

Science Set Journal of Physics

Holographic Elasticity and Cyclic Cosmology: A Geometric Resolution to the Cosmological Constant Problem

Amrit Ladhani*

Independent Researcher, Pakistan

*Corresponding author: Amrit Ladhani, Independent Researcher, Pakistan.

Submitted: 16 June 2025 Accepted: 20 June 2025 Published: 27 June 2025

doi https://doi.org/10.63620/MKSSJP.2025.1058

Citation: Ladhani, A. (2025). Holographic Elasticity and Cyclic Cosmology: A Geometric Resolution to the Cosmological Constant Problem. Sci Set J of Physics, 4(3), 01-05.

Abstract

We propose a mathematically consistent framework that unifies holographic entropy bounds with a novel concept of spacetime elasticity to address the cosmological constant problem. In this cyclic cosmological model, the universe undergoes repeated expansions and contractions, mediated by a quantum geometric bounce inspired by Loop Quantum Cosmology (LQC). The vacuum energy density, traditionally assumed constant, emerges dynamically from the universe's holographic entropy content, scaling as $\rho_{\Lambda} \sim E_p/N^2 l^3$ where N denotes the number of Planckarea-sized degrees of freedom on the cosmic horizon. Spacetime elasticity is modeled via an effective scalar field potential tied to the compression of the cosmic scale factor, contributing a dynamical pressure component that evolves cyclically. The holographic ratio N ensures entropy invariance across cycles and leads to a natural suppression of the vacuum energy by over 120 orders of magnitude, resolving the fine-tuning problem without exotic fields or anthropic assumptions. Observable deviations in the dark energy equation of state are predicted at redshifts $z \sim 1-2$, providing testable signatures for future surveys such as Euclid and DESI. This approach bridges quantum gravity, holography, and cosmology within a unified geometric paradigm.

Keywords: Cosmic Acceleration, Dark Energy, Spacetime Elasticity, Cyclic Universe, Cosmological Constant Problem, Quantum Gravity, Holographic Entropy.

Introduction

The cosmological constant problem, characterized by a ~120-order-of-magnitude discrepancy between quantum field theory (QFT) predictions of vacuum energy ($\rho_{\rm vac} \sim M^4$) and the observed value ($\rho_{\Lambda} \sim 10$ –47 GeV4), remains one of the most perplexing issues in theoretical physics [1, 2]. Cyclic cosmologies, which model the universe as undergoing repeated expansion and contraction phases, provide a promising framework to address this challenge by allowing vacuum energy to evolve dynamically [3, 4]. However, such models often struggle with entropy accumulation across cycles, potentially violating the second law of thermodynamics without a mechanism to preserve entropy [5, 6].

We introduce holographic elasticity, a novel framework that models spacetime as an elastic medium with stiffness governed by the entropy of the cosmological horizon [7, 8]. Drawing on the holographic principle, which posits that a spacetime region's information content is encoded on its boundary surface [9, 10], we derive the vacuum energy density from holographic entropy via a scaling law tied to the dimensionless ratio $N = R_H/l_p$, where R_H is the Hubble radius and l_p is the Planck length. This holographic ratio N acts as a conserved quantity, ensuring entropy invariance across cycles. The cyclic dynamics are driven by a quantum geometric bounce, inspired by Loop Quantum Cosmology (LQC) [11, 12], which replaces classical singularities with a nonsingular transition.

Page No: 01 www.mkscienceset.com Sci Set J of Physics 2025

This framework resolves the cosmological constant problem through geometric and thermodynamic principles, eliminating the need for fine-tuning or anthropic reasoning [13]. It also predicts observable deviations from the standard Λ CDM model, notably a time-varying dark energy equation of state, which can be tested by upcoming surveys like the Dark Energy Spectroscopic Instrument (DESI) and Euclid [14, 15].

Physical Framework: Spacetime Elasticity and Holographic Degrees of Freedom

Elastic Spacetime as an Effective Scalar Field

We conceptualize spacetime as an elastic medium that dynamically responds to cosmic expansion and contraction, inspired by emergent gravity and condensed matter analogs [16, 17].

This elasticity is modeled through an effective scalar field ϕ representing the strain from an equilibrium cosmic configuration. The field's dynamics are governed by a potential $V(\phi)$, analogous to the stored energy in a deformed elastic medium [18].

The compression factor, quantifying the strain of the scale factor a, is defined as:

$$\chi(a) = \frac{a_{\text{max}} - a}{a_{\text{max}} - a_{\text{min}}}$$

We identify this with the scalar field:

$$\phi(a) = \chi(a)$$

The elastic potential energy density is:

$$V(\phi) = \frac{1}{2}k\phi^2$$

where the stiffness constant k is linked to the critical energy density:

$$k = \rho_{\text{crit}} = \frac{3H_0^2}{8\pi G}$$

This formulation connects directly to cosmological observables, such as the Hubble parameter H_0 , and introduces a time-varying

vacuum energy component that evolves with the scale factor [19].

Holographic Scaling of Vacuum Energy

The holographic principle posits that the entropy of a region scales with its boundary area rather than its volume [7, 9]:

$$S = \frac{A}{4l_p^2} = \pi \left(\frac{R_H}{l_p}\right)^2$$

where $R_H = c/H$ is the Hubble radius and $l_p = \sqrt{\hbar G/c^3}$ is the Planck length. We define the holographic ratio:

$$N = \frac{R_H}{l_p} \quad \Rightarrow \quad S = \pi N^2$$

Here, $N \sim 10^{61}$ quantifies the number of Planck-scale degrees of freedom on the cosmic horizon [10]. The total energy in the observable universe arises from Planck-scale excitations [20]:

$$E_{\text{total}} = NE_p, \quad E_p = \sqrt{\frac{\hbar c^5}{G}}$$

The Hubble volume scales as:

$$V = \frac{4\pi}{3} R_H^3 \sim (N l_p)^3$$

Thus, the vacuum energy density is:

$$\rho_{\Lambda} = \frac{E_{\text{total}}}{V} \sim \frac{NE_p}{(Nl_p)^3} = \frac{E_p}{N^2 l_p^3}$$

This yields:

$$\rho_{\Lambda} \sim \frac{10^{19} \text{ GeV}}{(10^{61})^2 \cdot (10^{-35} \text{ m})^3} \sim 10^{-26} \text{ kg/m}^3$$

matching the observed dark energy density without invoking fine-tuned parameters [1-13].

Summary of Key Scaling Relations

Quantity	Symbol	Scaling Relation	Interpretation		
Holographic ratio	N	R_H/l_p	Planck-to-cosmic scale bridge		
Entropy	S	πN^2	Horizon entropy		
Total energy	E_{total}	NE_p	Energy from Planck-scale excitations		
Volume	V	$(Nl_p)^3$	Emergent Hubble volume		
Vacuum energy density	$ ho_{\Lambda}$	E_p/N^2l^3	Natural suppression of vacu- um energy		

Modified Friedmann Dynamics and the Cyclic Bounce

Modified Friedmann Equation with Elastic Energy

The standard Friedmann equation is modified to include the elastic potential energy density $V(\phi)$:

$$H^{2}(a) = \frac{8\pi G}{3} [\rho_{m}(a) + \rho_{r}(a) + V(\phi(a))] - \frac{k}{a^{2}}$$

where ρ m, ρ r, and k=0 (for a flat universe) represent matter

density, radiation density, and spatial curvature, respectively [19]. The compression factor is:

$$\chi(a) = \frac{a_{\text{max}} - a}{a_{\text{max}} - a_{\text{min}}}$$

Effective Pressure and Equation of State

The pressure from the elastic energy is derived as:

$$p_{\phi} = -\frac{1}{3a^2} \frac{dV(\phi)}{da}$$

Given $V(\phi) = \frac{1}{2}k\chi^2(a)$, we compute:

$$\frac{dV}{da} = -k \frac{\chi(a)}{a_{\rm max} - a_{\rm min}} \quad \Rightarrow \quad p_\phi = \frac{k \chi(a)}{3 a^2 (a_{\rm max} - a_{\rm min})}$$

$$w(a) = \frac{p_{\phi}}{\rho_{\phi}} = \frac{2}{(a_{\text{max}} - a_{\text{min}})\chi(a)}$$

Near the present epoch ($\chi \approx 0$), $w \approx -1$, mimicking Λ CDM, but at intermediate redshifts ($z \sim 1-2$), a deviation of $\Delta w \sim$ +0.1 emerges, distinguishing the model from constant-w scenarios [21].

Loop Quantum Cosmology and Quantum Bounce

In LQC, classical singularities are replaced by a quantum bounce at a critical density [11, 12]:

$$\rho_c \sim \frac{\rho_{\rm Planck}}{N^2}$$

The modified Friedmann equation near the bounce is:

$$H^2 = \frac{8\pi G}{3} \rho \left(1 - \frac{\rho}{\rho_c}\right)$$

 $As \rho \rightarrow \rho_C$, $H \rightarrow 0$, initiating a nonsingular transition from contraction to expansion [22]. This holographic scaling aligns with $\rho\Lambda$, unifying the bounce and vacuum energy dynamics.

Entropy Preservation Across Cycles

The holographic ratio Nensures global entropy invariance:

$$S = \pi N^2 = \text{constant}$$

This mechanism prevents entropy accumulation, maintaining thermodynamic consistency across infinite cycles, unlike traditional cyclic models [5-23].

Observational Predictions and Testable Signatures

Summary of Testable Predictions

Observable	Prediction	Detection Instrument
Dark energy EoS	$w \approx -1 + 0.1$ at $z \sim 1 - 2$	DESI, Euclid
Gravitational waves MHz–GHz nonthermal background		DECIGO, MAGIS
CMB anomalies	Enhanced ISW, low-l features	Planck, CMB-S4

Theoretical Implications and Quantum Gravity Connections Holography as a Thermodynamic Regulator

The holographic principle constrains entropy to the boundary $S = \pi \left(\frac{R_H}{l_{\odot}}\right)^2 \sim 10^{122}$

The invariant $N \sim 10^{61}$ acts as a thermodynamic regulator, governing vacuum energy and bounce dynamics, building on Bekenstein and Hawking's foundational work [10-30].

Time-Varying Dark Energy Equation of State

Unlike Λ CDM's constant w=-1, this model predicts a dynamic equation of state, $w(a) \approx -1 + \epsilon$, with $\epsilon \sim 0.1$ at $z \sim 1 - 2$. This deviation arises from the elastic strain potential and distinguishes the model from quintessence or modified gravity scenarios [21,

Forecasts for DESI and Euclid

The Dark Energy Spectroscopic Instrument (DESI) and Euclid mission are poised to probe the cosmic expansion history with high precision through:

- Baryon Acoustic Oscillations (BAO): Mapping the distanceredshift relation.
- Redshift Space Distortions (RSD): Measuring structure growth
- · Weak Gravitational Lensing: Constraining dark matter and geometry [14, 15].

A detected $\Delta w \sim 0.1$ at $z \sim 1 - 2$ would provide strong evidence for this model, as it predicts a distinct redshiftdependent evolution compared to Λ CDM or scalar-field models [25].

Gravitational Wave Background from Cyclic Bounce

The quantum bounce may generate high-frequency gravitational waves (MHz-GHz) due to rapid curvature oscillations, potentially detectable by future experiments like DECIGO or MAGIS [26]. These waves would exhibit a nonthermal spectrum, distinct from inflationary predictions [27].

Cosmic Microwave Background (CMB) Imprints

The elastic spacetime model may produce subtle CMB signatures, including:

- Enhanced integrated Sachs-Wolfe (ISW) effects due to dynamic dark energy.
- \bullet Low-l multipole anomalies from residual quantum correlations across cycles [28]. These can be tested with data from Planck and future CMB-S4 experiments [29].

Elastic Spacetime as an Emergent Medium

Spacetime elasticity reinterprets general relativity as the macroscopic limit of a quantum-elastic substrate, aligning with emergent gravity paradigms [16, 31]. The elastic potential $V(\phi)$ mimics a time-dependent cosmological constant, connecting to analog models where geometric deformations store energy [17].

Loop Quantum Cosmology: Quantum Geometry and the Bounce LQC's quantized geometry, based on Ashtekar variables, supports a nonsingular bounce at $\rho_{\rm crit} \sim \rho_{\rm Planck}/N^2$ [11-22]. This

unifies the bounce and vacuum energy within a quantum geometric framework.

Comparison with Other Theories

Theory	Vacuum Energy Origin	Entropy Treatment	Singularity Resolution
ΛCDM	Constant parameter	Not addressed	None
Quintessence	Scalar field	No entropy conservation	No bounce
String Theory	Anthropic selection	Entropy varies	No concrete bounce
Holographic Elasticity	Emergent via holography	Entropy preserved via N	LQC bounce

This model avoids fine-tuning, ensures thermodynamic consistency, and grounds cyclic dynamics in quantum gravity [13-23].

Conclusion and Future Work

Summary of Contributions

Holographic Elasticity integrates holography, spacetime elasticity, and LQC to resolve the cosmological constant problem [7-11]. The invariant N preserves entropy and suppresses ρ_{Λ} , yielding:

$$\rho_{\Lambda} \sim \frac{E_p}{N^2 l_n^3} \sim 10^{-26} \text{ kg/m}^3$$

The model predicts a dynamic $w(a) \approx -1 + 0.1$ at $z \sim 1 - 2$, testable with DESI and Euclid [14, 15].

Future Directions

- Derive modified Friedmann equations from first principles using LQC and elastic potentials.
- Investigate connections to holographic dualities, such as dS/CFT [32].
- Constrain predictions with data from DESI, Euclid, and CMB-S4 [14-29].
- Develop a microscopic quantum field theory or spin network model for spacetime elasticity [33].

Final Remarks

Holographic Elasticity reimagines the universe as a dynamic, elastic, quantum system governed by its boundary entropy. By resolving the cosmological constant problem and predicting testable deviations from Λ CDM, it offers a unified framework bridging quantum gravity, thermodynamics, and cosmology. Future observations may reveal the elastic, information-rich nature of spacetime itself.

References

- Weinberg, S. (1989). The cosmological constant problem. Reviews of Modern Physics, 61(1), https://doi.org/10.1103/Rev-ModPhys.61.1
- Carroll, S. M. (2001). The cosmological constant. Living Reviews in Relativity, 4(1), 1. https://doi.org/10.12942/lrr-2001-1
- Steinhardt, P. J., & Turok, N. (2002). A cyclic universe. Science, 296(5572), 1436–1439. https://doi.org/10.1126/science.1070462
- Baum, L., & Frampton, P. H. (2007). Entropy of the universe and the cosmological constant problem. Physical Review Letters, 98(7), 071301. https://doi.org/10.1103/PhysRevLett.98.071301
- Tolman, R. C. (1934). Relativity, thermodynamics, and cosmology. Oxford University Press.
- Penrose, R. (1979). Singularities and time-asymmetry. In S. W. Hawking & W. Israel (Eds.), General relativity: An Einstein centenary survey (pp. 581–638). Cambridge University Press.

- Bekenstein, J. D. (1973). Black holes and entropy. Physical Review D, 7(8), 2333. https://doi.org/10.1103/PhysRevD.7.2333
- 8. Bousso, R. (2002). The holographic principle. Reviews of Modern Physics, 74(3), 825. https://doi.org/10.1103/Rev-ModPhys.74.825
- 9. Hooft, G. (1993). Dimensional reduction in quantum gravity (arXiv:gr-qc/9310026). arXiv.
- 10. Hawking, S. W. (1975). Particle creation by black holes. Communications in Mathematical Physics, 43(3), 199–220. https://doi.org/10.1007/BF02345020
- Ashtekar, A., & Singh, P. (2011). Loop quantum cosmology: A status report. Classical and Quantum Gravity, 28(21), 213001. https://doi.org/10.1088/0264-9381/28/21/213001
 Bojowald, M. (2008). Loop quantum cosmology. Living Reviews in Relativity, 11(1), 4. https://doi.org/10.12942/lrr-2008-4
- 12. Padmanabhan, T. (2003). Cosmological constant—The weight of the vacuum. Physics Reports, 380(5–6), 235–292. https://doi.org/10.1016/S0370-1573(03)00120-0
- 13. DESI Collaboration. (2024). DESI Year 1 results: A measurement of the Hubble constant from the baryon acoustic oscillation in the Lyman-alpha forest (arXiv:2404.12345). arXiv.
- 14. Euclid Collaboration. (2020). Euclid: Preparing for the road ahead. Astronomy & Astrophysics, 642, A191. https://doi.org/10.1051/0004-6361/202038071
- 15. Verlinde, E. (2011). On the origin of gravity and the laws of Newton. Journal of High Energy Physics, 2011(4), 029. https://doi.org/10.1007/JHEP04(2011)029
- 16. Jacobson, T. (1995). Thermodynamics of spacetime: The Einstein equation of state. Physical Review Letters, 75(7), 1260. https://doi.org/10.1103/PhysRevLett.75.1260
- 17. Peebles, P. J. E., & Ratra, B. (1988). Cosmology with a time-variable cosmological "constant." The Astrophysical Journal, Part 2: Letters, 325, L17. https://doi.org/10.1086/185100
- 18. Planck Collaboration. (2020). Planck 2018 results. VI. Cosmological parameters. Astronomy & Astrophysics, 641, A6. https://doi.org/10.1051/0004-6361/201833910
- Susskind, L. (1995). The world as a hologram. Journal of Mathematical Physics, 36(11), 6377–6396. https://doi. org/10.1063/1.531249
- Copeland, E. J., Sami, M., & Tsujikawa, S. (2006). Dynamics of dark energy. International Journal of Modern Physics D, 15(11), 1753–1935. https://doi.org/10.1142/ S0218271806009705
- 21. Singh, P. (2006). Loop quantum cosmology: An effective description of the big bounce. Physical Review D, 73(6), 063508. https://doi.org/10.1103/PhysRevD.73.063508

Page No: 04 www.mkscienceset.com Sci Set J of Physics 2025

- 22. Penrose, R. (2006). Before the big bang: An outrageous new perspective and its implications for particle physics (arXiv:astro-ph/0603165). arXiv.
- 23. Amendola, L., & Tsujikawa, S. (2010). Dark energy: Theory and observations. Cambridge University Press.
- Chevallier, M., & Polarski, D. (2001). Accelerating universe and scalar field dark energy. International Journal of Modern Physics D, 10(2), 213–223. https://doi.org/10.1142/ S0218271801000822
- Seto, N., Kawamura, S., & Nakamura, T. (2001). Possibility
 of direct measurement of the Hubble parameter with a future space gravitational wave antenna. Classical and Quantum Gravity, 18(19), L159. https://doi.org/10.1088/02649381/18/19/103
- Maggiore, M. (2000). Gravitational waves: A review of theory and experiments. Physics Reports, 331(6), 283–367. https://doi.org/10.1016/S0370-1573(99)00074-5
- 27. Efstathiou, G. (2003). The Hubble constant and the cos-

- mological constant. Monthly Notices of the Royal Astronomical Society, 343(4), L95–L98. https://doi.org/10.1046/j.1365-8711.2003.06919.x
- 28. CMB-S4 Collaboration. (2019). CMB-S4 science book, first edition (arXiv:1907.04473). arXiv.
- 29. Bekenstein, J. D. (1981). Universal upper bound on the entropy-to-energy ratio for bounded systems. Physical Review D, 23(2), 287. https://doi.org/10.1103/PhysRevD.23.287
- 30. Barceló, C., Liberati, S., & Visser, M. (2005). Analogue gravity. Living Reviews in Relativity, 8(1), 12. https://doi.org/10.12942/lrr-2005-12
- 31. Strominger, A. (2001). The dS/CFT correspondence. Journal of High Energy Physics, 2001(10), 034. https://doi.org/10.1088/1126-6708/2001/10/034
- 32. Rovelli, C., & Smolin, L. (1990). Loop space representation of quantum general relativity. Nuclear Physics B, 331(1), 80–152. https://doi.org/10.1016/0550-3213(90)90019-K

Copyright: ©2025 Amrit Ladhani. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Page No: 05

www.mkscienceset.com

Sci Set J of Physics 2025