
World Journal of Sensors Network Research

www.mkscienceset.com Wor Jour of Sens Net Res 2024

Research Article

Photo Forensics and Similarity Calculation Using Python and C++ 
Programming Languages
Hadžib Salkić*

CEPS – Center for Business Studies Kiseljak

*Corresponding author: Hadžib Salkić, CEPS – Center for Business Studies Kiseljak.

Submitted: 13 September 2024     Accepted: 23 September 2024     Published: 07 October 2024

Citation: Hadžib, S. (2024). Photo Forensics and Similarity Calculation Using Python and C++ Programming Languages. Wor Jour of Sens 
Net Res, 1(1), 01-03.

Page No: 01

Keywords: Forensics, Python, C++, Comparison

Introduction
Image comparison is an important task in image processing, 
with applications in many fields such as biometrics, face recog-
nition, and image search. This paper presents a simple method 
for comparing two images using histogram analysis and similar-
ity comparison.

Methodology
Introduction to Histogram analysis
Histogram analysis is often used to compare the distribution of 
colors in two images. A histogram represents the distribution of 
pixels in an image by color. By comparing the histogram distri-
butions of two images, a measure of similarity between them can 
be obtained.

Implementation in Python
The code below shows the implementation steps:
python
Copy the code
import cv2 # Import OpenCV library
import numpy as np # Import the NumPy library

# Function to load and calculate image histogram
def calculate_histogram(image_path):
    image = cv2.imread(image_path) # Load image from given 
path
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # 

Convert image from BGR to RGB format
    histogram = cv2.calcHist([image], [0, 1, 2], None, [8, 8, 8], [0, 
256, 0, 256, 0, 256]) # Calculating the histogram
    cv2.normalize(histogram, histogram) # Normalize the histo-
gram
    return histogram

# Function to compare two histograms and calculate similarity
def compare_histograms (hist1, hist2):
 similarity = cv2.compareHist(hist1, hist2, cv2.HISTCMP_
CORREL) # Comparing histograms using correlation return 
similarity

# The main part of the program
image1_path = 'image1.jpg' # Path to the first image
image2_path = 'image2.jpg' # Path to the second image

# Loading images and calculating histograms
histogram1 = calculate_ histogram (image1_path)
histogram2 = calculate_ histogram (image2_path)

# Histogram comparison
similarity = compare_histograms (histogram1, histogram2)

# Print the results
print (f"Probability of similarity between images: {similarity * 
100:.2f} %")

https://doi.org/10.63620/MKWJSNR.2024.1006

ISSN: 3067-2384

Abstract
This paper investigates the application of algorithms for comparing the similarity between two photographs using 
Python and C++ programming languages. Through implementation using libraries such as OpenCV and NumPy, the 
percentage similarity between two images is calculated. The paper shows the key steps in image processing, as well 
as the evaluation of the results. It also analyzes the code in both programming languages and their advantages and 
disadvantages.



 

www.mkscienceset.com Wor Jour of Sens Net Res 2024Page No: 02

Results and Discussion
Through this simple algorithm, we get a numerical value that 
represents the similarity between two images. Histogram analy-
sis is an effective method, but it has limitations, especially when 
dealing with images with different lighting or perspective. Im-
age comparison using histogram analysis in Python is a simple 
but powerful tool for calculating the similarity between two im-
ages. In future work, the use of more advanced techniques such 
as feature-based methods or the application of neural networks 
could be explored.

This example of a scientific paper covers the basic aspects of 
creating an algorithm for image comparison using the Python 
programming language. It can be extended by further research 
and application of more advanced methods in image similarity 
analysis. In order to compare the implementation of comparing 
two images using the Python programming language with an-
other programming language, we will choose C++, one of the 
most powerful and widely used image processing languages due 
to its efficiency and speed. We will compare two approaches, 
one in Python and the other in C++, in order to analyze their 
specificities.

Python and Implementation
Python is popular for image processing due to its simplicity and 
large number of libraries, such as OpenCV and NumPy. Let's 
look at the Python code again:
python
Copy the code
import cv2 # Import OpenCV library
import numpy as np # Import the NumPy library

# Function to load and calculate image histogram
def calculate_histogram(image_path):
    image = cv2.imread(image_path) # Load image from given 
path
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) 
# Convert image from BGR to RGB format histogram = cv2.
calcHist([image], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 
256]) # Calculating the histogram cv2.normalize(histogram, his-
togram) # Normalize the histogram
    return histogram

# Function to compare two histograms and calculate similarity
def compare_histograms(hist1, hist2):
    similarity = cv2.compareHist(hist1, hist2, cv2.HISTCMP_
CORREL) # Comparing histograms using correlation
    return similarity

# The main part of the program
image1_path = 'image1.jpg' # Path to the first image
image2_path = 'image2.jpg' # Path to the second image

# Loading images and calculating histograms
histogram1 = calculate_ histogram (image1_path)
histogram2 = calculate_ histogram (image2path)

# Histogram comparison
similarity = compare_histograms(histogram1, histogram2)

# Print the results
Print (f"Probability of similarity between images: {similarity * 
100:.2f} %")

Python Implementation Specifics
1.	 Simplicity: Python code is easy to read and understand. Us-

ing high-level libraries such as OpenCV and NumPy allows 
fast implementation of complex operations with few lines 
of code.

2.	 Productivity: Python allows for rapid iteration and testing, 
making it suitable for development and research.

3.	 Performance: Python is an interpreted language, so it is 
slower to perform compared to languages like C++. How-
ever, libraries like NumPy use optimized C/C++ imple-
mentations under the hood, which significantly speeds up 
operations.

C++ Implementation
C++ is a language known for its efficiency and performance, 
especially when it comes to tasks such as image processing and 
working with memory. The following code implements image 
comparison using C++ and OpenCV.
cpp
Copy the code
#include <opencv2/opencv.hpp>
#include <iostream>

// Function to load and calculate image histogram
cv:Mat calculateHistogram(const std::string& imagePath) {
    cv: Mat image = cv:imread(imagePath); // Load the image 
from the given path
cv: cvtColor (image, image, cv: COLOR_BGR2RGB); // Con-
vert image from BGR to RGB format

// Calculating the histogram
    cv:Mat hist;
    int histSize[] = {8, 8, 8};
    float range [] = {0, 256};
    const float* ranges [] = {range, range, range};
    int channels [] = {0, 1, 2};

cv: calcHist (&image, 1, channels, cv: Mat (), hist, 3, histSize, 
ranges, true, false);
cv: normalize (hist, hist); // Histogram normalization

    return hist;
}

// Function to compare two histograms and calculate similarity
double compareHistograms(const cv::Mat& hist1, const 
cv::Mat& hist2) {
    return cv:compareHist(hist1, hist2, cv::HISTCMP_COR-
REL); // Compare histograms using correlation
}

int main () {
std: string image1Path = "image1.jpg”; / / The path to the first 
image
std: string image2Path = "image2.jpg”; / / Path to another image

// Load images and calculate histogram
cv: Mat histogram1 = calculateHistogram(image1Path);
cv: Mat histogram2 = calculateHistogram (image2Path);



 

www.mkscienceset.com Wor Jour of Sens Net Res 2024Page No: 03

// Histogram comparison
    double similarity = compareHistograms(histogram1, histo-
gram2);

// Print the results
std:cout << "Probability of similarity between images: " << sim-
ilarity * 100 << "%" << std::endl;

    return 0;
}

C++ Implementation Specifics
1.	 Efficiency: C++ is a compiled language that allows faster 

code execution compared to Python. This is especially im-
portant for applications that require high performance.

2.	 Control over Memory: C++ provides fine-grained control 
over memory, allowing optimization for specific applica-
tions.

3.	 Complexity: Writing code in C++ requires more lines of 
code and more careful handling of resources, which can in-
crease implementation complexity.

4.	 Industry Use: C++ is widely used in applications where 
performance is critical, such as video games, real-time im-
age processing, and resource- constrained systems.

5.	 Analysis and Comparison
•	 Simplicity vs. Performance: Python offers simpler and 

faster implementation, but is slower in execution. C++ is 
more complex to code, but significantly faster and more ef-
ficient.

•	 Usability: Python is ideal for rapid development and pro-
totyping, while C++ is better for performance-critical ap-
plications.

•	 Libraries: Both Python and C++ use OpenCV for image 
processing, but the way of integration is different. Python 
uses a high-level API that is easier to use, while C++ re-
quires more detail in coding.

•	 Productivity: Python allows for rapid code iteration and 
modification, which is useful in research and academic en-
vironments. C++ is better for final versions of software that 
will be used in production.

Conclusion
Both languages have their advantages and disadvantages. Py-
thon is excellent for development and testing due to its simplici-
ty and speed of implementation, while C++ is the optimal choice 
for situations where performance is critical. The choice of lan-
guage depends on the specific requirements of the project, but 
in many cases a combination of both languages can provide the 
best results, with Python used for development and testing and 
C++ for final implementation.

Reference
1.	 Shanmugamani, R. (2018). Deep Learning for Comput-

er Vision [E-book]. Amazon.in. https://www.amazon.in/
Deep-Learning-Computer-Vision-techniques-ebook/dp/
B072L1CG5X

2.	 Bradski, G., & Kaehler, A. (2019). Learning OpenCV 4: 
Computer Vision with OpenCV Library. IEEE Xplore. 
https://ieeexplore.ieee.org/document/5233425/

3.	 Lakshmanan, V., Gillard, R., & Seltzer, M. (2021). Prac-
tical Machine Learning for Computer Vision. O'Reilly 
Media. https://www.oreilly.com/library/view/practical-ma-
chine-learning/9781098102357/

4.	 Szeliski, R. (2020). Computer Vision: Algorithms and Ap-
plications. http://szeliski.org/Book/

5.	 Géron, A. (2022). Hands-On Machine Learning with Scikit-
Learn, Keras, and TensorFlow. Amazon.in. https://www.
amazon.in/Hands-Machine-Learning-Scikit-Learn-Tensor-
Flow/dp/9355421982

6.	 Prince, S. J. D. (2019). Computer Vision: Models, Learning, 
and Inference. https://udlbook.github.io/cvbook/

7.	 Sonka, M., Hlavac, V., & Boyle, R. (2014). Image Process-
ing, Analysis, and Machine Vision.

8.	 Solem, J. E. (2020). Programming Computer Vision with 
Python. http://programmingcomputervision.com/down-
loads/ProgrammingComputerVision_CCdraft.pdf

9.	 Villán, A. F. (2019). Mastering OpenCV 4 with Python. Am-
azon.in. https://www.amazon.in/Mastering-OpenCV-Py-
thon-practical-processing/dp/1789344913

10.	 Bishop, C. (2006). Pattern Recognition and Machine Learn-
ing. Microsoft Research. https://www.microsoft.com/en-us/
research/publication/pattern-recognition-machine-learning/

Copyright: ©2024 Hadžib Salkić. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


