

ISSN: 3065-758X **Research Article**

Journal of Infectious Diseases and Viruses Research

Study on Prevalence, Cyst Distribution in Visceral Organ and Economic Loss of Cysticercustenuicollis in Sheep Slaughtered at Haramaya Manucipal Abattoir, Eastern Hararghe, Oromia, Ethiopia

Mohammedkemal Mustefa Ame1*, Abdela Hashum2, Bayan Ahmed Mumed3, Fathi Mohammed Sayaka3, Hamza Mohammed³, Kedir Najib³ Heydarus Abdula³, Megersa Abdulhamid⁴ & Mohammed Jemal⁵

*Corresponding author: Mohammedkemal Mustefa Ame (MSc), Department of Veterinary Public Health, Bedeno Woreda, Furda Veterinary Clinic, Eastern Hararghe, Ethiopia. Tele: +251912224332

Submitted: 17 July 2023 Accepted: 27 July 2023 Published: 07 August 2023

doi https://doi.org/10.63620/MKJIDVR.2023.1013

Citation: Ame, M. M., Mumed, B. A., Hashum, A., Sayaka, F. M., Abdulhamid, M., & Jemal, M. (2023). Study on Prevalence, Cyst Distribution in Visceral Organ and Economic Loss of Cysticercustenuicollis in Sheep Slaughtered at Haramaya Manucipal Abattoir, Eastern Hararghe, Oromia, Ethiopia. J of Infec Dise and Vir Res, 2(3), 01-07.

Abstract

A cross sectional study was conducted from November 2018 to June 2019 in apparently healthy sheep at Haramaya manucipal abattoir to estimate the prevalence, cyst distribution and economic loss of Cysticercus tenuicollis in Slaughtered sheep. Ante-mortem inspection was carried out on arrival in the lairage; temporal identification numbers were given for individual animals were recorded. Then after, post-mortem examination was performed in each organ and carcass of individual animals along their identification number to detect gross abnormalities and aesthetic reasons that rendered each organ to be rejected from local market. During the study, a total of 384 sheep were randomly sampled and examined postmortem after slaughter for presence of C. tenuicollis in the visceral organs of the animals using standard meat inspection procedures and laboratory result. The collected data and stored into Microsoft excel was analyzed using SPSS.ver.20 (USA) statistical software. Out of the 384 sheep inspected for visceral organs, C. tenuicollis was found in of 89(23.2%) sheep. Adult sheep 87(24.6%) were more infested than young 2(6.5%) with statistically significant difference (p=0.021). Sheep with poor body condition 21(34.4%) were found most infected compared to medium 47(24.5%)and good 21(16%) body condition with statistically significant difference (p=0.016). More infected sheep were found in kersa50 (41%), Aweday 25(20%) and haramaya 14(10.2%). This study also shows that C. tenuicollisis more frequently detected in the liver 40(10.4%) of sheep than any other visceral organs and the peritoneum was the least 9(2.3%). The liver lesions are unsightly and affect the texture of the tissue, making it unsuitable for human consumption and as a result extensive financial loss associated with condemnation of liver occurred. The annual loss due to the rejection of liver from the sheep slaughtered in the Haramaya municipal abattoir was estimated approximately 77,220.8 ETB. So as to reduce these losses, further comprehensive studies that include all the representative export and local slaughter houses should be done as to introduce appropriate preventive and control strategies that avoid the unnecessary financial losses.

Keywords: Abattoir, Cysticercus tenuicollis, Haramaya, Prevalence, Sheep

Introduction

Ethiopia with its great variation in climate and topography possesses one of the largest livestock populations in the world, which is managed by smallholder farmer under extensive low input traditional management system and adjunct to crop production [1]. The country owns about more than 38,749,320 cattle, 18,075,580 sheep, 14,858,650 goats, 456,910 camels, 5,765,170

equines and 30,868,540 chickens with livestock ownership and currently contributing to the livelihoods of an estimated 80% of the rural population [2].

Small ruminants are among those domestic animals important in tropical animal production system including Ethiopia [3]. Which contribute more than 30% of local meat and generate income

Page No: 01 www.mkscienceset.com J Infec Dise and Vir Res 2023

¹Department of Veterinary Public Health, Bedeno Woreda, Furda Veterinary Clinic, Eastern Hararghe, Ethiopia

²Department of Veterinary Medicine, Harar, Veterinary Clinic, East Hararghe, Ethiopia

³Department of Veterinary Medicine, Chelenko Woreda Veterinary Clinic, East Hararghe, Ethiopia

⁴Department of Veterinary Medicine, Hawi gudina, Veterinary Clinic, East Hararghe, Ethiopia

⁵Department of Veterinary Medicine, Haramaya Woreda, Office of Livestock Development, Animal Health Process Manager, Eastern Harerghe, Ethiopia

from export of meat, live animals and skins [4]. Unlike the large potential of small ruminants in the country, their productivity is low. The major constraints that greatly affect the economy of small ruminant production in Ethiopia are diseases [5]. Parasitic diseases in the tropics are responsible for great losses in the meat industry than any other infectious or metabolic disease [6]. Some of the economic losses are organ or carcass condemnation in slaughter houses and abattoirs for the presence of larval stage of some taenia species with or without public health importance [7].

Cysticercus tenuicollis is the meta cestode of the tapeworm Taenia hydatigena. Adult worms have been reported to have been found in the small intestines of dogs, cats, mice and wild carnivores, like the wolf and the fox [8]. Infested carnivores eliminate T. hydatigena eggs with their faces. Herbivores become infested with the eggs on account of having feed on contaminated pastures. Possible intermediate hosts for C. tenuicollis are squirrels, cattle, sheep, goats and other wild ruminants and also swine. After ingestion, the egg's shell is digested and the oncospheres become free to migrate through the intestinal walls, reaching the liver through the hepatic portal system. The oncospheres may remain in the liver or migrate to the omentem, mesenteries and the serosal surface of the peritoneal cavity. However, unusual locations like the lungs, the kidneys and the brain, have also been reported [9].

T. hydatigena of dogs are important from both sanitary and veterinary vies due to the presence of its larval stage in peritoneal cavity of sheep, goats, cow, and wild ruminants and swine with severe pathological effect to these hosts. The disease threatens the animal health especially sheep [10]. The effect of parasites in live small ruminants is insignificant unless it is complicated by the presence of concurrent infections. However, the presence of Cysticercustenuicollis in ruminants is an indicator of the incidence of T. hydatigena among wild and domestic carnivores. Furthermore, during its life cycle in the intermediate hosts like sheep and goats, C. tenuicollis causes fibrosis and scar formation along the migration sites of visceral organs like liver. Despite the liver lesions are unsightly; they affect the texture of the tissue, making it unsuitable for human consumption; however, the parasite doesn't have human health hazard11 [11].

Various investigations have been also conducted to determine the prevalence and economic importance of organs condemned in Ethiopia [12]. Fasciola, Hydatid cyst and Cysticercusteniucollis were the major parasites responsible for condemnation of organs and carcass in small ruminant [13]. However, most of the surveys paid attention to organ condemnation due to parasites in shoats. Hence, there are practically no dependable and precise information with regard to organ condemnation of sheep especially on liver due to parasitic cases likes C. tenuicollis and also there is no earliest information about C. tenuicollis prevalence in study are abut there was studied before 11 year, (2007) and there is scarcity of study prevalence of C. tenuicollis toseparate origin of animal in study area those staying in the same epidemiological and climatic condition. In view of this, proper evaluation of economic loss due to liver condemnation and to compare present and previous prevalence of cysticercustenuicollis and deferent Origin of study area whether there is deferent or not and if there is deferent to increase precision of why deferent prevalence of cysticercustenuicollis occurred in the same local area i.e. the same epidemiological and climatic condition in sheep at abattoir of study area was needed.

Despite the above investigations, there is scarcity of information about C. tenuicollis prevalence or status in Ethiopia and in study area. Therefore, the objective of this study was:

- To determine the prevalence cysticercustenuicollisin sheep slaughtered at Haramaya municipal abattoir, Eastern Ethiopia
- To determine cyst distribution in visceral organs of sheep slaughtered at Haramaya municipal abattoir, Eastern Ethiopia.
- To assess the economic impact of C. tenuicollis at Haramaya municipal abattoir, Eastern Ethiopia

Materials and Methods Description of the Study Area

The study was conducted in Haramaya town the Eastern Hararghe Zone of Oromiya Region, Eastern Ethiopia. The area is located, 14 km from West of Harar city and 508 km East of Addis Ababa. The estimated animal population in the area is about 63,723 cattle, 13,612 sheep, 20,350 goats, 15,978 donkeys, 530 camels and 42,035 chickens. The production system of the district is mixed type. Topographically, it is situated at altitude of 1600 to 2100 m above sea level, which puts the area into the category of a highland with the mean annual temperature and relative humidity of 18°C and 65%, respectively. Haramaya is located 9° 24′ N 42 ° 01′ E at an altitude of 1950 meters above sea level [14].

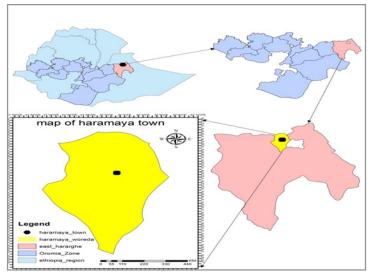


Figure 1: Map of Study Area

Study population

Study population are sheep that slaughtered in Haramaya municipal Slaughter house, A total of 384 sheep were randomly selected and identified by sex, body conditions and age during ante mortem inspection and their sources where, neighboring localities district and/or regions for Slaughtre in Haramaya municipal abattoir were included in the study population. In the areas of their origin (Aweday, Haramaya and Kersa), the animals were owned by smallholder farmers under traditional management system. All sheep's Slaughtered were local breeds. In the study, sheep will categorize into different body conditions (poor, moderate, and good) according to the guidelines and both sex, male and female, of local breed sheep slaughtere for human consumption. All selected animals were grouped into 2 age groups based on the number of pairs of incisors that are young and adult; Sheep with the first pair of permanent incisor teeth were considered as young and those with two and more pair of permanent incisors were regarded as adults.

Study Design

A cross sectional study was conducted from November 2018 to june, 2019 by collecting data on events associated with C. tenuicollisin sheep slaughtered at Haramaya municipal abattoir, to estimate perevalence, cyct disterbution of organ and liver condemnation and to calculate the direct financial loss due to condemnation of liver in sheep slaughtered at Haramaya municipal Slaughtering Service House.

Sampling

Sample Size Determination

The Sample size required to study this parasite was determined according to (15) formula.

$$n = 1.962 \ \underline{P_{exp}(1 - P_{exp})}{d^2}$$

Where, n= required sample size P_{exp}= expected prevalence and d= desired absolute precision

Here, 95% level of confidence interval, 0.05 absolute precision and 17% expected prevalence Sisay et al., were used. By substitution all the values; 111 animals were calculated; however, to increase precision a total of 384 animals were sampled.23 [16].

Sampling Method

The sampling procedures were carried out using systematic random sampling in such a way that sampling units were selected at equal intervals with the first animal being selected randomly [17]. The study animals (sheep) were selected from the slaughter line using systematic random sampling technique.24

Data Collection and Examination Active Abattoir Survey

Active abattoir survey was conducted during routine meat inspection on randomly selected sheep. Pre-slaughter examinations were conducted in the lairage in order to determine the sex, age, and origin and body condition of animal. Identification number was given for each animal to examine after evisceration. During ante-mortem examination animals were clinically examined for any sign of illness while standing and moving according to and followed the judgments passed. Animal detain

during ante-mortem examination was excluded from sampling. The met cestodes are readily visible in the organs or musculature at autopsy and therefore; diagnosis of C. tenuicollisis usually made during postmortem examination in abattoirs and packing plants [18]. So, after slaughtering the sheep post mortem examination was carried out, using routine standard meat inspection procedures (visualization, palpation and systemic incisions) for the presence of parasites and other abnormalities, paying attention to the visceral organs and tissues in abdominal, thoracic and pelvic cavities [19]. All the positive samples was kept in nylon containers, then bringing to the pathology and parasitology laboratory, college of Veterinary Medicine, Haramaya University, Haramaya, for further studies. The samples collected were confirmed to be Cysticercus tenuicollis cysts using their predilection sites, characteristics, size and morphology of bladder cyct during pm examination and by size, morphology and size of cyct after transported to laboratory. But, some time it was also calcified in liver.

Assessment of Economic Losses

An attempt was making in order to estimate economic significance of Cysticercustenuicollis from the cost of condemned liver in sheep. To calculate the economic loss, the following parameters were taken into consideration: The market demand, mean market price, the rejection rates of liver and annual slaughter capacity of the abattoirs. Average market price was determined based on the interview made with 46 personnel of the abattoir and different butchers. The economic loss due to liver condemnation were estimated by the formula set by as follows [20]:

 $EL = \Sigma Srx*Coy*Roz$

Where, EL = Annual economic loss estimates due to liver condemnation from local market.

Srx = Annual animals slaughter rate of the abattoir

Coy = Average cost of Condemnation organ.

Roz = Condemnation rates of rate.

Data Quality Control

All laboratory procedures including media preparation, procedures of each testing technique were done according to manufacturer production guideline. Sterilization procedures and collection and handling of specimens were carried out in accordance with standard protocols [21]. The necessary reagents and samples were checked for contamination each time before handling and kept in proper condition [22].

Data Management Analysis

Data collected were coded accordingly, entered into Microsoft Excel 2007© spread sheet and analyzed by using SPSS version 20 software. Descriptive statistics were used to summarize the collected data. The prevalence of Salmonella was calculated using percentage. The associations in the occurrence of Salmonella in different sample were assessed using statistical tests such as Chi square test were done by considering (95%) confidence interval (CI) and 5% level of significance. P-value less than or equal to 0.05 was considered as statistically significant.

Ethical Clearance

To make this study ethically sound all the important topics in public health ethics such as consents of the participants and willingness to take part in the study was asked and acknowledged first. All the moral, cultural and religious values of the community were respected. The confidentiality of information and privacy of the participants during sample collection and interview was protected. Access to confidential records and computer files was limited by keeping records under lock and key. All of the objectivity was discussed and analyzed throughout the research.

Results Abattoir Survey Post Mortem Inspection

Over all Prevalence and Risk Factors of C. tenuicollisin sheep: Post mortem inspection of 384 sheep carcasses at Haramaya municipal abattoir revealed Cysticercustenuicollis cysts in 89 (23.2%) of the animals: Out of 275 male and 109 females examined, 65(23.6) and 234(22%) were respectively infected. The prevalence of C. tenuicollis was higher in male than in female. However, the difference was statistically insignificant (p=0.0735). Among age groups, the prevalence of infection was 87 (24.6%) and 2(6.5%) for sheep adult and young respectively. The prevalence of C. tenuicollis was higher in adult than in young with statistically significant difference (P=0.021). Among body condition, the prevalence of infection was 21(16%), 47(24.5%), 21(34.4%) sheep body condition of good, medium and poor respectively. Sheep with poor body condition (34.4%) were found most infected compared to medium (24.5%) and good (16%) body condition with statistically significant difference (P=0.016). The risk of exposure to C. tenuicollis based on different origin were examined. Prevalence of C. tenuicollis revealed significant variation in the origin of sheep. There was statistically difference in origin of the sheep (p=0.00). mostC. Tenuicollis infected sheep were found in Kersa 50 (41%) whereas 26(20%) of sheep with C. tenuicolliswas found in Aweday and 13((10.2%) of sheep with C. tenuicollis was found in Haramaya.

The detailed association of the overall prevalence of C. tenuicolliswith the considered risk factors was shown in Table (1).

Distribution of C. tenuicollis in visceral organs: When the data on distribution of cysts in different organs/viscera of infected animals were analyzed and summarized, the majority of the C. tenuicollis cysts showed to have tendency to be located in liver 40(10.4), omentum22(5.7), mesentery 13(3.4) and peritoneum 9(2.3) of sheep. Most of the positive sheep were found to carry the parasite in their liver. Out of 89 positive sheep, prevalence of 40(10.4%) of them were found to harbor the parasite in their liver. Since, in this study, the predominant predilection site for C. tenuicollis cyst was liver. Of the 89-positive sheep, liver accounts for 40 (44.5%) and 40(10.4%) within proportion of organ disterbution. and Prevalence of C. Tenuicollis in the visceral organs respectively. The detailed of organ distribution and Distribution of C. tenuicollis in the visceral organs were shown in Table (2).

Estimation of Direct Economic Losses: Direct economic losses associated with disposed liver are significantly high. The average mean annual sheep slaughter rate was estimated to be 6120 heads, average rejection rate of the abattoir was40(10.4%) and the average local recent market price of single liver was 55ETB. Therefore, by substituting all the values in the following formula,

EL = Srx*Coy*Roz

EL = (6120*55etb*0.208).

EL = 77220 USD

Total loss= 70,012.8 ETB.

Therefore, the annual direct economic loss from local market of liver condemned at the abattoir due to C. tenuicollis was estimated to be 2100384USD\$ i.e., approximately 70012.8ETB(1USD=30ETB)

Table 1: Over all prevalence of C. tenuicollis of sheep at Haramaya municipal abattoir versus the considered risk factors

Risk Factor		No. examined	Infected number	Prevalence (%)	χ2	P-value
Sex	Male	275	65	23.6	0.115	0.735
	Female	109	24	22		
Age	Adult	353	87	24.6	0.021	0.021
	Young	31	2	6.5		
Body condition	Good	131	21	16	8.276	0.016
	Medium	192	47	24.5		
	Poor	61	21	34.4		
Origin	Haramaya	137	137	10.2	35.354	0.000
	Aweday	125	25	20		
	kersa	122	50	41		

Table 2: Organ distribution and distribution of C. tenuicollis in the visceral organs of infested sheeps

Visceral Organs	No. positive	Prevalence (%)	Proportion
Liver	40	10.4	44.9
Omentum	22	5.7	24.7
Mesentery	13	3.4	14.6
Peritoneum	9	2.3	10.1

Liver and peritoneum	1	0.3	1.1
Liver and omentum	1	0.3	1.1
Liver, peritoneum and omentum	1	0.3	1.1
mesentery and omentum	1	0.3	1.1
peritoneum and omentum	1	0.3	1.1

Discussion

Meat inspection is commonly perceived as the sanitary control of slaughter animals and meat. The aim of meat inspection is to provide safe and wholesome meat for human consumption. The responsibility for achieving this objective lies primarily with the relevant public health authorities who are represented by veterinarians and meat inspectors at the abattoir stage. Meat inspection and meat hygiene shall make sure that meat and meat products are safe and wholesome for human consumption. The classical ante-mortem and post-mortem procedures were designed to detect disease in an animal before slaughter and the lesions produced by the disease after slaughter respectively (22). In Developing countries, abattoirs play a major role in providing and serving as a source of information and a references center for diseases prevalence [23]. suggested that governments or other program aimed at controlling or eradicating disease across African countries such abattoir survey result in the planning and control of livestock diseases mentioned that the infection by larval stages of cestodes is considered a problem with a high economic important and would be formed dangerous common health if the resolution was not be found [24].

During the study period, a total of 384 sheep were examined from out of these, 89(23.2%) sheep were found to be positive for C. tenuicollis. This finding is more comparable with the report of 22.8% dire dawa, and in other countries, 23.27% in Egypt [25, 26]. The prevalence of C. tenuicollis in sheep in this study is relatively lower than that reported from result in a study done by, who has recorded prevalence of 14, 12 and 15% in sheep at Harar, Dire Dawa and Jijiga and in other countries, 16.7% in Turkey [27, 28]. Also, relatively higher prevalence of 56.8 % were reported from debrazaitelfora abattoire [29]. In other countries 28.0% from Ankara province [30]. In this study there are compare present and previous prevalence of cysticercustenuicollis and deferent Origin of study area whither there is deferent or not to increase precision of why deferent prevalence of cysticercustenuicollis occurred in the same local area 0i.e. the same epidemiological and climetic condition in study area and other place in the sheep. During the study period out of these, 89(23.2%) sheep were found to be positive for C. tenuicollis but in previous 17% expected prevalence in study area by [31]. And The risk of exposure to C. tenuicollisbased on different origin were examined. There was statistically difference in origin of the sheep(p>0.05). Most of C. tenuicollis infected sheep were found in kersa (41%) whereas 26(20.8%) of sheep with C.tenuicolliswas found in Aweday and 13((9.5%) of sheep with C.tenuicollis was found in Haramaya. So, in this study area prevalence of C. tenuicollis revealed significant variation in the origin of sheep and also present study higher than previous. T. hydatigena of dogs are important from both sanitary and veterinary vies due to the presence of its larval stage in peritoneal cavity of sheep, goats, cow, wild ruminants and swine with severe pathological effect to these hosts. The disease threatens the animal health especially sheep [32]. As, mentioned, the prevalence of the parasite varies from one area to another [33]. Generally, there is higher incidence in countries with lower degree of sanitary and uncontrolled wild carnivore population. As observed by, the grazing behavior and management system of the animals may be responsible for the differences in prevalence between this and the other studies [34]. In this study animals were selected from smallholder and backyard management system. In such area's dogs are kept by the animal owners, and believed that the dogs are useful for the community in preventing predators from their livestock. In the area, especially in rural, treating dogs for parasitic diseases is not practiced. Backyard slaughter of small ruminants and disposal of viscera and trimmings on open field is common as are sult of small number of abattoire and also there not awareness creation programs launched for the butchers, abattoirs workers, meat sellers and dog owners about transmission, prevention and control of C. tenuicollis between dogs and farm animal was not expereanced vaternarian in abattoire and have more final host(dog) than previous. All of these are very important to facilitate the life cycle to continue between the final and intermediate hosts.

The present study suggests that the prevalence of C. tenuicollis was higher in adult sheep 87(24.6%), then in then young ones (6.5%) with a statistically significant difference of (P<0.05). The prevalence of infection increases with age of the sheep Compared to other reports, the result of this study agrees, but lower than the other report for: age above 3 years 37.8% in sheep and in young ones 33.3% in sheep in three export abattoirs by; 47.4% in adult sheep and 35.8% in young sheep by and also agreed with the observation of which showed higher prevalence in adult than young animals [35-37]. But, this study disagreed with the observation of which showed higher prevalence in young than aged animals [38]. This study may be due to high ingestion of eggs of T. hydatigena and more close contact to the final host (dogs), in young's animals in this study area, mostly kept indoors, then older animals.

Body condition of sheep was the risk factor in which the prevalence of C. tenuicollis with poor body condition (34.4%) were found most infected significantly varied ($\chi 2 = 8.276$, P < 0.05) Sheep with the prevalence of C. tenuicollis compared to medium (24.5%) and good (16%) body condition. This finding is in line with the report of and from Northern Jordan, Turkey, Central Ethiopia and dire dawa respectively [39, 40]. But, this study disagreed with the observation of which showed higher prevalence in young than aged animals. When animals suffer from shortage or scarcity of nutrition, and infected with gastrointestinal internal parasites their immunity compromised. Hence, possibly this can be accounted for the higher prevalence of the cyst in poor body condition animals. But, among other risk factors considered except the slight difference in figures of the prevalence statistically insignificant variation observed. There was no an association between the presence of the disease and sex of the animal (24%), (21) % in male and female respectively with sta-

Page No: 05 www.mkscienceset.com J Infec Dise and Vir Res 2023

tistically in significantly from each other (p>0.05). This contradicts with the findings of with significantly different from each other (p<0.05). but, this finding is in line with the report of and from Northern Jordan, Turkey and Central Ethiopia respectively. The reason why current finding insignificant among sex might be either due to sex cannot only be attributed by the C. tenuicollis infection alone but also management system i.e. feed, and any other Couse of stress that Couse their immunity suppresses and infected with gastro intestinal internal parasites their immunity compromised and amount of ingestion of eggs of T. hydatigena. Hence, they had equal exposure and opportunity to get infected.

In the current study, the major sites from where C. tenuicollis was reported were: liver, momentum, peritoneum and mesentery respectively. However, most of the positive animals were found to carry the parasite in liver. For example; out of 89 positive sheep, 10.4 in their liver. And also, the study proportion of liver among visceral organ 44.4% this is followed by the omentum, 4.7%, mesentery 3.4%, peritoneum 2.3%, of sheep (table 2) This agreed with the observation of who reported that liver is predominant predilection sites for C. tenuicollis. The results were also in agreement with the findings of who reported highest cystcerci in animal liver among other organ of (22.4) in sheep and Similar results were obtained by Oie which declared that C [40]. tenuicollis were centralized in the liver of the sheep. But, Samuel disagree with current study that they reported that Omentum is the predominant predilection sites for C. tenuicollis. This is may be due to the presence of large amount of protein, carbohydrates and other essential elements which absorbed by the parasite, so that, C. tenuicollis prefer liver as organ of supplying essential elements for nourishment

Lastly, in the current study; overall annual economic losses of the study area due to a single organ condemnation (liver) from sheep infested by C. tenuicollis was estimated to be: 2100384USD\$ i.e., approximately 70012.8 ETB (1USD= 30ETB). This result is lower than the report of who estimated an economic loss of 65,269.89 USD or 1,044317.79 ETB from condemned liver as a result of report from export abattoire and there is higher total number of animal slaughter. The economic financial a loss in the abattoir was relatively lower because of its local standard in which any liver with single cyst or calcified liver with cyst was not disposed from local market. but in export abattoire it was vice versa and If it was export abattoire and local Such loses are particular importance in Ethiopia, which has low economic output where sheep and goat production are the major livestock industries.

Conclusion and Recommendation

Abattoirs play major role in providing and serving as a source of information and a references centre for diseases prevalence to control or eradicate diseases and produce wholesome products and to protect the public from zoonotic hazards. A battoire survey showed C. tenuicollis that is a widespread problem with higher economic losses that was causing organ disposal with consequent approximately 70012.8 ETB or 2100384USD\$ (1USD= 30 ETB) and higher prevalence among the resident of Haramaya town in slaughtered small ruminant. Besides, the cyst was found distributed the abdominal and pelvic cavities. It was found attached with many visceral organs and tissues, like liver, omentum, peritoneum, and mesentery were the principal organ and tissues where the cyst was located. In the area, especially in

rural, treating dogs for parasitic diseases is not practiced. Backyard slaughter of small ruminants as a result of small number of abattoire and disposal of viscera and trimmings on open field is common and also Inappropriate infected offal disposal by being practiced by some of the abattoirs in study area as a result of there is not awareness creation programs launched for the butchers, abattoirs workers, meat sellers and dog owners about transmission, prevention and control of -C. tenuicollis and other disease between dogs and farm animal enhance this can facilitates the continuation of the life cycle between the intermediate host and final hosts.

Based on the results of the present study, the following recommendations are forwarded:

- Awareness creation programs should be launched for the butchers, abattoirs workers, meat sellers and dog owners about transmission, prevention and control of -C. tenuicollis between dogs and farm animal.
- A control program should be mounted on the number of stray dogs in the study area due to their involvement in the life cycle of the parasite and the livestock health extension workers need to inform dog owners to deworm their dogs regularly.
- Disposal of affected offal freely for dogs and wild covers canids (the usual practice in the community) should be prohibited and all the condemned organs should be either buried or incinerated.
- Thorough meat inspection should be practiced in every abattoirs of the nation
- Sale of contaminated offal's and organs of sheep and goats should be restricted by law

References

- 1. ILCA. (1992–1993). Annual report. Addis Ababa, Ethiopia.
- 2. CSA (Central Statistical Agency). (2009). Agricultural survey: Report on livestock, poultry and bee hives population (private peasant holdings). Addis Ababa, Ethiopia, 2
- 3. Devendra, C., & McLeroy, G. (1990). Goat and sheep production in tropics. Longman, Singapore.
- 4. Fletcher, I., & Zelalem, A. (1991). Small ruminant productivity in central Ethiopia mixed farming system. In Proceedings of the 4th National Livestock Improvement Conference. Institute of Agricultural Research, Addis Ababa, Ethiopia.
- 5. Bekele, T., Woldeab, T., Lahlou-Kassi, A., & Sherington, J. (1992). Factors affecting morbidity and mortality on-farm and on-station in the Ethiopian highland sheep. Acta Tropica, 52(2–3), 99–109.
- Perry, B. D., Randolph, T. F., McDermott, J., Sones, K. R., & Thornton, P. K. (2002). Investing in animal health research to alleviate poverty. International Livestock Research Institute (ILRI), Nairobi, Kenya.
- 7. Thompson, R. (1995). Biology and systematics of Echinococcus. In R. C. A. Thompson & A. J. Lymbery, Echinococcus and hydatid disease. CAB International, 1–50.
- 8. Abidi, S., Nizami, W., Khan, P., Ahmed, M., & Irshadullah, M. (1989). Biochemical characterization of Taenia hydatigena cysticerci from goats and pigs. Journal of Helminthology, 63(4), 333–337.
- 9. Taylor, M., Coop, R., & Wall, R. (2007). Veterinary parasitology (3rd ed., pp. 210–211). Blackwell Publishing Ltd.
- 10. Lawson, J. R., Roberts, M., Gemmell, M. A., & Best, S. J.

- (1988). Population dynamics in echinococcosis and cystic-ercosis: Economic assessment of control strategies for Echinococcus granulosus, Taenia ovis, and Taenia hydatigena. Parasitology, 97(2), 177–191.
- Urquhart, G., Armour, J., Duncan, J., Dunn, A., & Jennings,
 F. (1996). Department of Veterinary Parasitology. Faculty of Veterinary Medicine, University of Glasgow, Scotland.
- 12. Assefa, M. (2005). Parasitic causes of carcass and organ condemnation at Asella municipality abattoir. American-Eurasian Journal of Scientific Research, 5, 230–233.
- Abebe, T., Belay, M., Shahid, N., & Assefa, A. (2014). Major metacestodes in small ruminants slaughtered at Dessie municipal abattoir, Eastern Ethiopia: Prevalence, cyst viability, organ distribution, and economic implications. Journal of Comparative Clinical Pathology, 253–275.
- Dechassa, N., Ketema, M., & Deressa, H. (2014). Participatory Rural Appraisal Report: Haramaya Woreda (CASCAPE Working Paper 2.3.3). Eastern Oromia Region.
- 15. Thrusfield, M. (2005). Veterinary epidemiology. UK: Blackwell Science Ltd, 182–198.
- 16. Sisay, M., Uggla, A., & Waller, P. (2007). Prevalence and seasonal incidence of nematode parasites and fluke infestation of sheep and goats in eastern Ethiopia. Tropical Animal Health and Production, 39(7), 521–531.
- 17. Thrusfield, M. (2005). Veterinary epidemiology. Oxford: Blackwell Science Ltd, 88
- 18. Gracey, I., Collins, O., & Huly, R. (1999). Meat hygiene. London: Bailliere Tindall, 223–260.
- Herenda, D., Chambers, P. G., Ettriqui, A., Seneviratna, P., & da Silva, T. J. P. (2000). Manual on meat inspection for developing countries, 30–50.
- 20. Ciira, K. (2003). Laboratory manual of food microbiology for Ethiopian health and nutrition.
- 21. Bailey, K., & Scott, A. (2008). Diagnostic microbiology (International), 45–58.
- Tadesse, G., Aberaw, A., Tewodros, F., & Mersha, C. (2012).
 Cysticercus tenuicollis: Occurrence at Hashim Nur's meat export abattoir, Debre-Zeit, Ethiopia. Advances in Biological Research, 6, 221–225.
- 23. Ethiopian Veterinary Association (EVA). (2002). Animal health and poverty reduction strategies. Proceedings of the Annual Conferences of EVA, Addis Ababa, Ethiopia.
- 24. Muktar, R. (1988). Preliminary survey of gastrointestinal helminths in dogs, Cysticercus tenuicollis in sheep and goats, hydatidosis in sheep, goats and cattle, at Wolaita Awraja (DVM thesis, Addis Ababa University, Faculty of Veterinary Medicine, Debre Zeit, Ethiopia). 6–17.
- El-Masry, A. A. N. (1986). Morphobiological studies on the larval stages of some cestodes (MVSc thesis, Faculty of Veterinary Medicine, Cairo University).
- Hasslinger, M. A., & Weber-Werringhen, R. (1988). Fecal surveys in pastured sheep and the occurrence of Sokoto. Sokoto Journal of Veterinary Sciences, 9.
- Wondimu, A., Abera, D., & Hailu, Y. (2011). Prevalence, distribution, and economic importance of Cysticercus tenuicollis in visceral organs of small ruminants slaughtered at

- an abattoir in Ethiopia. Journal of Veterinary and Animal Medicine and Health, 3, 67–74.
- 28. Ogunrinade, A., & Ogunrinade, B. (1980). Economic importance of bovine fasciolosis in Nigeria. Animal Health and Production, 12, 155–159.
- 29. Budka, H., Buncic, S., Colin, P., & Collins, J. (2004). Opinion of the Scientific Panel on Biological Hazards on a request from the Commission related to the revision of meat inspection procedures for lambs and goats. EFSA Journal, 54, 1–49.
- 30. Radostits, O. M., Gay, C. C., Blood, D. C., & Hinchcliff, K. W. (2007). Veterinary medicine: A textbook of the diseases of cattle, sheep, goats, pigs and horses (9th ed., pp. 1378–1383). London: Bailliere Tindall.
- 31. Adem, A. (2006). Meta cestodes of small ruminants: Prevalence at three export abattoirs (Elfora, Hashim, and Luna) (MSc thesis, Faculty of Veterinary Medicine, Addis Ababa University, Ethiopia).
- 32. Woynshet, S. (2008). Cross-sectional study on the prevalence of Cysticercus tenuicollis in visceral organs of sheep and goats slaughtered at HELMEX export abattoirs (DVM thesis, Faculty of Veterinary Medicine, Addis Ababa University, Ethiopia), 8–13.
- 33. Abu-Elwafa, S. A., Al-Araby, M. A., & Abbas, I. E. A. (2009). Metacestodes among sheep slaughtered at Mansoura abattoir, Dakahlia province, Egypt. Mansoura Journal of Medical Veterinary Science, 11, 21–33.
- 34. Abdulkadir, A., Assefa, K., & Bedaso, M. (2015). Prevalence, cyst distribution in visceral organs and economic loss of Cysticercus tenuicollis in small ruminants slaughtered at Bishoftu, Elfora export abattoir. American-Eurasian Journal of Scientific Research, 10, 210–220.
- 35. Torgerson, P., Williams, R., & Abo-Shehada, M. N. (1998). Modelling the prevalence of Echinococcus and Taenia species in small ruminants of different ages in Northern Jordan. Veterinary Parasitology, 79, 35–51.
- 36. Senlik, B. (2008). Influence of host breed, sex and age on the prevalence and intensity of Cysticercus tenuicollis in sheep. Journal of Animal and Veterinary Advances, 7, 548–551.
- 37. Woinshet, S., & Girma, G. (2010). Prevalence, risk factors, and distribution of Cysticercus tenuicollis in visceral organs of slaughtered sheep and goats in central Ethiopia. Tropical Animal Health and Production, 42, 1049–1051.
- 38. Samuel, G., & Zewde, G. G. (2010). Prevalence, risk factors, and distribution of Cysticercus tenuicollis in visceral organs of slaughtered sheep and goats in Central Ethiopia. Tropical Animal Health and Production, 42, 1049–1051.
- 39. Yehualashet, B., Aklilu, A., Kaleab, Z., & Tsegaye, A. (2012). Prevalence and economic importance of liver parasites: Hydatid cyst, Fasciola species, and Cysticercus tenuicollis in sheep and goats slaughtered at Addis Ababa Abattoir Enterprise in Ethiopia. Journal of Veterinary Medicine and Animal Health, 5, 1–7.
- 40. World Organisation for Animal Health (OIE). (2008). Echinococcosis/Hydatidosis. In OIE terrestrial manual. Paris, France, 175–189

Copyright: ©2023 Mohammedkemal Mustefa Ame, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.