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Abstract
Breast cancer is the most frequently diagnosed malignancy among women worldwide and remains a leading 
cause of cancer-related mortality despite significant advances in screening and therapeutic strategies. Conven-
tional diagnostic and treatment approaches rely heavily on expert interpretation and population-based guide-
lines, which may lead to inter-observer variability, delayed diagnosis, and suboptimal personalization of care. 
In recent years, artificial intelligence (AI) and machine learning (ML) have emerged as powerful tools capable 
of transforming breast cancer management by enabling automated image analysis, predictive modeling, and 
data-driven clinical decision support. AI-based methods have demonstrated strong performance across mul-
tiple stages of the clinical workflow, including screening, diagnosis, risk stratification, prognosis prediction, 
and treatment response assessment. This comprehensive review systematically examines the current landscape 
of AI applications in breast cancer diagnosis, prognosis, and personalized treatment. We discuss key machine 
learning and deep learning techniques, multimodal data integration strategies involving medical imaging, his-
topathology, and genomic information, and the clinical deployment of AI systems. Additionally, we address 
challenges related to explainability, bias, data quality, regulatory approval, and ethical considerations. By syn-
thesizing recent advances and identifying existing gaps, this review aims to provide clinicians and researchers 
with a clear understanding of the role of AI in advancing precision oncology for breast cancer.

Department of Computer Engineering, Jeju National University, Republic of Korea

Introduction
Breast cancer is a complex and heterogeneous disease that rep-
resents a major public health challenge worldwide. According 
to global cancer statistics, breast cancer has become the most 
commonly diagnosed cancer among women, accounting for a 
substantial proportion of cancer-related morbidity and mortality 
[1]. Despite continuous improvements in screening programs, 
diagnostic imaging, surgical techniques, and systemic therapies, 
breast cancer outcomes remain highly variable due to differenc-
es in tumor biology, disease stage at diagnosis, and patient-spe-
cific factors [2]. Early detection and accurate characterization of 
breast lesions are critical for improving survival rates; however, 
conventional diagnostic pathways continue to face significant 
limitations.

Traditional breast cancer screening and diagnostic workflows 

rely primarily on mammography, ultrasound, magnetic reso-
nance imaging (MRI), and histopathological examination. While 
these modalities have proven clinical value, their interpretation 
is largely dependent on expert judgment, making them suscep-
tible to inter- and intra-observer variability, diagnostic fatigue, 
and subjective bias [3]. 

Furthermore, increasing screening volumes have placed a grow-
ing burden on radiologists and pathologists, raising concerns 
about workflow efficiency and diagnostic consistency [4]. These 
challenges highlight the need for more robust, reproducible, 
and scalable diagnostic solutions.In parallel, advances in mo-
lecular biology have revealed that breast cancer is not a single 
disease entity but rather a collection of biologically distinct sub-
types with different prognostic and therapeutic implications [5]. 
Molecular classifications such as hormone receptor status and 
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human epidermal growth factor receptor 2 (HER2) expression 
have become essential for treatment planning; however, inte-
grating molecular, imaging, and clinical data into cohesive de-
cision-making frameworks remains difficult in routine clinical 
practice [6]. Conventional statistical models often struggle to 
capture the nonlinear and high-dimensional relationships inher-
ent in such complex datasets.

AI encompassing ML and deep learning (DL) techniques has 
emerged as a promising approach to address these challenges. 
AI systems can learn complex patterns from large-scale data and 
have demonstrated strong performance across tasks such as im-
age recognition, natural language processing, and predictive an-
alytics [7]. In the context of breast cancer, AI has shown poten-
tial in automating lesion detection on medical images, improving 
diagnostic accuracy, predicting disease prognosis, and support-
ing personalized treatment decisions [8]. The rapid growth of 
digital medical data, combined with increased computational 
power and improved algorithms, has accelerated the adoption 
of AI-based methods in oncology research. Recent studies have 
reported that AI models can achieve diagnostic performance 
comparable to, and in some cases exceeding, that of experienced 
clinicians in breast cancer screening and classification tasks [9]. 
Beyond diagnosis, AI has also been applied to predict treatment 
response, recurrence risk, and patient survival using multimod-
al data sources such as imaging, histopathology, genomics, and 

electronic health records [10]. These developments align with 
the broader shift toward precision oncology, which aims to tailor 
treatment strategies based on individual patient characteristics 
rather than population-level averages.

Despite these promising advances, the clinical integration of AI 
in breast cancer care remains at an early stage. Challenges re-
lated to data quality, model generalizability, explainability, reg-
ulatory approval, and ethical considerations must be addressed 
before widespread adoption can be achieved [11]. A comprehen-
sive understanding of the current state of AI applications, their 
clinical impact, and their limitations is therefore essential for 
guiding future research and implementation efforts. The objec-
tive of this review is to provide a structured and critical over-
view of AI applications in breast cancer diagnosis, prognosis, 
and personalized treatment. We synthesize recent developments 
across imaging, pathology, and data-driven decision support 
systems, discuss the clinical readiness of AI tools, and highlight 
key challenges and future research directions. By doing so, this 
review aims to serve as a reference for clinicians, researchers, 
and policymakers interested in the role of AI in advancing breast 
cancer management.

Figure 1 provides a conceptual overview of AI applications in 
breast cancer diagnosis, prognosis, and personalized treatment.

Figure 1: Conceptual framework illustrating the role of artificial intelligence in breast cancer diagnosis, prognosis, and personal-
ized treatment through multimodal data integration

Methods of Literature Review
This review was conducted as a comprehensive narrative review 
to summarize and critically analyze recent advances in AI appli-
cations for breast cancer diagnosis, prognosis, and personalized 
treatment. A systematic search of the scientific literature was 
performed using major biomedical and engineering databases, 
including PubMed, Scopus, Web of Science, and IEEE Xplore. 
The literature search covered studies published between January 
2010 and March 2024, reflecting the period during which ma-
chine learning and DL techniques have seen substantial devel-
opment and application in medical imaging and oncology. The 
search strategy combined controlled vocabulary terms and free-
text keywords related to breast cancer and AI. Representative 
search terms included “breast cancer,” “artificial intelligence,” 
“machine learning,” “deep learning,” “radiomics,” “medical im-
aging,” “digital pathology,” and “precision oncology.” Boolean 
operators (AND/OR) were used to refine and combine search 

queries across databases. Studies were included if they met the 
following criteria: (i) peer-reviewed journal articles published in 
English; (ii) studies focusing on the application of AI, machine 
learning, or DL in breast cancer screening, diagnosis, prognosis, 
or treatment planning; and (iii) articles reporting methodologi-
cal development, validation, or clinical evaluation of AI-based 
approaches. Review articles, original research studies, and clin-
ically relevant validation studies were considered to ensure a 
comprehensive overview of the field. Studies were excluded if 
they were unrelated to breast cancer, focused solely on non-on-
cological diseases, lacked methodological detail, or were limited 
to non-peer-reviewed sources such as editorials, commentaries, 
or unpublished manuscripts. Conference papers and preprints 
were considered only when they provided substantial method-
ological contributions and were clearly identified as preliminary 
work. The selected articles were qualitatively synthesized and 
organized thematically according to clinical application areas, 
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including screening and diagnosis, prognostic and risk predic-
tion, radiomics and multimodal data integration, and translation-
al considerations. This approach enabled a structured and critical 

discussion of current trends, limitations, and future research di-
rections in the application of AI for breast cancer management.

Figure 2: Literature identification and selection process

Global Burden and Clinical Challenges of Breast Cancer
Breast cancer represents a significant and growing global health 
burden. Recent epidemiological data indicate that breast cancer 
is the most commonly diagnosed cancer worldwide, with inci-
dence rates continuing to rise in both developed and develop-
ing countries [12]. While higher-income regions such as North 
America and Western Europe report greater incidence due to 
widespread screening programs, low- and middle-income coun-
tries experience disproportionately higher mortality rates, largely 
due to late-stage diagnosis and limited access to effective treat-
ment [13]. The global variation in breast cancer outcomes un-
derscores the importance of early detection, accurate diagnosis, 
and timely therapeutic intervention. Improvements in survival 
rates over recent decades have been attributed to advances in 
screening, systemic therapies, and multidisciplinary care. How-
ever, these gains are unevenly distributed, and disparities persist 
across geographic regions, ethnic groups, and socioeconomic 
strata [14]. Addressing these disparities requires innovative ap-
proaches that can enhance diagnostic accuracy and clinical de-
cision-making at scale, particularly in resource-limited settings.

Molecular and Clinical Heterogeneity of Breast Cancer: 
Breast cancer is a biologically heterogeneous disease charac-
terized by distinct molecular subtypes with varying clinical be-
haviors and prognoses. Gene expression profiling has identified 
intrinsic subtypes, including luminal A, luminal B, HER2-en-
riched, and triple-negative breast cancer, each associated with 
different therapeutic responses and survival outcomes [15]. This 
heterogeneity complicates disease management and highlights 
the limitations of one-size-fits-all treatment strategies. Clini-
cally, patients with similar histopathological features may ex-
perience markedly different disease trajectories, suggesting that 
conventional prognostic markers are insufficient for precise risk 
stratification [16]. The integration of molecular, imaging, and 
clinical data is therefore essential for capturing the complexity 
of breast cancer biology and enabling personalized care.

Challenges in Breast Cancer Screening and Diagnosis: Pop-
ulation-based screening programs, particularly mammography, 

have played a critical role in reducing breast cancer mortality 
by facilitating early detection. However, screening is not with-
out limitations. False-positive findings can lead to unnecessary 
biopsies, patient anxiety, and increased healthcare costs, while 
false-negative results may delay diagnosis and treatment [17]. 
Dense breast tissue further complicates image interpretation, re-
ducing the sensitivity of mammography and increasing the risk 
of missed lesions [18]. Histopathological examination remains 
the gold standard for definitive diagnosis, yet it is also subject to 
variability in interpretation, especially for borderline lesions and 
tumor grading [19]. As screening volumes continue to increase, 
the workload placed on radiologists and pathologists raises con-
cerns regarding diagnostic consistency and efficiency. These 
challenges provide a strong rationale for the adoption of AI-
based tools to assist clinicians in screening and diagnostic tasks.

Limitations in Prognosis and Treatment Decision-Making: 
Accurate prognosis and optimal treatment selection are central 
to improving breast cancer outcomes. Traditional prognostic 
models rely on clinicopathological factors such as tumor size, 
nodal status, and receptor expression, which may not fully 
capture individual risk profiles [20]. As a result, some patients 
may receive overtreatment, exposing them to unnecessary tox-
icity, while others may be undertreated, increasing the risk of 
recurrence. The increasing availability of genomic assays has 
improved risk stratification; however, these tests are costly and 
not universally accessible [21]. Moreover, integrating genom-
ic results with imaging and clinical data remains challenging in 
routine practice. AI-driven predictive models offer the potential 
to synthesize diverse data sources and provide individualized 
prognostic and therapeutic insights, thereby addressing key lim-
itations of current decision-making frameworks.

Need for Advanced Computational Approaches: The com-
plexity of breast cancer biology, coupled with the growing 
volume of clinical and biomedical data, exceeds the analytical 
capacity of traditional methods. Advanced computational ap-
proaches, particularly AI and ML, are uniquely suited to handle 
high-dimensional data and uncover latent patterns that may not 
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Table 1: Summary of artificial intelligence and machine learning methodologies commonly used in breast cancer research
AI Category Representative 

Algorithms
Typical Data Type Key Strengths Main Limitations References

Traditional Ma-
chine Learning

Logistic Regres-
sion, SVM, Ran-

dom Forest, k-NN

Structured clinical 
data, engineered 
imaging features

Interpretability, low 
computational cost, 
robustness on small 

datasets

Requires manual 
feature engi-

neering, limited 
scalability

[26–29]

Deep Learning Convolutional 
Neural Networks 

(CNNs)

Medical imaging 
(mammography, 
ultrasound, MRI, 

pathology)

Automated feature 
extraction, high 

accuracy in image 
analysis

Limited interpret-
ability, requires 

large labeled 
datasets

[30]

Sequence Models RNN, LSTM Longitudinal clin-
ical data, time-se-
ries patient records

Captures temporal 
dependencies, suit-
able for sequential 

data

Training instability, 
limited adoption in 

imaging tasks

[31]

Transformer-Based 
Models

Vision Transform-
er, attention-based 

architectures

High-dimensional 
imaging and multi-

modal data

Attention mech-
anisms, global 

feature modeling

High computation-
al cost, emerging 
clinical validation

[32]

Fundamentals of Artificial Intelligence and Machine Learn-
ing in Healthcare
AI refers to the development of computational systems capable 
of performing tasks that typically require human intelligence, 
such as learning, reasoning, perception, and decision-making. In 
healthcare, AI aims to augment clinical expertise by extracting 
meaningful patterns from complex biomedical data and trans-
lating them into actionable insights [23]. ML, a subset of AI, 
focuses on algorithms that learn from data without being explic-
itly programmed, while DL, a further subset of ML, employs 
multilayer neural networks to model high-level abstractions in 
large datasets [24]. The relevance of AI in oncology arises from 
its ability to handle high-dimensional, heterogeneous data sourc-
es, including medical images, genomic profiles, and electronic 
health records. These data characteristics often exceed the an-
alytical capacity of traditional statistical methods, making AI a 
powerful alternative for modeling disease complexity [25].

Traditional Machine Learning Algorithms in Medical Appli-
cations
Before the widespread adoption of DL, traditional ML algo-
rithms were commonly used in medical research and clinical 
prediction tasks. These methods typically rely on handcrafted 
features derived from clinical or imaging data and include lo-
gistic regression, support vector machines (SVMs), decision 
trees, random forests, and k-nearest neighbors (k-NN) [26]. In 
breast cancer research, traditional ML models have been applied 
to tasks such as tumor classification, recurrence prediction, and 
risk assessment using structured datasets. Logistic regression 
remains widely used due to its interpretability and statistical 
grounding, particularly in clinical risk modeling [27]. SVMs are 
effective for high-dimensional classification problems and have 
been employed in breast cancer diagnosis using imaging and 
gene expression data [28]. Ensemble methods such as random 
forests improve predictive performance by combining multiple 
decision trees, offering robustness against overfitting and noise 
[29]. Despite their utility, these models often require extensive 
feature engineering and may struggle to generalize across di-

verse datasets. DL has revolutionized medical AI by enabling 
end-to-end learning directly from raw data. Convolutional neu-
ral networks (CNNs) are the most widely used DL architecture 
in medical imaging due to their ability to learn spatial hierarchies 
and local patterns [30]. CNNs have been successfully applied to 
mammography, ultrasound, MRI, and histopathology images for 
breast cancer detection and classification. Recurrent neural net-
works (RNNs), including long short-term memory (LSTM) net-
works, are designed to model sequential data and have been used 
for time-series analysis and longitudinal patient monitoring [31]. 
More recently, transformer-based architectures, originally de-
veloped for natural language processing, have been adapted for 
medical imaging and multimodal data integration, demonstrat-
ing strong performance in complex prediction tasks [32]. These 
architectures enable attention-based learning, allowing models 
to focus on the most informative features within large datasets. 
The performance of AI models is heavily influenced by the qual-
ity and quantity of training data. Supervised learning, which re-
lies on labeled datasets, is the most common paradigm in medi-
cal AI applications; however, obtaining high-quality annotations 
is often labor-intensive and costly [33]. Semi-supervised and 
self-supervised learning approaches have therefore gained at-
tention as means to leverage unlabeled data and improve model 
generalizability [34]. Data imbalance is a frequent challenge in 
medical datasets, particularly in cancer screening where disease 
prevalence is low. Techniques such as data augmentation, resa-
mpling, and cost-sensitive learning are commonly employed to 
mitigate this issue [35]. Ensuring external validation across mul-
tiple institutions and populations is also critical for assessing the 
robustness and clinical applicability of AI models. Evaluating AI 
models in healthcare requires careful consideration of clinically 
meaningful performance metrics. Common classification met-
rics include accuracy, sensitivity, specificity, precision, recall, 
and the area under the receiver operating characteristic curve 
(AUC) [36]. In breast cancer screening, sensitivity and specifici-
ty are particularly important due to their direct impact on missed 
diagnoses and false-positive rates. For prognostic and survival 
models, metrics such as the concordance index (C-index), haz-

be apparent to human observers [22]. By leveraging large data-
sets and learning from real-world clinical outcomes, AI systems 
have the potential to improve diagnostic accuracy, prognostic 

precision, and treatment personalization across the breast cancer 
care continuum.
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ard ratios, and calibration plots are widely used [37]. Beyond 
statistical performance, clinical utility, interpretability, and in-
tegration into workflow are increasingly recognized as essential 
criteria for successful AI deployment in real-world settings.

Artificial Intelligence in Breast Cancer Screening and Diagnosis
Early and accurate detection of breast cancer is a cornerstone of 
effective disease management and improved survival outcomes. 
Screening and diagnostic imaging generate large volumes of 
complex data, making them well-suited for AI-driven analysis. 
Over the past decade, AI—particularly DL—has demonstrated 
substantial potential in enhancing the accuracy, efficiency, and 
consistency of breast cancer screening and diagnostic work-
flows.

AI-Assisted Mammography: Mammography remains the pri-
mary screening modality for breast cancer worldwide. Howev-
er, its interpretation is challenging due to factors such as breast 
density, subtle lesion appearance, and reader fatigue. AI-based 
systems, predominantly using convolutional neural networks 
(CNNs), have been developed to assist radiologists by detect-
ing suspicious lesions, classifying abnormalities, and prioritiz-
ing high-risk cases [38]. Large-scale studies have shown that AI 
systems can achieve diagnostic performance comparable to ex-
pert radiologists. Notably, AI-assisted mammography has been 
associated with improved cancer detection rates and reduced 
false-positive recalls in screening populations [39]. AI algo-
rithms can also quantify breast density automatically, which is 
an important risk factor for breast cancer and a known limitation 
of conventional mammography interpretation [40]. By acting as 
a second reader or triage tool, AI has the potential to reduce ra-
diologist workload while maintaining or improving diagnostic 
accuracy.

AI Applications in Breast Ultrasound Imaging: Breast ultra-
sound is commonly used as an adjunct to mammography, par-
ticularly in women with dense breast tissue. Ultrasound inter-
pretation is highly operator-dependent, leading to variability in 
diagnostic performance. AI-based models have been developed 
to classify breast masses as benign or malignant using grayscale 
ultrasound images and Doppler data [41]. DL approaches have 
demonstrated promising results in mass detection, segmenta-
tion, and classification, often outperforming traditional machine 
learning methods that rely on handcrafted features [42]. AI-as-
sisted ultrasound systems may help standardize image interpre-
tation, reduce unnecessary biopsies, and improve diagnostic 
confidence, especially in settings with limited access to special-
ized radiologists.

AI in Breast Magnetic Resonance Imaging: Magnetic resonance 
imaging (MRI) is the most sensitive imaging modality for breast 
cancer detection, particularly in high-risk populations. However, 
MRI interpretation is time-consuming and prone to inter-read-
er variability. AI models have been applied to automate lesion 
detection, segmentation, and characterization in breast MRI, 
leveraging multiparametric imaging sequences [43]. Radiom-
ics-based AI approaches extract quantitative features from MRI 
scans to distinguish between benign and malignant lesions and 
to assess tumor aggressiveness [44]. DL models have further im-
proved performance by learning hierarchical image representa-
tions directly from raw MRI data. These advances suggest that 

AI-assisted MRI analysis could enhance diagnostic accuracy 
while reducing interpretation time in clinical practice.

Digital Pathology and Histopathological Image Analysis: 
Histopathological examination of biopsy specimens is the gold 
standard for breast cancer diagnosis. The digitization of whole-
slide images has enabled the application of AI to digital pa-
thology. DL models have been developed to identify malignant 
regions, classify tumor subtypes, and grade tumors with high 
accuracy [45]. AI systems have demonstrated the ability to de-
tect mitotic figures, quantify tumor-infiltrating lymphocytes, and 
assess histological features associated with prognosis [46]. Im-
portantly, AI-assisted pathology has shown potential in reducing 
diagnostic variability among pathologists and improving repro-
ducibility. These tools may serve as decision support systems, 
particularly in high-volume pathology laboratories.

Comparison of AI Performance with Human Experts: Sev-
eral studies have directly compared the performance of AI sys-
tems with that of experienced clinicians in breast cancer screen-
ing and diagnosis. In mammography, AI models have achieved 
sensitivity and specificity comparable to expert radiologists and 
have demonstrated additive value when used as an adjunct rath-
er than a replacement [47]. Similar findings have been reported 
in ultrasound and pathology applications, where AI-assisted in-
terpretation improved diagnostic consistency and reduced error 
rates [48]. Despite these promising results, it is widely recog-
nized that AI systems should complement, rather than replace, 
human expertise. The optimal role of AI lies in augmenting clin-
ical decision-making, enhancing efficiency, and reducing vari-
ability while preserving clinician oversight and accountability.

Radiomics and Multimodal Data Integration
The increasing availability of high-resolution medical imaging 
and diverse clinical data has enabled the development of radio-
mics and multimodal AI approaches in breast cancer research. 
Radiomics refers to the extraction of large numbers of quan-
titative features from medical images, capturing tumor shape, 
texture, intensity, and spatial relationships that may not be dis-
cernible through visual assessment alone. When combined with 
machine learning, radiomics has shown promise in enhancing 
diagnosis, prognosis, and treatment prediction in breast cancer.
Radiomics pipelines typically involve image acquisition, seg-
mentation of regions of interest (ROIs), feature extraction, fea-
ture selection, and predictive modeling. Extracted features may 
include first-order statistics, shape-based features, texture fea-
tures, and higher-order features derived from wavelet transfor-
mations [49]. These quantitative descriptors provide a compre-
hensive representation of tumor heterogeneity, which is a key 
determinant of breast cancer behavior. Given the high dimen-
sionality of radiomic features, feature selection is a critical step 
to reduce redundancy, prevent overfitting, and improve model 
interpretability. Techniques such as least absolute shrinkage and 
selection operator (LASSO), recursive feature elimination, and 
principal component analysis are commonly employed to iden-
tify the most informative features for predictive modeling [50].

Machine learning algorithms, including support vector ma-
chines, random forests, and gradient boosting methods, have 
been widely used to develop radiomics-based predictive mod-
els. These models have demonstrated utility in distinguishing 
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benign from malignant lesions, predicting molecular subtypes, 
and assessing tumor aggressiveness using mammography, ultra-
sound, and MRI data [51]. More recently, DL–based radiomics 
approaches have emerged, enabling automated feature learning 
directly from imaging data without the need for handcrafted 
features [52]. Studies have shown that radiomics models can 
outperform traditional clinical models in certain tasks, such as 
predicting lymph node metastasis and response to neoadjuvant 
chemotherapy [53]. However, variability in imaging protocols 
and segmentation methods remains a challenge for reproduc-
ibility and generalizability. While radiomics provides valuable 
insights from imaging data, breast cancer management in-
creasingly requires the integration of multiple data modalities. 
Multimodal AI models combine radiomic features with clinical 
variables, pathological findings, and genomic information to 
improve predictive performance and enable precision oncolo-
gy [54]. For example, integrating imaging features with gene 
expression profiles has been shown to enhance the prediction 
of tumor subtypes and patient outcomes [55]. DL architectures, 
such as multimodal neural networks and attention-based mod-
els, facilitate the fusion of heterogeneous data sources. These 
approaches allow models to learn complex interactions between 
imaging, molecular, and clinical features, providing a more ho-
listic representation of disease biology [56]. Multimodal integra-
tion is particularly relevant for personalized treatment planning, 
where decisions depend on multiple patient-specific factors.

Challenges in Radiomics and Multimodal Modeling
Despite promising results, several challenges hinder the clinical 
translation of radiomics and multimodal AI models. Variability 
in imaging acquisition protocols, lack of standardized feature 
definitions, and differences in segmentation practices can sig-
nificantly impact model performance [57]. Additionally, many 
studies rely on retrospective, single-institution datasets, limiting 
external validity. Data harmonization techniques, standardized 
reporting guidelines, and large-scale multicenter studies are es-
sential to address these issues. Furthermore, interpretability and 
transparency remain critical concerns, particularly when inte-
grating complex multimodal data into clinical decision-making 
workflows [58].

Discussion
The rapid integration of AI into breast cancer research and clin-
ical practice reflects the growing recognition of its potential to 
address long-standing challenges in diagnosis, prognosis, and 
personalized treatment. As reviewed in the preceding sections, 
AI-based methods have demonstrated strong performance across 
multiple stages of the breast cancer care continuum, particular-
ly in screening, imaging interpretation, digital pathology, and 
radiomics-based risk assessment. One of the most significant 
strengths of AI in breast cancer management lies in its ability to 
analyze large-scale, high-dimensional data that exceed the capac-
ity of traditional analytical approaches. DL models, especially 
convolutional neural networks, have shown robust performance 
in mammography, ultrasound, MRI, and histopathological im-
age analysis, often achieving diagnostic accuracy comparable 
to expert clinicians. Importantly, studies indicate that AI sys-
tems perform best when used as decision-support tools rather 
than autonomous systems, reinforcing the complementary role 
of AI in clinical workflows rather than replacement of human 
expertise. Radiomics and multimodal data integration further 

highlight the value of AI in capturing tumor heterogeneity and 
complex biological interactions. By combining imaging-derived 
features with clinical and genomic data, AI models can improve 
prognostic accuracy and treatment response prediction. These 
capabilities align closely with the goals of precision oncology, 
where individualized risk stratification and therapy selection are 
essential for optimizing outcomes and minimizing overtreat-
ment. Despite these advances, several limitations remain. Many 
AI models are developed using retrospective, single-center data-
sets, raising concerns regarding generalizability and robustness 
across diverse patient populations. Variability in imaging pro-
tocols, annotation standards, and data quality can significantly 
affect model performance. Moreover, the “black-box” nature of 
many DL models continues to pose challenges for clinical trust, 
regulatory approval, and medico-legal accountability. Address-
ing issues of explainability, bias, and transparency is therefore 
critical for broader clinical acceptance.

Future Directions
Future research in AI-driven breast cancer management should 
focus on improving model generalizability, interpretability, and 
real-world clinical impact. Large-scale, multicenter, and multi-
ethnic datasets are essential to ensure that AI systems perform 
reliably across diverse healthcare settings. The adoption of stan-
dardized imaging protocols, data harmonization strategies, and 
reporting guidelines will further enhance reproducibility and 
comparability across studies. Explainable artificial intelligence 
(XAI) is expected to play a central role in future developments. 
Techniques such as saliency mapping, attention mechanisms, 
and feature attribution methods can help clinicians understand 
model predictions and build trust in AI-assisted decision-mak-
ing. Regulatory agencies increasingly emphasize transparency 
and validation, making explainability a prerequisite for clinical 
deployment. Another promising direction is the integration of AI 
with emerging technologies such as federated learning, which 
enables collaborative model training across institutions while 
preserving patient privacy. This approach may be particularly 
valuable in breast cancer research, where ethical and legal con-
siderations often constrain data sharing. Additionally, the devel-
opment of multimodal foundation models capable of learning 
from imaging, pathology, genomics, and longitudinal clinical 
data may further advance personalized breast cancer care. Ulti-
mately, prospective clinical trials and real-world impact studies 
are needed to evaluate whether AI-assisted systems translate into 
improved patient outcomes, reduced diagnostic errors, and more 
efficient healthcare delivery.

Conclusion
Artificial intelligence has emerged as a transformative force in 
breast cancer diagnosis, prognosis, and personalized treatment. 
The evidence reviewed in this article demonstrates that AI-based 
approaches can enhance diagnostic accuracy, reduce variability 
in image and pathology interpretation, and support data-driven 
risk stratification and treatment planning. Radiomics and multi-
modal AI models further expand the potential of AI to capture 
tumor heterogeneity and enable precision oncology. However, 
despite promising results, the widespread clinical adoption of 
AI in breast cancer care remains limited by challenges related 
to data quality, generalizability, explainability, and regulatory 
oversight. Addressing these issues through standardized meth-
odologies, transparent model design, and rigorous clinical vali-



 

www.mkscienceset.com J Complement Res Altern Med 2026Page No: 07

dation is essential for realizing the full potential of AI in routine 
practice. In conclusion, AI is poised to play an increasingly im-
portant role in advancing breast cancer management. With con-
tinued interdisciplinary collaboration between clinicians, data 
scientists, and policymakers, AI-driven systems have the poten-
tial to improve patient outcomes and contribute meaningfully to 
the future of precision oncology.

References
1.	 Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soer-

jomataram, I., Jemal, A., Bray, F. (2021). Global cancer 
statistics 2020: GLOBOCAN estimates of incidence and 
mortality worldwide for 36 cancers in 185 countries. CA: A 
Cancer Journal for Clinicians, 71(3), 209-249.

2.	 DeSantis, C. E., Ma, J., Gaudet, M. M., Newman, L. A., 
Miller, K. D., Goding Sauer, A., Jemal, A. (2019). Breast 
cancer statistics, 2019. CA: A Cancer Journal for Clinicians, 
69(6), 438-451.

3.	 Elmore, J. G., Wells, C. K., Lee, C. H., Howard, D. H., 
Feinstein, A. R. (1994). Variability in radiologists’ inter-
pretations of mammograms. The New England Journal of 
Medicine, 331(22), 1493-1499. 

4.	 Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., 
Narayanaswamy, A., … Webster, D. R. (2016). Develop-
ment and validation of a deep learning algorithm for detec-
tion of diabetic retinopathy in retinal fundus photographs. 
JAMA, 316(22), 2402-2410.

5.	 Perou, C. M., Sørlie, T., Eisen, M. B., van de Rijn, M., Jef-
frey, S. S., Rees, C. A., … Botstein, D. (2000). Molecular 
portraits of human breast tumours. Nature, 406(6797), 747-
752.

6.	 Curigliano, G., Burstein, H. J., Winer, E. P., Gnant, M., 
Dubsky, P., Loibl, S., … Goldhirsch, A. (2017). De-escalat-
ing and escalating treatments for early-stage breast cancer: 
The St. Gallen International Expert Consensus Conference 
on the Primary Therapy of Early Breast Cancer 2017. An-
nals of Oncology, 28(8), 1700-1712. 

7.	 Topol, E. J. (2019). High-performance medicine: The con-
vergence of human and artificial intelligence. Nature Med-
icine, 25(1), 44–56.

8.	 Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., 
Blau, H. M., Thrun, S. (2017). Dermatologist-level classi-
fication of skin cancer with deep neural networks. Nature, 
542(7639), 115-118. 

9.	 McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., An-
tropova, N., Ashrafian, H., … Shetty, S. (2020). Internation-
al evaluation of an AI system for breast cancer screening. 
Nature, 577(7788), 89-94.

10.	 Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouz-
is, M. V., Fotiadis, D. I. (2015). Machine learning applica-
tions in cancer prognosis and prediction. Computational and 
Structural Biotechnology Journal, 13, 8-17. 

11.	 Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, 
G.,King, D. (2019). Key challenges for delivering clinical 
impact with artificial intelligence. BMC Medicine, 17(1), 
Article 195.

12.	 Bray, F., Laversanne, M., Weiderpass, E., Soerjomataram, I. 
(2021). The ever-increasing importance of cancer as a lead-
ing cause of premature death worldwide. Cancer, 127(16), 
3029-3030.

13.	 Unger-Saldaña, K. (2014). Challenges to the early diagno-

sis and treatment of breast cancer in developing countries. 
World Journal of Clinical Oncology, 5(3), 465-477. 

14.	 Daly, B.,Olopade, O. I. (2015). A perfect storm: How tumor 
biology, genomics, and health care delivery patterns collide 
to create a racial survival disparity in breast cancer and pro-
posed interventions. CA: A Cancer Journal for Clinicians, 
65(3), 221-238.

15.	 Sørlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, 
S., Johnsen, H., … Børresen-Dale, A. L. (2001). Gene 
expression patterns of breast carcinomas distinguish tu-
mor subclasses with clinical implications. Proceedings of 
the National Academy of Sciences of the United States of 
America, 98(19), 10869-10874. 

16.	 Weigelt, B., Reis-Filho, J. S. (2009). Histological and mo-
lecular types of breast cancer: Is there a unifying taxonomy? 
Nature Reviews Clinical Oncology, 6(12), 718-730.

17.	 Nelson, H. D., Fu, R., Cantor, A., Pappas, M., Daeges, M., 
Humphrey, L. (2016). Effectiveness of breast cancer screen-
ing: Systematic review and meta-analysis. Annals of Inter-
nal Medicine, 164(4), 244-255.

18.	 Boyd, N. F., Guo, H., Martin, L. J., Sun, L., Stone, J., Fishell, 
E., … Yaffe, M. J. (2007). Mammographic density and the 
risk and detection of breast cancer. The New England Jour-
nal of Medicine, 356(3), 227-236. 

19.	 Elmore, J. G., Longton, G. M., Carney, P. A., Geller, B. M., 
Onega, T., Tosteson, A. N. A., … Weaver, D. L. (2015). 
Diagnostic concordance among pathologists interpreting 
breast biopsy specimens. JAMA, 313(11), 1122-1132. 

20.	  Ravdin, P. M., Siminoff, L. A., Davis, G. J., Mercer, M. 
B., Hewlett, J., Gerson, N., Parker, H. L. (2001). Computer 
program to assist in making decisions about adjuvant ther-
apy for women with early breast cancer. Journal of Clinical 
Oncology, 19(4), 980–991.

21.	 Sparano, J. A., Gray, R. J., Makower, D. F., Pritchard, K. 
I., Albain, K. S., Hayes, D. F., … Sledge, G. W. (2018). 
Adjuvant chemotherapy guided by a 21-gene expression as-
say in breast cancer. The New England Journal of Medicine, 
379(2), 111-121.

22.	 Beam, A. L., Kohane, I. S. (2018). Big data and machine 
learning in health care. JAMA, 319(13), 1317–1318.

23.	 Russell, S. J., Norvig, P. (2021). Artificial intelligence: A 
modern approach (4th ed.). Pearson.

24.	 Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep 
learning. MIT Press.

25.	 Obermeyer, Z., Emanuel, E. J. (2016). Predicting the fu-
ture-Big data, machine learning, and clinical medicine. The 
New England Journal of Medicine, 375(13), 1216-1219. 

26.	 Bishop, C. M. (2006). Pattern recognition and machine 
learning. Springer.

27.	 Steyerberg, E. W., Vickers, A. J., Cook, N. R., Gerds, T., 
Gonen, M., Obuchowski, N., … Kattan, M. W. (2010). As-
sessing the performance of prediction models. Epidemiolo-
gy, 21(1), 128-138.

28.	 Osareh, A., Shadgar, B. (2010). Machine learning tech-
niques to diagnose breast cancer. Computer Methods and 
Programs in Biomedicine, 96(1), 1-9. 

29.	 Breiman, L. (2001). Random forests. Machine Learning, 
45(1), 5-32. 

30.	 LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning. 
Nature, 521(7553), 436-444.

31.	 Hochreiter, S., Schmidhuber, J. (1997). Long short-term 



 

www.mkscienceset.com J Complement Res Altern Med 2026Page No: 08

Copyright: ©2026 Saman Khalid. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

memory. Neural Computation, 9(8), 1735–1780. 
32.	 Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, 

D., Zhai, X., Unterthiner, T., … Houlsby, N. (2021). An 
image is worth 16×16 words: Transformers for image rec-
ognition at scale. Proceedings of the International Confer-
ence on Learning Representations. https://openreview.net/
forum?id=YicbFdNTTy

33.	 Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciom-
pi, F., Ghafoorian, M., … Sánchez, C. I. (2017). A survey 
on deep learning in medical image analysis. Medical Image 
Analysis, 42, 60-88.

34.	 Jing, L., Tian, Y. (2021). Self-supervised visual feature 
learning with deep neural networks: A survey. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 
43(11), 4037-4058. 

35.	 Chawla, N. V., Bowyer, K. W., Hall, L. O., Kegelmeyer, 
W. P. (2002). SMOTE: Synthetic minority over-sampling 
technique. Journal of Artificial Intelligence Research, 16, 
321-357. 

36.	 Pepe, M. S. (2003). The statistical evaluation of medical 
tests for classification and prediction. Oxford University 
Press.

37.	 Harrell, F. E., Jr., Califf, R. M., Pryor, D. B., Lee, K. L., 
Rosati, R. A. (1982). Evaluating the yield of medical tests. 
JAMA, 247(18), 2543-2546. 

38.	  Kooi, T., Litjens, G., van Ginneken, B., Gubern-Mérida, A., 
Sánchez, C. I., Mann, R., … Karssemeijer, N. (2017). Large 
scale deep learning for computer aided detection of mam-
mographic lesions. Medical Image Analysis, 35, 303-312. 

39.	 McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., An-
tropova, N., Ashrafian, H., … Shetty, S. (2020). Internation-
al evaluation of an AI system for breast cancer screening. 
Nature, 577(7788), 89-94. 

40.	 Yala, A., Lehman, C., Schuster, T., Portnoi, T., Barzilay, R. 
(2019). A deep learning mammography-based model for 
improved breast cancer risk prediction. Radiology, 292(1), 
60-66. 

41.	 Yap, M. H., Pons, G., Martí, J., Ganau, S., Sentís, M., Zwig-
gelaar, R., … Martí, R. (2018). Automated breast ultrasound 
lesion detection using convolutional neural networks. IEEE 
Journal of Biomedical and Health Informatics, 22(4), 1218–
1226.

42.	 Byra, M., Galperin, M., Ojeda-Fournier, H., Olson, L., 
O’Boyle, M., Comstock, C., Andre, M. P. (2019). Breast 
mass classification in sonography with transfer learning us-
ing a deep convolutional neural network and color conver-
sion. Medical Physics, 46(2), 746-755. 

43.	  Truhn, D., Schrading, S., Haarburger, C., Schneider, H., 
Merhof, D.,  Kuhl, C. K. (2019). Radiomic versus convo-
lutional neural networks analysis for classification of con-
trast-enhancing lesions at breast MRI. Radiology, 290(2), 
290-297. 

44.	  Pinker, K., Chin, J., Melsaether, A. N., Morris, E. A., Moy, 
L. (2018). Precision medicine and radiogenomics in breast 
cancer: New approaches toward diagnosis and treatment. 
Radiology, 287(3), 732-747. 

45.	 Bejnordi, B. E., Veta, M., van Diest, P. J., van Ginneken, B., 
Karssemeijer, N., Litjens, G., … van der Laak, J. A. W. M. 
(2017). Diagnostic assessment of deep learning algorithms 

for detection of lymph node metastases in women with 
breast cancer. JAMA, 318(22), 2199–2210.

46.	 Coudray, N., Ocampo, P. S., Sakellaropoulos, T., Narula, 
N., Snuderl, M., Fenyö, D., … Tsirigos, A. (2018). Classi-
fication and mutation prediction from non–small cell lung 
cancer histopathology images using deep learning. Nature 
Medicine, 24(10), 1559-1567. 

47.	 Rodriguez-Ruiz, A., Lång, K., Gubern-Mérida, A., Broed-
ers, M., Gennaro, G., Clauser, P., … Mann, R. M. (2019). 
Stand-alone artificial intelligence for breast cancer detec-
tion in mammography: Comparison with 101 radiologists. 
Journal of the National Cancer Institute, 111(9), 916-922. 

48.	 Steiner, D. F., MacDonald, R., Liu, Y., Truszkowski, P., 
Hipp, J. D., Gammage, C., … Chen, P. H. C. (2018). Impact 
of deep learning assistance on the histopathologic review 
of lymph nodes for metastatic breast cancer. The American 
Journal of Surgical Pathology, 42(12), 1636-1646. 

49.	 Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, 
S., van Stiphout, R. G., Granton, P., … Aerts, H. J. W. L. 
(2012). Radiomics: Extracting more information from med-
ical images using advanced feature analysis. European Jour-
nal of Cancer, 48(4), 441–446. 

50.	 Parmar, C., Grossmann, P., Bussink, J., Lambin, P., & Aerts, 
H. J. W. L. (2015). Machine learning methods for quanti-
tative radiomic biomarkers. Scientific Reports, 5, Article 
13087. https://doi.org/10.1038/srep13087

51.	 Li, H., Zhu, Y., Burnside, E. S., Huang, E., Drukker, K., 
Hoadley, K. A., … Ji, Y. (2016). MR imaging radiomics sig-
natures for predicting the risk of breast cancer recurrence 
as given by recurrence score. Radiology, 281(2), 382-391. 

52.	 Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & 
Aerts, H. J. W. L. (2018). Artificial intelligence in radiology. 
Nature Reviews Cancer, 18(8), 500-510. 

53.	 Liu, Z., Li, Z., Qu, J., Zhang, R., Zhou, X., Li, L., … Tian, 
J. (2019). Radiomics of multiparametric MRI for predicting 
pathological complete response to neoadjuvant chemother-
apy in breast cancer. Radiology, 290(2), 388-397. 

54.	 Aerts, H. J. W. L. (2016). The potential of radiomic-based 
phenotyping in precision medicine. The Lancet Oncology, 
17(6), e248-e257. 

55.	 Mazurowski, M. A., Zhang, J., Grimm, L. J., Yoon, S. C., 
Silber, J. I. (2014). Radiogenomic analysis of breast cancer: 
Luminal B molecular subtype is associated with enhance-
ment dynamics at MR imaging. Radiology, 273(2), 365-
372. 

56.	 Huang, S., Yang, J., Fong, S.,  Zhao, Q. (2020). Artificial in-
telligence in cancer diagnosis and prognosis: Opportunities 
and challenges. Cancer Letters, 471, 61-71. 

57.	 Zwanenburg, A., Vallières, M., Abdalah, M. A., Aerts, H. J. 
W. L., Andrearczyk, V., Apte, A., … Löck, S. (2020). The 
image biomarker standardization initiative: Standardized 
quantitative radiomics for high-throughput image-based 
phenotyping. Radiology, 295(2), 328-338. 

58.	 Holzinger, A., Langs, G., Denk, H., Zatloukal, K., Müller, 
H. (2019). Causability and explainability of artificial intel-
ligence in medicine. Wiley Interdisciplinary Reviews: Data 
Mining and Knowledge Discovery, 9(4), e1312. https://doi.
org/10.1002/widm.1312


