, cv2.HISTCMP
CORREL) # Comparing histograms using correlation
return similarity

The main part of the program
imagel path ='imagel.jpg' # Path to the first image
image2 path ='image2.jpg' # Path to the second image

Loading images and calculating histograms
histogram1 = calculate histogram (imagel path)

histogram2 = calculate histogram (image2path)

Histogram comparison
similarity = compare histograms(histogram1, histogram?2)

Page No: 02 /

www.mKkscienceset.com

Print the results
Print (f"Probability of similarity between images: {similarity *
100:.2f} %")

Python Implementation Specifics

1. Simplicity: Python code is easy to read and understand. Us-
ing high-level libraries such as OpenCV and NumPy allows
fast implementation of complex operations with few lines
of code.

2. Productivity: Python allows for rapid iteration and testing,
making it suitable for development and research.

3. Performance: Python is an interpreted language, so it is
slower to perform compared to languages like C++. How-
ever, libraries like NumPy use optimized C/C++ imple-
mentations under the hood, which significantly speeds up
operations.

C++ Implementation

C++ is a language known for its efficiency and performance,
especially when it comes to tasks such as image processing and
working with memory. The following code implements image
comparison using C++ and OpenCV.

cpp

Copy the code

#include <opencv2/opencv.hpp>

#include <iostream>

// Function to load and calculate image histogram
cv:Mat calculateHistogram(const std::string& imagePath) {

cv: Mat image = cv:imread(imagePath); / Load the image
from the given path
cv: cvtColor (image, image, cv: COLOR BGR2RGB); // Con-
vert image from BGR to RGB format

/I Calculating the histogram
cv:Mat hist;
int histSize[] = {8, 8, 8};
float range [] = {0, 256};
const float* ranges [] = {range, range, range};
int channels [] = {0, 1, 2};

cv: calcHist (&image, 1, channels, cv: Mat (), hist, 3, histSize,
ranges, true, false);
cv: normalize (hist, hist); / Histogram normalization

return hist;

// Function to compare two histograms and calculate similarity
double compareHistograms(const cv::Mat& histl, const
cv::Mat& hist2) {

return cv:compareHist(histl, hist2, cv::HISTCMP_ COR-
REL); // Compare histograms using correlation

}

int main () {

std: string image1Path
image

std: string image2Path

imagel.jpg”; / / The path to the first

image2.jpg”’; / / Path to another image

// Load images and calculate histogram
cv: Mat histogram1 = calculateHistogram(image1Path);
cv: Mat histogram2 = calculateHistogram (image2Path);

Wor Jour of Sens Net Res 2024

// Histogram comparison
double similarity = compareHistograms(histogram1, histo-
gram?2);

// Print the results
std:cout << "Probability of similarity between images: " << sim-
ilarity * 100 <<"%" << std::endl;

return 0;

b

C++ Implementation Specifics

1. Efficiency: C++ is a compiled language that allows faster
code execution compared to Python. This is especially im-
portant for applications that require high performance.

2. Control over Memory: C++ provides fine-grained control

over memory, allowing optimization for specific applica-
tions.

3. Complexity: Writing code in C++ requires more lines of
code and more careful handling of resources, which can in-
crease implementation complexity.

4. Industry Use: C++ is widely used in applications where
performance is critical, such as video games, real-time im-
age processing, and resource- constrained systems.

5. Analysis and Comparison

e Simplicity vs. Performance: Python offers simpler and
faster implementation, but is slower in execution. C++ is
more complex to code, but significantly faster and more ef-
ficient.

e Usability: Python is ideal for rapid development and pro-
totyping, while C++ is better for performance-critical ap-
plications.

e Libraries: Both Python and C++ use OpenCV for image
processing, but the way of integration is different. Python
uses a high-level API that is easier to use, while C++ re-
quires more detail in coding.

e Productivity: Python allows for rapid code iteration and
modification, which is useful in research and academic en-
vironments. C++ is better for final versions of software that
will be used in production.

Conclusion

Both languages have their advantages and disadvantages. Py-
thon is excellent for development and testing due to its simplici-
ty and speed of implementation, while C++ is the optimal choice
for situations where performance is critical. The choice of lan-
guage depends on the specific requirements of the project, but
in many cases a combination of both languages can provide the
best results, with Python used for development and testing and
C++ for final implementation.

Reference

1. Shanmugamani, R. (2018). Deep Learning for Comput-
er Vision [E-book]. Amazon.in. https://www.amazon.in/
Deep-Learning-Computer-Vision-techniques-ebook/dp/
B072L1CG5X

2. Bradski, G., & Kaehler, A. (2019). Learning OpenCV 4:
Computer Vision with OpenCV Library. IEEE Xplore.
https://ieeexplore.ieee.org/document/5233425/

3. Lakshmanan, V., Gillard, R., & Seltzer, M. (2021). Prac-
tical Machine Learning for Computer Vision. O'Reilly
Media. https://www.oreilly.com/library/view/practical-ma-
chine-learning/9781098102357/

4. Szeliski, R. (2020). Computer Vision: Algorithms and Ap-
plications. http://szeliski.org/Book/

5. Géron, A. (2022). Hands-On Machine Learning with Scikit-
Learn, Keras, and TensorFlow. Amazon.in. https://www.
amazon.in/Hands-Machine-Learning-Scikit-Learn-Tensor-
Flow/dp/9355421982

6. Prince, S.J. D. (2019). Computer Vision: Models, Learning,
and Inference. https://udlbook.github.io/cvbook/

7. Sonka, M., Hlavac, V., & Boyle, R. (2014). Image Process-
ing, Analysis, and Machine Vision.

8. Solem, J. E. (2020). Programming Computer Vision with
Python. http://programmingcomputervision.com/down-
loads/ProgrammingComputerVision CCdraft.pdf

9. Villan, A. F. (2019). Mastering OpenCV 4 with Python. Am-
azon.in. https://www.amazon.in/Mastering-OpenCV-Py-
thon-practical-processing/dp/1789344913

10. Bishop, C. (2006). Pattern Recognition and Machine Learn-
ing. Microsoft Research. https://www.microsoft.com/en-us/
research/publication/pattern-recognition-machine-learning/

Copyright: ©2024 Hadzib Salki¢. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Page No: 03 /

www.mKkscienceset.com

Wor Jour of Sens Net Res 2024

