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[Abstract b
Train derailments pose significant risks to safety, infrastructure, and the environment. Understanding the factors
that contribute to these incidents is crucial for developing effective prevention and mitigation strategies. This
study employs logistic regression to investigate the predictors of train derailments using the accident dataset
from the Federal Railroad Administration (FRA). The model identified track type and presence of engineers
as significant factors influencing derailment risk. Yard tracks, industry tracks and sidings were found to have
higher odds of derailments compared to main tracks, emphasizing the need for targeted safety measures in
these areas. Also, the presence of engineers was associated with reduced derailment odds, highlighting the
importance of skilled crew in ensuring safe operations. This study also employs adaptive boosting, an ensemble
learning technique to predict derailment accidents. The model accurately predicts 72% of all instances of
derailment and non-derailment accidents. The learning model also identifies the gross tonnage of the train
as a key factor in predicting the likelihood of the train derailing. These findings provide valuable insights for
developing evidence-based interventions by railroad authorities and safety agencies to mitigate derailment
risks and enhance railway safety.
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Introduction

Among many modes of transportation, the rail system is one of
the safest, with a relatively low rate of serious accidents com-
pared to road transportation. Train accidents per million miles
have decreased significantly over the past few decades, demon-
strating the efforts of various stakeholders and technological ad-
vances to improve rail safety. However, in 2023, there were still
858 fatalities related to railroad linemen in the United States,
and 5,481 people were injured in various rail accidents, includ-
ing passengers, railroad employees, and others. [1] This shows
the importance of continuous improvement in rail transporta-
tion safety. Among various safety issues, derailment is one of
the most serious threats, with more than a thousand derailments
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occurring each year on the U.S. rail transportation network. De-
railment refers to the deviation of a train from the track, which
may cause serious damage, injury or death. The financial impact
of derailment can be significant, including costs associated with
infrastructure repairs, rolling stock damage, and potential envi-
ronmental cleanup. In 2022, the average cost of each derailment
was estimated to be $5 million, but major derailments can result
in costs of more than $50 million. Major derailments, while rare,
can have serious consequences. For example, the 2015 Amtrak
derailment in Philadelphia killed eight people, injured more than
200 people, and caused losses of more than $200 million. [2] The
2023 train derailment in Ohio did not result in direct deaths, but
of the 51 derailed cars, 11 were tank cars that dumped 100,000

J of Sup Cha Eng and Log Opt 2025



US gallons (380,000 L) of hazardous materials, including vinyl
chloride, benzene residue, and butyl acrylate [3].

The huge property damage, inestimable environmental impact,
and psychological damage caused by derailment accidents are
not something that anyone or any organization can ignore, re-
quiring us to continue to study and do our best to reduce the
occurrence of accidents. Rail safety, especially derailment pre-
vention, is a complex issue that requires a holistic approach. The
rail industry can significantly reduce the risk of derailment by
addressing track and infrastructure design, maintenance, vehicle
monitoring, operation management, and human factors. Ade-
quate training of crew numbers, including the provision of pro-
fessional engineers, also plays a vital role in ensuring safe and
efficient operations.

Literature Review

This literature review synthesizes recent studies on railway de-
railments, focusing on derailment causes, prediction models,
mitigation strategies, and emerging technologies.

The causes of railway derailments include track and infrastruc-
ture factors, vehicle factors, and human factors. The study by
Zhu et al. [4] emphasized the impact of track irregularities on
vehicle stability, and Li et al. [5] demonstrated that regular main-
tenance and timely repairs can significantly reduce the risk of
derailment. It shows that the design and construction defects of
railway tracks and improper routine maintenance will increase
the risk of derailment. Zhai et al. [6] analyzed the impact of
wheel-rail contact force on the probability of derailment. The
study by Chen and Zeng [7] emphasized the importance of ve-
hicle suspension systems in maintaining stability. These studies
reveal the relationship between train vehicles and derailment
events, emphasizing the interaction between wheels and tracks
and the impact of vehicle design on the occurrence of derail-
ment.

Wang et al. [8] studied the over speeding behavior in railway
operation, and a study found a correlation between over speed-
ing and derailment events. Zhang et al. [8] explored operational
errors (signal errors and braking errors) to show the relationship
between daily management and train operation and railway de-
railment. In the field of predictive simulation, machine learning,
and various emerging technology environments, Xu et al. [10]
used advanced simulation tools such as multibody dynamics and
finite element analysis to simulate derailment scenarios. Liu et
al. [11] used machine learning techniques to predict derailment
events based on historical data. Automated track inspection
technologies such as ultrasonic and laser scanning can enhance
the detection of defects [12]. Wang et al. [9] discussed the ben-
efits of on-board monitoring systems in preventing derailments.
The implementation of a real- time vehicle monitoring system
can detect anomalies in advance. Huang et al. [13] showed the
application of Al in anomaly detection and risk assessment. Al
and machine learning algorithms can enhance predictive main-
tenance and derailment prevention. Li et al. [14] explored the
integration of the Internet of Things into railway systems to im-
prove safety.

Railway derailment research covers a wide range of factors,
from track and vehicle conditions to operational practices and
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human factors. Advances in predictive models, simulations, and
emerging technologies offer promising avenues for improving
rail safety. Continuous research and innovation are essential
to developing effective derailment prevention and mitigation
strategies and ensuring the safety and reliability of rail systems.
Current research lacks a complete and comprehensive analysis
of railway safety accident data. In FRA's nearly fifty years of ac-
cident records, there is still a large amount of data available for
research that has not been fully mined, such as the relationship
between accidents and speed, and whether the requirement for
the number of on-the-job engineers has a positive impact on the
occurrence and handling of accidents. This is exactly the focus
of this article.

Methodology

Selected variables with categorical responses are transformed
into dummy variables with numerical responses, considering the
statistical method that is being adopted. Factors that influence
derailment accidents are obtained using the maximum likeli-
hood estimates from the logit function. The next step involves
using adaptive boosting ensemble leaning technique to predict
the occurrence of derailment accidents. Based on this, recom-
mendations are made to aid in the management and control of
rail accidents.

Logistic Regression

This statistical technique allows the prediction of a discrete
outcome from a set of predictors that may be continuous, dis-
crete, dichotomous, or mixture of them [15]. Discrete variables
represent countable values, often whole numbers, for instance
the number of engineers on a train. Continuous variables, on
the other hand, can take on any value within a range, includ-
ing decimals, such as gross tonnage of a freight train. Dichoto-
mous variables are a specific type of discrete variable with only
two possible categories, like whether the train has a caboose, or
whether the train is running on a main line. In this case a yes/no
response is required. According to Tabachnick and Fidell [15],
logistic regression (LR) is also suitable when there is a nonlinear
relationship between the responses of the dependent variables
(DV) and at least one of the independent variables (IVs). For
instance, in this case, the probability of the occurrence of a de-
railment accident may be a little affected by a 10-mph difference
when a train is travelling at a low speed (e.g. 30 vs. 40), but
the probability may change more significant with an equivalence
difference at a high travel speed (e.g. 120 vs. 130).

Logistic regression would also help us investigate which of the
variables predict the outcome as well as how each of them af-
fects, i.e. increase or decrease the probability of the outcome.
Higher order interactions (two or more) between predictors are
not considered in our model to avoid the complications that
come with it. Plus, there’s no guarantee that the model perfor-
mance will significantly be improved. The model is evaluated
using the likelihood ratio estimates of the predictors in the full
model and is run in Python using Google Collaboratory® envi-
ronment. The likelihood ratio test is used to test the significance
of each predictor to the model at alpha (a) value of 0.05.

Adaptive Boosting Ensemble Learning
Ensemble learning is a machine learning meta-approach that
combines predictions from several models to improve predictive
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performance. Boosting algorithms essentially integrate multiple
weak classifiers into a strong classifier typically using decision
trees [16]. Boosting methods provide good results for both clas-
sification and regression problems in supervised learning. Ac-
cording to Meng et al. [17], AdaBoost works better in classifica-
tion problems hence it is used as a classifier to determine predict
the occurrence of a derailment accident.

AdaBoost is a learning model that adjusts each instance by ap-
plying more weight to erroneously categorized instances. Our
data is structured and large enough for the model to learn and
be able to predict derailment accidents while reducing bias and
variation. The prepared data is split into a training set and a test-
ing set in an 80:20 ratio. The algorithm learns the data using

the training set and then makes predictions. This is achieved
by fitting a series of weak classifiers to several weighted train-
ing data [18]. Incorrectly predicted observations are assigned a
greater weight in the next iteration. This process goes on until
the specified number of models is reached. The final model is
the weighted sum or a linear combination of the various weak
learners thereby creating a stronger and more robust classifier
[19]. The framework for AdaBoost is illustrated in Figure 1. To
prevent overfitting and assess the generalizability of the model,
the data is divided into training and testing set (80:20). Also,
cross-validation and stratification is used in the sampling pro-
cess which repeatedly splits the data into training and validation
sets to obtain a more robust estimate of model performance.
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Figure 1: Framework for AdaBoost method

Analysis and Interpretation

In this section, logistics regression and adaptive boosting are
used to predict the occurrence of derailment accidents. Factors
influencing the likelihood of these accidents are also examined
independently to obtain insights into the relationship between
the accident and the train's operating conditions.

Data Description

The data used in the analysis is obtained from the FRA Rail
Equipment Accident/Incident Database from 1975 to 2022 [20].
All classes of railroads are considered across all states including
freight and passenger trains. The data obtained contains 216,141
observations/incidents and 160 features. The dataset is complex
with records predominantly in text. Also, it is imbalanced, and
variables are mostly categorical with high dimensions. The data
also contain unstructured text used in the narration of incidents.
The more descriptive representation of the dataset is shown in
Figure 2.

Feature Elimination

Based on the criteria used by Meng et al. [17], correlated, re-
dundant, and sparse features are removed from the dataset. For
instance, correlated features are those that are more than 80%
correlated with one another, e.g. loaded freight cars and gross
tonnage. Redundant are those whose information is inherent in
another feature, e.g. state and county. Features with more than
80% of their values missing are considered sparse and are there-
fore removed from the dataset e.g. Adjunct code 2. Of the 160
features in the dataset, four are selected for this analysis.
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Data Preparation

Outliers within the data are first identified using boxplots. EN-
GINEERS is identified to have several outliers therefore those
observations were removed from the dataset. The deletion ap-
proach was used to handle missing responses within the features
selected. The justification for this approach is that it doesn’t sig-
nificantly affect the sample size for the analysis. Lastly, Features
such as WEATHER, are categorical and are therefore trans-
formed into dummy variables with binary encoding.

Logistic Regression

Assumptions

Before proceeding with the logistic regression, we must ensure
that all the assumptions related to the procedure are met:

1. Linearity: presence of a linear relationship between the log-
odds of the outcome (Derailment) and the predictors.

ii. Independence of observations: the outcome of one observa-
tion does not influence that of another.

iii. No multicollinearity: this assumption is checked using the
VIF value and all of them were below 5 suggesting just a moder-
ate correlation which will not be of major concern.

iv. No outliers: to prevent outliers from unduly influencing the
model estimates, all observations with outlier values were re-
moved from the dataset.

v. Large sample size: sample size is sufficiently large so esti-
mates can be more reliable and ensures that the model general-
izes well to new data

J of Sup Cha Eng and Log Opt 2025



2% %1%

a. Types of accidents

Industry Siding

b. Type of track

¢. _Weather condition

Figure 2: Description of dataset

The logistic regression procedure was run in Python using the
Google Collaboratory platform. All predictors are entered into
the model at the initial stage to improve the overall fit of the
model to the data, and to capture more of the underlying rela-
tionships between the predictors and the outcome variable. The
parameter estimates of all the variables as well as their odds ratio

Table 1: Maximum likelihood and Odds Ratio Estimates

is presented in TABLE 1 . The coefficients represent the change
in the log-odds of derailment associated with a one-unit change
in the predictor, holding other predictors constant. For example,
the coefficient for "Engineers" is -0.2209, indicating that an in-
crease in the number of engineers is associated with a decrease
in the log- odds of derailment.

Parameter Maximum likelihood estimates Odds ratio of estimates
Coefficient P>|z| Odds Ratio 95% Confidence limits
const 0.7151 0.000 2.044 1.893 2.208
Clear weather -0.0955 0.000 0.909 0.886 0.932
Main track -0.2163 0.000 0.805 0.785 0.827
Gross Tonnage 0.0002 0.000 1.000 1.000 1.000
Engineers -0.2209 0.000 0.802 0.747 0.860

The association of predicted probabilities and observed respons-
es is assessed using various measures like concordance, Somers'
D, and Gamma. The relatively high percentage of concordant
pairs (69.75%) and the positive values of Somers' D (0.34) and
Gamma (0.35) indicate a good discriminatory ability of the mod-
el.

AdaBoost Ensemble Method

Hyperparameter Tuning

There are several parameters that influence the prediction per-
formance of any ensemble model. Hyperparameter tuning is a
prior step used to find optimal hyperparameter values that pro-
duce the best classification accuracy. Grid search was used to
find the optimal values for these parameters. The parameters of
interest in the AdaBoost classifier model are:

i. Base estimator: the algorithm used to train the model. A deci-
sion tree classifier is used as base estimator for our model.

ii. Number of estimators: the number of models that the algo-
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rithm trains. This was set at 300, based on the results of the grid
search.

iii. Learning rate: this is the contribution of each model to the
weight of the final model. This was set to 1.5, based on the re-
sults of the grid search.

Results

Training and testing of the data is done with a 5-fold cross-vali-
dation while stratifying the response variable into homogeneous
subgroups to ensure representative sampling and reduction of
bias.

Four performance criteria are used to assess the model's per-
formance, namely: Accuracy, Precision, Recall, and F1- score.
Accuracy is the base metric often used to evaluate model perfor-
mance. It is the ratio of correct predictions to the total number of
predictions. Precision measures the rate of positive prediction.
It is the ratio of true positives to the sum of true positives and
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false positives. Recall measures the number of positives classi-
fied correctly out of the total number of positives in the dataset.
It is also known as Sensitivity. F1-score combines the Precision
and Recall values into a mean value and is given by:

Precision x Recall
Precision + Recall

Table 2: Classification report of AdaBoost model.

The results of the four evaluation criteria are summarized in
TABLE 2. The confusion matrix in Figure 3 shows the model’s
performance in predicting train derailment. AdaBoost performs
well in predicting derailment accidents with an accuracy of 72%.

Precision Recall F1-score Support
Derailment 0.73 0.96 0.83 22859
Non-Derailment 0.63 0.16 0.25 9816
Accuracy 0.72 32675
Macro average 0.68 0.56 0.54 32675
Weighted average 0.70 0.72 0.65 32675
Confusion Matrix
20000
§
E 17500
o - 1544 8272
3
£ 15000
=4
L 12500
2
<
- 10000
£ - 7500
E. 205
g - 5000
- 2500
Non-Dell'ailment Derailment
Predicted

Figure 3: Confusion matrix

The Area Under the Curve (AUC) in Figure 4 summarizes the
model's overall discriminatory power. In this case, the AUC is
0.68, which is considered a moderate to good performance. It

suggests that the model has a 68% chance of correctly classi-
fying a randomly chosen derailment instance higher than a ran-
domly chosen non-derailment instance.

Receiver Operating Characteristic (ROC)

True Positive Rate

——— ROC curve (area = 0.68)

0.0 0.2 0.4

False Positive Rate

0.6 0.8 1.0

Figure 4: ROC curve for derailment prediction

The key factors that influence the prediction of derailment acci-
dents are also investigated. The features and their contribution
to the AdaBoost prediction are obtained and ranked according to
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their importance. TABLE 3 shows the features and their impor-
tance to the prediction model.
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Table 3: Important features of derailment accidents

Feature Description Importance
TONNAGE Gross tonnage of the train 0.975
MAIN TRACK Type of track the train was travelling on 0.015
CLEAR WEATHER Visibility at the time of accident 0.005
ENGINEERS No. of Engineers on the train 0.005

According to TABLE 3, TONNAGE is the most important factor
in determining the likelihood of a train to derail while travelling,
followed track types, which is a distant second. Visibility and
the number of engineers on the train have little impact in deter-
mining whether a train will be involved in a derailment accident.

Discussion

The logistic regression analysis reveals insightful patterns re-
garding factors associated with train derailments. The mod-
el, demonstrating good fit, highlights significant influences of
weather, type of track, and presence of engineers. The odds ratio
estimates provided insights into the direction and magnitude of
the predictors' effects. Notably, 'Clear weather' and '"Main track'
were associated with decreased odds of derailment, suggesting
that derailments are more likely to occur in adverse weather con-
ditions or on tracks other than the main track. Conversely, 'Gross
Tonnage' exhibited a positive association, implying that heavier
trains are at a higher risk of derailment.

The presence of engineers is linked to a significant decrease
in derailment odds, suggesting the importance of skilled crew
members in mitigating risk. This finding might warrant further
investigation into the specific mechanisms through which engi-
neers contribute to safety, potentially informing crew training
and operational procedures. Gross tonnage presents a complex
relationship with derailment risk. It can be inferred that higher
gross tonnage elevates derailment odds, probably due to the in-
creased momentum and inertia of heavier trains. This suggests
a need for balancing speed and cargo weight to optimize safety.

In the second part of the analysis, the ensemble learning model
demonstrates a clear proficiency in predicting derailments (class
1) compared to non-derailments (class 0). For the "Derailment”
class, the model boasts a precision of 0.73, signifying that 73%
of instances predicted as derailments were indeed correct. The
recall of 0.96 for this class indicates that the model successfully
identified 96% of actual derailments. The F1-score of 0.83 pro-
vides a balanced measure of precision and recall, suggesting a
good overall performance in predicting derailments.

In contrast, for the "non-derailment" class, the model shows
a precision of 0.63, meaning 63% of instances classified as
non-derailments were accurate. However, the recall of 0.16 indi-
cates that the model only captured 16% of actual non-derailment
events. The F1-score of 0.25 for this class reflects a substantially
lower overall performance compared to the "Derailment” class.
The overall accuracy of 0.72 implies that the model correctly
classified 72% of all instances, encompassing both derailments
and non-derailments. This is further supported by the confusion
matrix in Figure 3. However, the macro average and weighted
average metrics, which account for class imbalance, reveal a dis-
crepancy in performance between the two classes. The weighted
average, which considers the support of each class, highlights
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the model's bias towards predicting derailments due to their
higher frequency in the dataset.

Summary

To further improve the safety of rail transportation, it is import-
ant to base decisions on data. This is especially important given
the significant progress that has been made in big data analyt-
ics. This study examined the FRA accident data collected over
a 47-year period and a dominant occurrence of derailment ac-
cidents is discovered. Researchers carry out two main studies,
first to identify the factors influencing derailment accidents and
secondly apply machine learning techniques to predict the oc-
currence of derailment accidents. Logistic regression revealed
that the number of engineers on board and the type of track are
the most influential factors in assessing the likelihood of a train
derailing. Further analysis using adaptive boosting to predict
its occurrence reveals that the gross tonnage carries the largest
share of information in predicting the occurrence of a derailment
accident.

Overall, the ensemble learning model appears to be more ad-
ept at predicting derailments than non- derailments. There's a
significant room for improvement in identifying non-derailment
events, as indicated by the lower recall for this class. This im-
balance could be attributed to the data distribution, where derail-
ments might be over-represented compared to non-derailments.
The model's overall performance is decent, with respectable
accuracy and strong performance in detecting derailments,
which is arguably a more critical aspect given the potential con-
sequences of such events. Also, the logistic regression model
successfully identified several factors significantly associated
with train derailment. The findings highlight the importance of
weather conditions, track type, train weight, and crew composi-
tion in influencing derailment risk. These insights could inform
targeted interventions and strategies to enhance railway safety
and reduce the incidence of derailments. Further research could
explore additional predictors, potential interactions between
variables, and the development of more refined predictive mod-
els to support proactive risk management in the railway industry.
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