
World Journal of Sensors Network Research

www.mkscienceset.com Wor Jour of Sens Net Res 2024

Research Article

Forensics of Video Devices in Python and Java Script Programming
Languages
Hažib Salkić*

CEPS – Center for business studies Sorrel

*Corresponding author: Hadžib Salkić, CEPS – Center for business studies Sorrel.

Submitted: 16 September 2024 Accepted: 23 September 2024 Published: 07 October 2024

Citation: Hadžib, S. (2024). Forensics of Video Devices in Python and Javascript Programming Languages. Wor Jour of Sens Net Res, 1(1),
01-04.

Page No: 01

Keywords: Cranberry, Agar well, Gram-Negative Bacteria

Introduction
In today's time, digital videos they play key role in communi-
cation and proof material in court processes. However, with
progress technologies, manipulation of video material becomes
everything easier, what requires advanced techniques forensics
for determination authenticity and integrity of video content.

Methodology
Methods used in this research include detection change in video,
analysis metadata, such as and analysis individual of the video
frame. Python was used programmatically language together
with OpenCV library for processing pictures.

Experimental Part
Preparing the Video
The first step is to upload the video and extraction individual
frame works analysis.
Python Copy the code import cv2
Loading videos
video_path = 'video.mp4'
cap = cv2.VideoCapture(video_path)

frame_count = int (cap.get (cv2.CAP_PROP_FRAME_
COUNT))
fps = cap.get (cv2.CAP_PROP_FPS)
duration = frame_count / fps

print (f"Total number frames: {frame_count}")
print (f"Number frame by seconds: {fps}")
print (f"Length videos in seconds: {duration}")

Comment: Loading videos and calculation basic parameters
like what are total number frame, number frame by seconds and
total video length.

Extraction Frame
After video uploads, each the frame is extracted and analyze.
Python Copy the code import axis

Creating directory for saving frame
if not os.path.exists ('frames'):
os.makedirs ('frames')

frame_number = 0
while cap.isOpened ():
ret, frame = cap.read ()
if not ret:
break

Saving individual frame
frame_filename = f'frames /frame _{frame_number:04d}. png '
cv2.imwrite(frame_filename, frame)

https://doi.org/10.63620/MKWJSNR.2024.1007

ISSN: 3067-2384

Abstract
Video forensics is key aspect in modern investigative actions, where necessary to determine authenticity and video
integrity. This paper focuses on on simulation forensic video preview using Python and OpenCV and JavaScript with
special in retrospect on detection manipulation in video material. The results research they show how to forensics tech-
niques I can to use for identification and verification authenticity of video content.

www.mkscienceset.com Wor Jour of Sens Net Res 2024Page No: 02

frame_number += 1

cap.release ()
cv2.destroyAllWindows()

print (f"Extracted {frame_number} frames.")

Comment: Each one frame from the video is being saved like
separate image to the directory works further analysis.

Detection Manipulation
In this one part, detection manipulation is done through analysis
the difference in between consecutive frame.
python
Copy the code
import numpy as np

previous_frame = None

for and in range (frame_number):
current_frame = cv2.imread(f’frames /frame_{i:04d}. png ',
cv2.IMREAD_GRAYSCALE)

if previous_frame is not None:
Calculation absolute differences in between the current one
and the previous one frame
 frame_diff = cv2.absdiff(current frame, previous_frame)

Application threshold on the difference works identification
change
_, thresh = cv2.threshold(frame_diff, 25, 255, cv2.THRESH_
BINARY)

Showing the difference
cv2.imshow(‘Difference ', thresh)
cv2.waitKey(1)

previous_frame = current_frame

cv2.destroyAllWindows()

Comment: They are detected here differences in between frame,
which can indicate on manipulation of video content. Absolute
the difference in between consecutive frame enables identifica-
tion suspicious change.

Results and Analysis
The results show that using described methods I can success-
fully to identify manipulation within the video. Differences in
between consecutive frame clear indicate on changes which they
do n't match with normal flows recording, what can to be indica-
tor potential manipulations.

Forensic video editing represents a critical element in securing
integrity digital video recordings. Through simulation in Python,
it is shown how simple techniques like analysis the difference in
between frame I can to use for detection manipulation. Future
work could to focus on more advanced techniques, including
analysis compression of artifacts and statistical methods for ad-
ditionally promotion forensic video analysis. The memory has
been updated Okay, write I will to you example in JavaScript us-

ing the library like what is ffmpeg.js for video processing. Then
we will analyze success Python in relation to JavaScript for this
one kind task.

Example in JavaScript
JavaScript is often using for video processing in web applica-
tions, and ffmpeg.js enables video processing directly in the
browser.

Preparation of the Project
First, you need to include the ffmpeg.js library in your project.
html
Copy the code
< script src="https://cdnjs.cloudflare.com/ajax/libs/ffmpeg.
js/0.9.7/ffmpeg.min.js"></script>

Loading and Extraction Frame from the Video
javascript
Copy the code
const extractFrames = async (videoFile) => {

const ffmpeg = await createFFmpeg ({log: true});

wait ffmpeg.load ();

// Load video

ffmpeg.FS (' writeFile ', 'video.mp4', await fetchFile (videoFile
));

// Extraction frame on every 1 second

wait ffmpeg.run ('- i ', 'video.mp4', '- vf ', 'fps=1', 'frame%d.png');

// Retrieve of all frame

const frames = [];

for (let i = 1; i <= 10; i ++) {

frames.push (ffmpeg.FS (' readFile ', `frame${ and }. png `));
}

// Display frame

frames.forEach ((frame, index) => {

const blob = new Blob ([frame.buffer], { type: 'image/ png ' });

const url = URL.createObjectURL (blob);

const img = document.createElement (' img ');

img.src = url ;

document.body.appendChild (img);
});
};

Comment: The video is loaded, and then the frames they extract on ev-
ery time one a second. Extracted frames are displayed in the browser.

www.mkscienceset.com Wor Jour of Sens Net Res 2024Page No: 03

Detection Manipulation
In this one step we can use the Canvas API in combination with
ffmpeg.js for Detection the Difference in Between Frame
javascript
Copy the code
const detectManipulation = (frames) => {
const canvas = document.createElement ('canvas');
const context = canvas.getContext ('2d');

flight previousImageData = null;

frames.forEach ((frame, index) => {

const image = new Image ();

image.src = URL.createObjectURL (new Blob ([frame.buffer],
{ type: 'image/ png ' }));

image.onload = () => {

context.drawImage (image, 0, 0);

const imageData = context.getImageData (0, 0, canvas.width ,
canvas.height);

if (previousImageData) {

// Detection the difference

const diff = context.createImageData (canvas.width , canvas.
height);

for (let i = 0; i < imageData.data.length ; i += 4) {

const r = Math.abs (imageData.data [i] - previousImageData.
data [i]);

const g = Math.abs (imageData.data [i + 1] - previousImageDa-
ta.data [i + 1]);

const b = Math.abs (imageData.data [i + 2] - previousImageDa-
ta.data [i + 2]);

diff.data [i] = r;
diff.data [i + 1] = g;
diff.data [i + 2] = b;
diff.data [i + 3] = 255;
}

context.putImageData (diff, 0, 0);
document.body.appendChild (canvas);
}

previousImageData = imageData;
};
});
};

Comment: This one the code compares pixels in between con-
secutive frame in order to detect potential manipulations. Differ-
ences are displayed on the canvas element in the browser.

Analysis Performance of Python vs. Java Script
Performance
•	 Python: Python is very efficient for video processing, espe-

cially in combination with libraries like what are OpenCV.
His performance is optimized to work with big quantities
data and complex algorithms processing pictures. Python
too enables simple prototyping and testing codes.

•	 JavaScript: JavaScript, although popular for web applica-
tions, it is not so much optimized for video processing like
Python. ffmpeg.js allows working with video files directly
in the browser, but performance is limited because of nature
of the web environment and requests to work in real time.
Processing larger video files can to be slower and resource-
ful more intense.

Simplicity of Use
•	 Python: Python offers rich collection library for processing

pictures and videos. OpenCV is good documented, which
makes it easier the beginning of work even and for those
who they don't have a lot experience in the field digital fo-
rensics.

•	 JavaScript: In JavaScript, ffmpeg.js provides strong tool
for video processing, but requires more manual of work for
achievement of the same results as in Python. Setup envi-
ronment and writing code can to be more complex, especial-
ly for those who they are not get to know with working with
videos in a web environment.

Flexibility
•	 Python: Python is more flexible for different types video

processing. It’s easy to do integrate with others tools and
systems, which Mr does convenient for complex forensic
analysis .

•	 JavaScript: JavaScript is limited to the web environment,
which can to be advantage in sense availability, but limita-
tion in sense performance and flexibility.

Conclusion
Python proved itself like superior tool for video forensics in
terms of performance, flexibility and simplicity of use. JavaS-
cript, though useful for web applications and simple tasks, it is
not so much powerful nor efficient like Python for complex fo-
rensic video analysis.

Reference
1.	 Peterson, G., & Shenoi, S. (Eds.). (2023). Advances in

Digital Forensics XIX [E-book]. Amazon.in. https://www.
google.com/search?q=https://www.amazon.in/Advanc-
es-Digital-Forensics-International-Communication-ebook/
dp/B07W91WMHK

2.	 Goel, S., & de Souza, P. R. N. (Eds.). (2024). Digital Fo-
rensics and Cyber Crime: 14th EAI International Confer-
ence, ICDF2C 2023. Springer. https://link.springer.com/
book/10.1007/978-3-031-56583-0

3.	 Digital Video Forensics: Theory and Practice. (2022).
4.	 Ho, A. T. S. (Ed.). (2023). Handbook of Digital Forensics of

Multimedia Data and Devices.
5.	 Forensic Image and Video Analysis: Investigative Applica-

tions and Techniques. (2023).
6.	 Practical Digital Forensics. (2022).

www.mkscienceset.com Wor Jour of Sens Net Res 2024Page No: 04

Copyright: ©2024 Hažib Salkić. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

7.	 Digital Forensics Processing and Procedures. (2021).
8.	 Multimedia Security Watermarking Steganography and Fo-

rensics. (2022).
9.	 Multimedia Forensics A Survey of Recent Advances. (2023).
10.	 Practical Guide to Digital Forensics Investigations. (2022).
11.	 Computer and Digital Forensics Investigating Data Multi-

media and Evidence. (2023).
12.	 Digital Evidence and Computer Crime Forensic Science

Computers, and the Internet. (2021).
13.	 Cyber Forensics A Field Manual for Collecting Examining

and Preserving Evidence of Computer Crimes. (2021).

14.	 Forensic Video Analysis Methods and Techniques. (2023).
15.	 Advanced Digital Forensics and Investigative Techniques.

(2023).
16.	 Digital and Multimedia Evidence. (2022).
17.	 Foundations of Digital Forensics. (2022).
18.	 Image and Video Forensics Techniques and Applications.

(2023).
19.	 The Science of Digital Forensics Methodologies and Appli-

cations. (2022).
20.	 Computer Forensics Cybercriminals, Laws, and Evidence.

(2021).

