

ISSN: 3067-2384 Research Article

World Journal of Sensors Network Research

Analyses of the Most Influential Utilising Hofstede's Cultural Dimensions for Predicting Cross-Cultural Management Outcomes Through Adaptive Neuro-Fuzzy Method

Milovančević Miloš^{1*}, Srđan Stojičić¹, Mirjana Miljanović², Nikola Simonović³, & Dragana Trnavac³

¹University of Niš, Faculty of Mechanical Engineering, Serbia

²University of East Sarajevo, Faculty of Production and Management, Trebinje

³University MB, Faculty of Business and Law

*Corresponding author: Milovančević Miloš, University of Niš, Faculty of Mechanical Engineering, Serbia.

Submitted: 07 October 2024 Accepted: 14 October 2024 Published: 21 October 2024

doi https://doi.org/10.63620/MKWJSNR.2024.1004

Citation: Milovančević Miloš, Stojičić, S., Miljanović, M., Simonović, N., & Trnavac, D. (2024). Analyses of the Most Influential Utilising Hofstede's Cultural Dimensions for Predicting Cross-Cultural Management Outcomes Through Adaptive Neuro-Fuzzy Method. Wor Jour of Sens Net Res, 1(1), 01-05.

Abstract

During the last twenty years, cultural variations have had a considerable impact on the management of businesses via their effect. Across the globe, cross-cultural management is now a subject that is receiving a lot of attention in contemporary business. The model developed by Hofstede is comprised of six factors that are utilised for the purpose of assessing cross-cultural implications and cultural features. These variables include power distance, uncertainty avoidance, individualism against collectivism, masculinity versus femininity, long-term orientation, and indulgence versus restraint. The primary purpose of this research was to investigate the impact that Hofstede's six-dimensional model has on the abilities of cross-cultural management to forecast outcomes. An adaptive neural fuzzy inference system, also known as an ANFIS, was used to the data in order to identify the most important and influential parameters in forecasting the fatality of a case. The ANFIS approach was used for the purpose of selecting variables in order to ascertain the primary elements that have an impact on the prediction of cross-cultural management.

Keywords: ANFIS Forecasting, Cross-Cultural Management

Introduction

Over the course of his investigation into the influence of culture on labour values, Hofstede conducted comprehensive study that included seventy different countries [1-3]. The model that he devised is comprised of six aspects, which are as follows: power distance, uncertainty avoidance, individuality against collectivism, masculinity versus femininity, long-term orientation, and indulgence versus restraint [4-7]. To determine whether or not an East Asian cluster is existent, the dimensions will be investigated. It is possible to quantify the degree to which individuals with less authority are willing to tolerate an uneven allocation of power via the use of the authority Distance Index (PDI). The study of uncertainty avoidance examines how different civilisations feel about their inability to predict what will happen in the future. Comparing individualism and collectivism is a method for determining the degree of interdependence that

exists between individuals of a community. Contrast between masculinity and femininity in terms of sexuality Having a high Masculinity score indicates that the culture is characterised by a strong emphasis on competitiveness and achievement [8-10]. In societies that are dominated by matriarchy, the quality of life is highly valued and considered to be a tremendous accomplishment. Long-term focus as a civilisation is one of Japan's most recognisable characteristics. It is not an inaccurate description to call the Japanese fatalists. Businesses in Japan place a higher value on quality, long-term commitments, and large investments in research and development than they do on attaining the highest possible profits. In spite of the fact that various new mathematical functions have been introduced, the primary objective of this research is to solve the high nonlinearity that is present in cross-cultural management research via the use of soft computing technique. It is possible to employ Artificial Neural Net-

Page No: 01 www.mkscienceset.com Wor Jour of Sens Net Res 2024

works (ANN) as an alternative to analytical approaches because they provide a number of benefits, including the fact that they do not need knowledge of the features of the underlying system and that they provide succinct solutions to issues that include several variables. The Adaptive Neuro-Fuzzy Inference System (AN-FIS), which is a kind of artificial neural network, was utilised in the research project in order to determine the most important characteristics for making predictions using cross-cultural management applications. Because of its remarkable learning and forecasting capabilities, ANFIS is a potent instrument that may be used for the management of uncertainties inside any system. Many engineering systems have been employed by researchers in order to make use of ANFIS, which is a hybrid intelligent system that is well-known for its capacity to learn and change on its own [12-15]. An extensive number of researches [16-27] have been conducted to determine whether or not ANFIS is suitable for estimating and detecting a variety of systems in real time.

Methodology

Twenty-two percent of the world's population lives in East Asia, which accounts for around twenty-eight percent of the Asian continent. In addition, various East Asian nations have been influenced by Chinese culture and have adopted Chinese writing,

calendar, and beliefs as a result of this influence. Compared to other Asian nations, Japan is distinguished by Hofstede's cultural dimensions as a society that has a moderate amount of power distance. This distinguishes Japan from other Asian nations. The power gap between Japan and Germany is more than that of Germany, but it is less than that of China and South Korea. In addition to this, Japan has a degree of uncertainty avoidance that is very high. A decision-making procedure that encompasses many hierarchical levels and needs permission from top management should be implemented in order to avoid the misuse of power and the practice of making decisions unilaterally. It may be inferred that Japan's society is characterised by collectivistic tendencies since the country shows a modest level of individualism. Comparatively speaking, China and South Korea are far more collectivist than other nations. Despite the fact that collectivistic cultures are characterised by a concern for social reputation and a general interest in maintaining peace, the Japanese do not have substantial relationships to extended family members.

Statistical Data

Table 1 shows input and output parameters which are used in this investigation. All percentage numbers are converted in decimal numbers during the ANFIS training procedure.

Table 1: Input and output parameters

Inputs	Parameters description
input 1	Uncertainty avoidance
input 2	Power Distance (PDI)
input 3	Individualism versus Collectivism
input 4	Masculinity versus Femininity
input 5	Long-term Orientation
input 6	Indulgence versus Restraint
output	Cross cultural management

ANFIS Methodology

MATLAB's fuzzy inference technology is used throughout the whole ANFIS training and assessment procedure. In Figure 1, an ANFIS network with two input variables is illustrated.

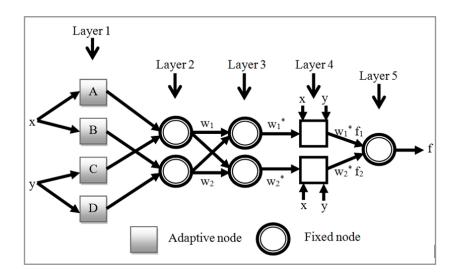


Figure 1: ANFIS structure

For the objectives of this research, the fuzzy IF-THEN rules of Takagi and Sugeno's class and two inputs for the first-order Sugeno are employed:

if x is A and y is C then
$$f_1 = p_1 x + q_1 y + r_1$$

The first layer consists of input parameters MFs, which supply input values to the subsequent layer. Each node in this instance is regarded as adaptive node with a node function, whereas and are membership functions. Such example, bell-shaped membership functions with a maximum value of (1.0) and a minimum value of (0.0) are chosen, where is the set of parameters set. This layer's parameters are labeled as premise parameters. Here, and are the nodes' inputs. The second layer is the membership layer. It attempts to determine the weights of each membership function. This layer receives the receiving signals from the previous layer and then functions as the membership function for the fuzzy set representations of each input variable. Nodes in the second layer are not adaptable. The layer functions as a multiplier for the received signals and transmits the resulting data. Every output node displays the rule's firing intensity. The layer acts as a multiplier for the receiving signals and sends out the oucome in form. Every output node exhibits the firing strength of a rule.

The third layer is known as the rule layer. Here, every neuron act as a prerequisite for aligning fuzzy rules, meaning the activation level of each rule is established, with the quantity of fuzzy rules matching the number of layers. Every node computes standardised weights. The nodes in the third layer are also considered non-adaptive. Normalised firing strengths are the outcomes of individual nodes determining the value of a rule's firing strength in relation to the sum of all rules' firing strengths in the system. The fourth layer is responsible for producing output values through rule inference. This layer is also known as the defuzzification layer. Each node in the fourth layer is an adaptable node that performs a specific function. In this stratum, the variable collection is the focus. The variables are represented by the parameters above.

The final layer is referred to as the output layer. It sums together all the inputs received from the preceding layer. The technology converts the fuzzy categorization results into a binary value. The single node in the fifth layer is not adaptable. This node calculates the total output by adding together all received signals. This node calculates the total output as the wholesum of all receiving signals,

$$O_i^5 = \sum_i w_i^* x f = \frac{\sum_i w_i f}{\sum_i w_i}$$
(3)

Hybrid learning approaches were employed to identify variables inside the ANFIS designs. Functional signals progress to the fourth layer where the hybrid learning process achieves success. The least squares estimate is used to calculate the subsequent variables. The error rates are iterated in reverse during the backward pass, and the premise variables are synchronised in gradient descent order.

Results

Evaluating accuracy indices

The forecasting capabilities of the suggested model were provided as root mean square error, Coefficient of determination, and Pearson coefficient (r). These numbers are described as follows:

1) root-mean-square error (RMSE)

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (P_i - O_i)^2}{n}},$$
 (4)

2) Pearson correlation coefficient (r)

$$r = \frac{n\left(\sum_{i=1}^{n} O_{i} \cdot P_{i}\right) - \left(\sum_{i=1}^{n} O_{i}\right) \cdot \left(\sum_{i=1}^{n} P_{i}\right)}{\sqrt{\left(n\sum_{i=1}^{n} O_{i}^{2} - \left(\sum_{i=1}^{n} O_{i}\right)^{2}\right) \cdot \left(n\sum_{i=1}^{n} P_{i}^{2} - \left(\sum_{i=1}^{n} P_{i}\right)^{2}\right)}}$$
(5)

3) coefficient of determination (R2)

$$R^{2} = \frac{\left[\sum_{i=1}^{n} \left(O_{i} - \overline{O}_{i}\right) \cdot \left(P_{i} - \overline{P}_{i}\right)\right]^{2}}{\sum_{i=1}^{n} \left(O_{i} - \overline{O}_{i}\right) \cdot \sum_{i=1}^{n} \left(P_{i} - \overline{P}_{i}\right)}$$
(6)

where Pi and Oi are experimental and forecast values of, respectively, and n is the total number of test data.

ANFIS Results

For the purpose of determining the set of the final optimal combination inputs (Table 1) that has the greatest impact and influence on the cross-cultural management output parameters, a comprehensive search was carried out on the inputs that were provided. In order to construct an ANFIS model, one must first create functions for every possible combination and then train those functions for a single epoch. Following that, the real performance is provided for reporting. According to the information shown in Figure 2, the input that had the greatest impact on the outcome of the prediction was identified and characterised right from the start. The input variable that has the least amount of training error has the most impact on the output that is ultimately produced. There are the fewest faults in the input variables that are located on the left, and they have the biggest influence on the power distance index (PDI). The results shown in Figure 2 demonstrate that the input parameter 2 has the most significant impact on the forecasting of cross-cultural management, whilst the input parameter 1 has the lowest Root Mean Square Error (RMSE). Input 5 has the biggest root mean square error (RMSE), which means that it has the least impact on the forecasting of cross-cultural management.

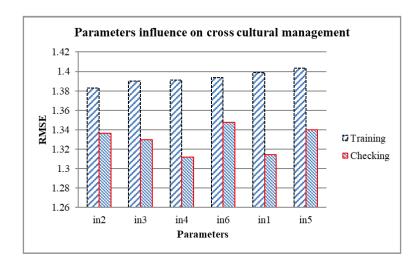


Figure 2: Every input parameter's influence on cross cultural management

Table 2 displays the numerical findings for the effect of all single factors on cross-cultural management. For further study, the chosen one-parameter combinations are extracted.

Table 2: Input parameters influence on forecasting of the cross cultural management

One input	
ANFIS model 1: in1> trn=1.3986, chk=1.3143	
ANFIS model 2: in2> trn=1.3827, chk=1.3366	
ANFIS model 3: in3> trn=1.3901, chk=1.3299	
ANFIS model 4: in4> trn=1.3910, chk=1.3116	
ANFIS model 5: in5> trn=1.4035, chk=1.3400	
ANFIS model 6: in6> trn=1.3938, chk=1.3474	

Conclusion

Despite the fact that it provides a framework for examining groupings of countries, the Hofstede model does not give a full account of the phenomenon. It may be necessary to do more study in order to appropriately classify culture based on a limited set of characteristics. This is because the basic motivations of a civilisation are complex and multifaceted. The parameter power distance has the lowest error rate and is the most important for the result (PDI), according to the evaluations that were performed on the forecasting procedures. The power index developed by Hofstede investigates the manner in which status is assigned and the allowable power distance in a community, a factor that had not been investigated before.

Because there are so many different components and elements that have an impact on cross-cultural management, it is difficult to make accurate predictions about its future. As a result, this research presented a novel strategy for overcoming the limitations of cross-cultural management prediction by eliminating input factors that were not essential nor relevant.

For the purpose of predicting cross-cultural management, the ANFIS approach was used to pick the criteria that were iden-

tified as being the most relevant. For the purpose of converting complex and many performance characteristics into a unified multi-response performance index, the ANFIS model is employed. The approach of forecasting that is presented in this research is advantageous in that it enhances various characteristics that were discovered in the analysis of cross-cultural management.

Reference

- Chanlat, J., Davel, E., & Dupuis, J. (2013). Cross-Cultural Management - Culture and management across the world. Routledge.
- 2. Hall, E. (1987). Hidden Differences: Doing Business with The Japanese. Anchor Press/Doubleday.
- 3. Hall, E. (1976). Beyond Culture. Anchor Press.
- House, R. J., Javidan, M., Dorfman, P., & Gupta, V. (2004).
 Culture Leadership and Organizations the GLOBE study of 62 Societies. Sage Publications.
- 5. Lee, D., & Dawes, P. (2005). Guanxi Trust and Long-Term Orientation in Chinese Business Markets. Journal of International Marketing, 13(2).
- 6. Luthans, F., & Doh, J. (2012). International Management Culture, Strategy and Behavior (8th ed.). McGraw Hill.
- 7. Luthans, F., & Doh, J. P. (2012). International Management:

- Culture, Strategy, and Behavior (8th ed.). McGraw-Hill.
- 8. Merkin, R. (2009). Cross-cultural communication patterns Korean and American Communication. Journal of Inter-cultural Communication, (20).
- 9. Nardon, L., & Steers, R. M. (2006). Navigating the culture theory jungle: Divergence and convergence in Models of national Culture. Cambridge University Press.
- 10. The Hofstede Centre. (2016). National Culture. Retrieved March 5, 2016, from https://www.google.com/search?q=http://geert-hofstede.com/national-culture.html
- 11. Jang, J. S. R. (1993). ANFIS Adaptive-Network-based Fuzzy Inference Systems. IEEE Trans. On Systems, Man, and Cybernetics, 23, 665-685.
- Ghandoor, A. A., & Samhouri, M. (2009). Electricity Consumption in the Industrial Sector of Jordan: Application of Multivariate Linear Regression and Adaptive Neuro-Fuzzy Techniques. Jordan Journal of Mechanical and Industrial Engineering, 3, 69-76.
- 13. Singh, R., Kianthola, A., & Singh, T. N. (2012). Estimation of elastic constant of rocks using an ANFIS approach. Applied Soft Computing, 12, 40-45.
- 14. Petković, D., Issa, M., Pavlović, N. D., Pavlović, N. T., Zentner, L., & et al. (2012). Adaptive neuro-fuzzy estimation of conductive silicone rubber mechanical properties. Expert Systems with Applications, 39, 9477-9482.
- 15. Petković, D., & Ćojbašić, Ž. (2012). Adaptive neuro-fuzzy estimation of automatic nervous system parameters effect on heart rate variability. Neural Computing & Application, 21, 2065-2070.
- Kurnaz, S., Cetin, O., & Kaynak, O. (2010). Adaptive neuro-fuzzy inference system based autonomous flight control of unmanned air vehicles. Expert Systems with Applications, 37, 1229-1234.
- 17. Petković, D., Issa, M., Pavlović, N. D., Zentner, L., Ćojbašić, Ž., & et al. (2012). Adaptive neuro fuzzy controller

- for adaptive compliant robotic gripper. Expert Systems with Applications, 39, 13295-13304.
- 18. Tian, L., & Collins, C. (2005). Adaptive neuro-fuzzy control of a flexible manipulator. Mechatronics, 15, 1305-1320.
- 19. Ekici, B. B., & Aksoy, U. T. (2011). Prediction of building energy needs in early stage of design by using ANFIS. Expert Systems with Applications, 38, 5352.
- Khajeh, A., Modarress, H., & Rezaee, B. (2009). Application of adaptive neuro-fuzzy inference system for solubility prediction of carbon dioxide in polymers. Expert Systems with Applications, 36, 5728.
- 21. Inal, M. (2008). Determination of dielectric properties of insulator materials by means of ANFIS: A comparative study. Expert Systems with Applications, 195, 34.
- Lo, S. P., & Lin, Y. Y. (2005). The prediction of wafer surface non-uniformity using FEM and ANFIS in the chemical mechanical polishing process. Journal of Materials Processing Technology, 168, 250.
- 23. Andrews, T. G., & Mead, R. (2024). The Sage Handbook of Contemporary Cross-Cultural Management. Journal of International Business Studies, 55, 341.
- 24. Wei, S. (2024). Discussion of Cross-Culture Management in Cultural Diversified Workplace. Journal of Sociology and Ethnology, 6, 164-168.
- 25. Magnier-Watanabe, R., & Senoo, D. (2023). Hofstede's Cultural Dimensions and R&D Intensity as an Innovation Strategy. Eurasian Business Review, 34, 483-507.
- 26. Minkov, M. (2018). A revision of Hofstede's model of national culture: Old evidence and new data from 56 countries. Cross-Cultural and Strategic Management, 25, 231-256.
- 27. Caprar, D. V., Devinney, T. M., & Kirkman, B. L. (2024). The role of cultural intelligence in cross-cultural management. Journal of World Business, 59, 128-145.

Copyright: ©2024 Milovančević Miloš, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Page No: 05 www.mkscienceset.com Wor Jour of Sens Net Res 2024