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Abstract
Agricultural drought represents a major environmental challenge impacting the Horn of Africa, especially So-
malia's Bay region. Bay, a semi-arid region dependent on rain-fed agriculture and pastoralism, is significantly 
susceptible to the effects of recurring droughts, which threaten food security, reduce agricultural production, and 
increase humanitarian disasters. The main objectives of this study were to: Analyze spatiotemporal variability in 
drought conditions using satellite-based indices. The research utilized essential remote sensing indices, specifical-
ly the Vegetation Health Index (VHI), which is derived from the Normalized Difference Vegetation Index (NDVI) 
and the Temperature Condition Index (TCI). Data from Landsat satellites were analyzed with GIS technologies 
to categorize drought severity into five classifications: Extreme, Severe, Moderate, Mild, and No Drought. The 
investigation encompassed the years 2014, 2016, 2018, and 2020 to assess temporal changes and spatial distri-
bution. The analysis was carried out using ArcGIS 10.8. The VHI results showed significant fluctuations over the 
study period. In 2014, severe to extreme drought covered over 54% of the region, with less than 1% unaffected. 
By 2016, conditions improved slightly, with mild drought covering 34% and drought-free areas rising to 12%. In 
2018, drought severity escalated, with extreme drought expanding to 31%, while areas without drought declined 
to 7.4%. By 2020, drought conditions peaked, with over 90% of the region experiencing moderate to severe stress 
and only 0.3% free from drought. The findings underscore the region's vulnerability to climatic variability and the 
need for robust early warning systems. The study demonstrates the efficacy of GIS and remote sensing in drought 
monitoring, providing actionable insights for policymakers and humanitarian agencies to enhance resilience in 
Gedo and similar arid regions.
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Introduction
Somalia is recognized as one of the most drought-prone nations 
globally, facing frequent and severe dry periods that continual-
ly threaten livelihoods and food security. The nation's arid and 
semi-arid climate, fragile ecosystems, and heavy reliance on 
rain-fed agriculture and pastoralism make it highly susceptible 
to rainfall fluctuation and extended dry spells [1]. Drought cycles 
have escalated in recent decades, with major occurrences noted 
in 2010–2011, 2016–2017, and from 2020 onwards, consistently 
leading to mass displacement, animal mortality, and famine [2]. 

The humanitarian impact is profound, with millions of Somalis 
experiencing food insecurity due to the complex interaction of 
drought, conflict, poverty, and governance issues [3].This situa-
tion highlights a critical need for robust and timely drought mon-
itoring to safeguard the country's vulnerable agricultural sectors.

Effective agricultural drought monitoring is essential in Soma-
lia, particularly in regions like the Bay region, often referred to 
as the nation’s “breadbasket.” However, the Bay region, and 
by extension other crucial areas, exhibit inadequate adaptive 
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capacity, frequent rainfall deficits, and insufficient early warn-
ing systems [3].Conventional meteorological data collection in 
such regions is often limited, posing a challenge for prompt and 
precise intervention [4]. While previous studies have utilized 
Geographic Information Systems (GIS) and remote sensing for 
drought delineation using indices like the Standardized Precipi-
tation Evapotranspiration Index (SPEI) and the Reconnaissance 
Drought Index (RDI) across Somalia [1,2], comprehensive, 
high-resolution analyses using a combination of vegetation-spe-
cific indices are still needed for areas experiencing acute vulner-
ability. Research on regional variations in drought hazard levels 
indicates that while some areas are designated as extremely sus-
ceptible, a deeper spatio-temporal analysis is required to inform 
micro-level planning.

This study addresses the aforementioned gaps by focusing on the 
Gedo region of Somalia, utilizing the advanced capabilities of 
GIS and remote sensing technology to specifically monitor and 
evaluate agricultural drought. The novelty lies in the integrat-
ed application and analysis of multiple satellite-derived indica-
tors—specifically the Normalized Difference Vegetation Index 
(NDVI), Temperature Condition Index (TCI), Vegetation Con-
dition Index (VCI), and the Vegetation Health Index (VHI). By 
consolidating multi-source data (climate and vegetation health) 

into a unified, spatially explicit platform, this research offers a 
more precise and comprehensive assessment of vegetation stress 
and agricultural dryness than previously available.

The main aim of this study is to explore spatiotemporal chang-
es in drought conditions within the Gedo region and to identify 
and map drought-prone areas through the analysis of these sat-
ellite-derived indicators, utilizing robust GIS-based methodol-
ogies. The findings will provide essential data for formulating 
timely, location-specific interventions, thereby contributing to 
the development of enduring resilience against climatic shocks. 

Materials And Methods
Study Area
The Bay region, an administrative area in southern Somalia sit-
uated at latitude 3° 04' 16.80" N and longitude 43° 50' 4.19" 
E, faces significant challenges due to inter-clan conflicts. Ac-
cording to Barrow (2020), these conflicts are primarily fueled by 
disputes over land, resources, and political power, particularly 
within the Baidoa district. The ongoing strife has severely com-
promised the region's security infrastructure. Furthermore, the 
area's capacity for livestock production, which holds consider-
able potential, is significantly undermined by both natural and 
human-induced constraints (Birhan, 2013).

Figure 1:  Study Area Map

Normalized Difference Vegetation Index (NDVI)
Normalized Difference Vegetation Index (NDVI) involves a 
simple mathematical formula: 
     (NIR-VIS) / (NIR+VIS),
where NIR is the near-infrared band and VIS is the visible red 
band (Lemenkova, 2015). This index is widely used in remote 
sensing to monitor vegetation health and changes over time. It 
has been successfully applied in various fields, including agri-
culture (Berger, 2019) and remote sensing (Zhang, 2020). The 
NDVI is particularly useful in predicting crop growth and yield, 
with a high correlation between the index and these outcomes 
(Berger, 2019). Furthermore, the index can be improved through 
fusion techniques, which enhance the spatial resolution of the 
NDVI (Zhang, 2020).

Normalized Difference Water Index (NDWI)
NDWI was measured following established methods [5, 6] Rob-
erts et al., 2006; Ding & Gong, 2011). It is widely used to mon-

itor changes in water content in vegetation, map water bodies, 
and assess aquatic vegetation. In this study, NDWI was applied 
to evaluate variations in vegetation water content across the 
study area.

Normalized Difference Built-up Index (NDBI)
NDBI was calculated following standard procedures [7, 8]. It is 
commonly used for mapping urban areas and delineating built-
up regions from natural landscapes. This index exploits the fact 
that built-up areas reflect more in the shortwave infrared spec-
trum than vegetation, allowing accurate assessment of urban ex-
pansion.

Vegetation Condition Index (VCI)
VCI was derived based on the method by [9]. It measures vege-
tation condition by comparing current NDVI values with histor-
ical ranges over a similar time period. VCI is widely applied to 
monitor vegetation health and detect areas under drought stress.
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Temperature Condition Index (TCI)
TCI was calculated following Kogan (2000). It assesses thermal 
conditions using land surface temperature (LST) data, providing 
insights into plant stress induced by temperature extremes. TCI 
complements VCI by integrating thermal information in vegeta-
tion monitoring.

Vegetation Health Index (VHI)
VHI was computed as an integration of VCI and TCI follow-
ing [10]. By combining vegetation greenness and thermal con-
ditions, VHI offers a comprehensive assessment of vegetation 
health and drought impact across the study area.

GIS Tool
In this study, Geographic Information Systems (GIS) were em-
ployed as a fundamental analytical framework to assess and map 
the spatial patterns of agricultural drought in the Bay region of 
Somalia. GIS enabled the integration of multi-source spatial 
data, including satellite imagery, vegetation indices (NDVI, 
VCI, TCI, and VHI), land surface temperature (LST), and pre-
cipitation anomalies. The analysis was conducted using ArcGIS 
software, which facilitated data pre-processing, classification, 
overlay analysis, and map generation. GIS tools were partic-
ularly instrumental in visualizing temporal changes in vegeta-
tion health and identifying drought-prone areas across different 
years (2014, 2016, 2018, and 2020). The thematic maps created 
through GIS allowed for a clearer understanding of drought se-
verity at the regional and sub-regional levels. Spatial statistics 

such as zonal analysis and pixel classification further enhanced 
the accuracy of drought impact assessments. Moreover, GIS 
supported the development of drought hazard maps by combin-
ing environmental indicators with administrative boundaries, 
enabling policymakers and humanitarian agencies to prioritize 
high-risk areas. The integration of GIS with remote sensing tools 
provided a cost-effective, scalable, and reliable methodology for 
drought monitoring in data-scarce regions like Somalia (Tadesse 
et al., 2015; AghaKouchak et al., 2015),[11].

Data Sources
All spatail and remote sensing data utalized in this study sourced 
from united state gealogical survey (USGS). This platform 
provided access to high-resolution satellite imagery, including 
Landsat 8 data, which was used to derive key drought indicators 
such as the Normalized Difference Vegetation Index (NDVI), 
Land Surface Temperature (LST), Vegetation Condition Index 
(VCI), Temperature Condition Index (TCI), and Vegetation 
Health Index (VHI). The data from USGS Earth Explorer are 
freely available and widely used in environmental monitoring 
and drought assessment due to their reliability, temporal consis-
tency, and spatial coverage. 

All datasets were downloaded in GeoTIFF format and processed 
using GIS and remote sensing software tools. The time-series 
analysis covered the years 2014, 2016, 2018, and 2020 to exam-
ine spatiotemporal drought patterns.

Figure 2: Flow Chart Methodology

Results and Discussion
Normalized Difference Vegetation Index (NDVI)
2014, NDVI analysis showed low to moderate vegetation cov-
er, with values ranging from 0.0037 to 0.60. Values below 0.1 
indicated barren land, such as sand and rocks, particularly in 
the western and southern regions, while values above 0.1 sug-
gested better vegetation in the northeast (Guliyeva, 2020). By 
2016, NDVI values ranged from 0.006 to 0.57, reflecting modest 
improvements in some areas due to more favorable rainfall, al-
though vegetation density remained lower than peak conditions 
of 2014. In 2018, NDVI values broadened from −0.034 to 0.56, 
with negative values indicating degraded or barren areas, while 
higher values in localized patches suggested persistent vegeta-
tion health in northern and eastern regions, likely influenced by 
irregular rainfall and land degradation. The 2020 analysis ex-

hibited values from 0.0066 to 0.56, showing partial recovery in 
central and northern regions, although large areas continued to 
face stress and drought vulnerability (FSNAU, 2023).

These observed trends can be attributed to several factors. Vari-
ability in rainfall and drought severity strongly affects vegetation 
growth, with low NDVI values coinciding with drought periods 
[12]. Land degradation due to overgrazing or unsustainable land 
use may also contribute to negative NDVI values (PLOS ONE, 
2024). Comparisons with recent studies indicate that NDVI re-
mains a useful indicator of vegetation stress, but its correlation 
with ground-based observations in Somalia has declined in some 
regions, suggesting that integrating NDVI with other indices 
such as SPEI, soil moisture, and VHI may provide more reliable 
drought monitoring [13], PLOS ONE, 2024).
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Figure 3: NDVI From 2014,2016,2018,2020

Normalized Difference Water Index (NDWI)
In 2014, NDWI values ranged from -0.25 to 0.16, reflecting 
generally low water availability across the region. Most areas 
showed negative values, indicating dry conditions, while only a 
few pockets mainly in the east retained some surface moisture. 
By 2016, the range shifted slightly to -0.25 to 0.18, suggesting 
a modest improvement, particularly in the northeast and central 
parts, likely linked to better rainfall. In 2018, values spread more 
widely, from -0.28 to 0.22, pointing to greater variation in wa-
ter availability: some areas benefited from improved moisture, 

while others became drier, hinting at uneven rainfall and chang-
ing land surface conditions. By 2020, NDWI values reached 
-0.25 to 0.23, showing minor improvement. The observed de-
cline in wetness is consistent with [14],who reported that mod-
erate and high wetness areas in the Ciletuh Geopark decreased 
by almost 50% between 2001 and 2015, demonstrating NDWI’s 
effectiveness in monitoring wetness status and drought impacts.
Lower or negative NDWI values suggest dry conditions and 
sparse cover, while higher NDWI values imply increased vege-
tation water content and fractional canopy cover [5].

Figure 4: NDWI From 2014,2016,2018,2020

NDBI (Normalized Difference Built-up Index)
In 2014, NDBI values ranged from -0.16 to 0.25, with negative 
values indicating vegetated or natural surfaces and positive val-
ues marking areas of stronger built-up intensity. This suggests 
that much of the region was dominated by natural cover, while 
built-up activities were concentrated mainly in the northern 
and central zones. By 2016, values shifted slightly to between 
-0.18 and 0.25, showing modest expansion of built-up surfaces, 
particularly in central and eastern parts of the region, reflecting 
growing land use pressure and settlement growth. In 2018, the 
range widened further, from -0.22 to 0.28, marking the high-

est maximum recorded during the study period. This increase 
highlights intensified urban presence, while the lower minimum 
values emphasize areas that remained less developed and more 
vegetated. By 2020, NDBI values ranged from -0.23 to 0.25, 
showing that built-up zones persisted across the northeast and 
southern parts of the region, indicating that urban expansion and 
land modification remained a defining feature of the landscape. 
These observations align with previous studies that have applied 
NDBI to monitor urban growth and built-up expansion, confirm-
ing its effectiveness in reflecting changes in land use and settle-
ment patterns [7, 14, 15].
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Figure 5: NDBI From 2014,2016,2018,2020

Temperature Condition Index (TCI)
TCI analysis revealed notable shifts in temperature-related con-
ditions, with values ranging from -0.39 to 0.836 across the study 
period. In 2014, values spanned -0.39 to 0.78, reflecting consid-
erable variation, with low values indicating potential heat stress 
and higher values pointing to more favorable conditions for veg-
etation. By 2016, the range narrowed to -0.3 to 0.58, suggesting 
reduced variability but also an increase in temperature-related 
stress, which likely limited vegetation resilience. In 2018, the 
TCI broadened again, from -0.3 to 0.72, marking some recov-
ery in favorable conditions, though persistent low values high-

lighted ongoing stress in parts of the region. By 2020, the index 
reached its highest maximum of 0.836 and a minimum of -0.15, 
suggesting overall improvement, with fewer extreme low values 
and more favorable thermal conditions for vegetation growth. 
These dynamics align with previous studies that confirm TCI as 
a reliable indicator for monitoring drought-related thermal stress 
in arid and semi-arid environments [9-8]. The findings empha-
size that vegetation in the region is highly sensitive to tempera-
ture fluctuations, and improving early detection of drought stress 
through indices like TCI is crucial for developing effective adap-
tation and management strategies.

Figure 6: TCI From 2014,2016,2018,2020

Vegetation Condition Index (VCI)
Between 2014 and 2020, the VCI analysis unveiled dynamic 
variations in vegetation condition, with values ranging from 
-0.45 to 7.75 across the study period. In 2014, VCI values 
spanned -0.13 to 4.9, suggesting moderate variation, with higher 
values indicating relatively healthier vegetation and lower val-
ues highlighting areas of stress or poor cover. By 2016, the range 
narrowed to -0.3 to 3.5, and the reduction in maximum values 
pointed to an overall decline in vegetation condition, with stress 
likely affecting larger portions of the region. In 2018, the val-
ues expanded again to between -0.345 and 5.5, showing partial 
recovery as vegetation improved in some areas, though the per-

sistence of low values indicated continued stress across others. 
By 2020, the range widened further to -0.45 to 7.75, marking 
the highest maximum value in the study period and suggesting 
a notable improvement in vegetation condition in several zones, 
even as the more negative minimum values confirmed ongoing 
stress in parts of the landscape. 

These findings align with earlier research that highlights VCI as 
a reliable index for detecting vegetation stress and distinguish-
ing between seasonal and long-term drought effects [10-16]. fur-
ther emphasized its usefulness in capturing vegetation responses 
to climatic fluctuations in semi-arid environments.



 

www.mkscienceset.comPage No: 06 J of Agri Earth & Environmental Sciences 2025

Figure 7: VCI 2014,2016,2018,2020

Vegetation Health Index (VHI)
The Vegetation Health Index (VHI) provides a comprehensive 
measure, incorporating both vegetation condition and thermal 
stress factors. The analysis delineates drought classes over sev-

eral years, specifying the area in hectares and the corresponding 
percentage of total area affected. These classes range from 'No 
Drought' to 'Extreme Drought,' with VHI values serving as the 
basis for classification.  

Figure 8: VHI 2014, 2016, 2018, 2020.

Distribution Vegetative Health Index 2014
The VHI analysis for 2014 shows that drought was widespread 
across the study area. Only 1.53% of the land experienced no 
drought conditions, expressing very limited presence of healthy 
vegetation. About 14.62% of the area was under mild drought, 
while nearly 29.54% faced moderate drought, highlighting 
vegetation stress due to limited rainfall and soil moisture. The 
drought impact was more severe in the remaining areas, with 
24.84% of the land affected by severe drought and the largest 
share, 29.46%, experiencing extreme drought.  

The VHI analysis for 2014 clearly indicates that a vast majority 
of the Bay region was subjected to moderate to extreme drought 
conditions, signifying that 2014 was a year of critical vegetation 
stress and water scarcity. Previous research supports this obser-
vation, as VHI is widely recognized for its effectiveness in inte-
grating both vegetation and temperature data to assess drought 
severity more comprehensively [17]. Studies such as [18] also 
demonstrate that VHI is particularly useful for detecting agricul-
tural drought and mapping its spatial extent in regions prone to 
water scarcity. 
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Figure 9: Distribution of Vegetative Health Index 2014

Distribution Vegetative Health Index 2016
In 2016, the Vegetation Health Index (VHI) revealed varying 
drought conditions across the study area. Analysis of the data 
shows that 12.27% of the total area experienced no drought, 
indicating regions with normal vegetation health. Areas under 
mild drought constituted the largest portion, covering 34.15% of 
the land, suggesting extensive but low-intensity stress on vege-
tation. Moderate drought affected 27.63% of the area, reflecting 
significant vegetation stress requiring attention. Severe drought 
conditions were observed in 13.90% of the region, represent-
ing areas with high vegetation stress. Lastly, extreme drought 
impacted 12.03% of the total area, highlighting critical zones 

where vegetation health was severely compromised. These per-
centages demonstrate that in 2016, a majority of the study area 
experienced some level of drought, with mild and moderate 
droughts accounting for over 60% of the land, emphasizing the 
need for targeted drought mitigation strategies. Prior research 
highlights VHI as a valuable tool for assessing vegetation re-
sponses to drought, as it combines thermal and vegetation stress 
indicators [19]. [20] further noted that increases in extreme 
drought, as identified by VHI, are often linked to extended peri-
ods of rainfall shortage and elevated land surface temperatures 
in high-risk areas.  

Figure 10: Distribution of Vegetative Health Index 2016

Distribution Vegetative Health Index 2018
The VHI analysis for 2018 shows that drought was extensive 
across the Bay region. Only 7.39% of the land experienced 
no drought conditions, indicating that healthy vegetation was 
scarce, while the largest share, 31.26%, experiencing extreme 
drought.

 About 21.63% of the area was under mild drought, and 23.17% 
faced moderate drought, reflecting substantial vegetation stress 
due to inadequate rainfall and limited soil moisture. The drought 
situation was more severe in other areas, with 16.56% of the land 
affected by severe drought and The 2018 VHI distribution high-
lights a critical year of drought stress, with 54% of the region 
under some level of drought particularly dominated by extreme 

and moderate categories. Similar patterns have been observed in 
other drought-prone regions, where prolonged dry periods and 
rising temperatures have exacerbated vegetation stress, as iden-
tified using VHI [18]. Additionally, studies by [21] confirm that 
high proportions of land under extreme drought, as reflected in 
VHI, are often correlated with reduced crop yields and increased 
vulnerability in rural communities.

The relatively low percentage of areas with no drought further 
underscores the fragility of vegetation cover and agricultural 
systems in the Bay region. These findings reinforce the role of 
VHI as a valuable decision-support tool for agricultural plan-
ning, drought forecasting, and the development of climate ad-
aptation policies.
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Figure 11: Distribution of Vegetative Health Index 2018

Distribution Vegetative Health Index 2020
The VHI assessment for 2020 reveals that drought conditions 
were dominant across the study area. Only 0.30% of the land 
remained free from drought, indicating an almost negligible ex-
tent of healthy vegetation. Approximately 8.22% of the region 
experienced mild drought, while about 28.68% was classified 
under moderate drought, reflecting considerable stress on veg-
etation due to insufficient rainfall and declining soil moisture. 

More critical impacts were observed in the rest of the area, with 
27.28% falling into severe drought and the largest proportion, 
35.52%, affected by extreme drought.

Overall, the VHI results for 2020 demonstrate that the majority 
of the Bay region was under moderate to extreme drought, signi-
fying that the year was marked by pronounced vegetation stress 
and significant water scarcity.

Figure 11: Distribution Vegetative Health Index 2020

Conclusion
The analysis of agricultural drought in Somalia's Bay region 
utilizing the Vegetation Health Index (VHI), which integrates 
the Normalized Difference Vegetation Index (NDVI) and the 
Temperature Condition Index (TCI), confirms the area's extreme 
vulnerability to climatic variability. The study demonstrates the 
efficacy of Geographic Information Systems (GIS) and remote 
sensing as a reliable methodology for monitoring and mapping 
drought severity in data-scarce, semi-arid environments.

The spatiotemporal VHI analysis across the study period (2014, 
2016, 2018, and 2020) reveals a concerning pattern of increas-
ing drought intensity [22]. In 2014, a vast majority of the region 
experienced moderate to extreme drought conditions, with only 
1.53% of the land free from drought [23]. Conditions improved 
slightly in 2016, with mild and moderate drought covering over 
60% of the land and drought-free areas rising to 12.27%. How-
ever, severity escalated in 2018, [24] with the largest share of 
the region (31.26%) experiencing extreme drought, while areas 
with no drought declined to 7.39%. The drought peaked in 2020, 
when over 90% of the region was classified under moderate to 

extreme drought, and a near-negligible 0.30% of the land re-
mained free from drought, signifying pronounced vegetation 
stress and severe water scarcity [25].

The consistent findings from the Vegetation Condition Index 
(VCI) further indicate a persistent, moderate level of drought 
stress on plants, underscoring the region's limited adaptive ca-
pacity.
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