
Novel Journal of Applied Sciences Research

www.mkscienceset.com Nov Joun of Appl Sci Res 2025

Research Article

Solving the Time-Dependent Vehicle Routing Problem with Hard Time
Windows using the Saving Ant Colony Algorithm

Uri Lipowezky*

Gett Delivery, 19 HaBarzel Street, Tel Aviv, Israel

*Corresponding author: Uri Lipowezky, Gett Delivery, 19 HaBarzel Street, Tel Aviv, Israel.

Submitted: 06 June 2025 Accepted: 12 June 2025 Published: 15 September 2025

Citation: Lipowezky, U. (2025). Solving the Time-Dependent Vehicle Routing Problem with Hard Time Windows using the Saving Ant Colony
Algorithm. Nov Joun of Appl Sci Res, 2(5), 01-35.

Page No: 01

Keywords: Capacitated Vehicle Routing Problem, Time-Dependent Travel Times, Time Windows, Static Traffic Model, Ant Colo-
ny Optimization, Ruin and Recreate Strategy

ISSN: 3066-7194

Abstract
The present study considers a method of parcel dispatching based on a solution of a capacitated vehicle routing
problem with hard time windows per customer (no waiting is available) and an auto-updated static time-dependent
traffic model. The static traffic model update is based on the actual duration from historical delivery data and the
couriers’ location data, which comes from their mobile devices’ global positioning systems (GPS). The solution to
the vehicle routing problem is based on a two-stage algorithm: obtaining an initial feasible (greedy) solution at the
first stage and sequentially improving this initial solution at the second stage. The improvement of the initial feasible
solution is based on the combination of selecting the appropriate simulated annealing (SA) temperature in the SA
process and applying a saving matrix-based ant colony optimization (ACO) algorithm, which is accomplished using
the Ruin and Recreate (R&R) method. This research aims to enhance existing dispatching systems by reducing the
number of vehicles as the primary objective and minimizing the total route duration for the minimum number of
available vehicles as the secondary objective. The application to real industrial delivery tasks shows that the pro-
posed approach is highly effective.

https://doi.org/10.63620/MKNJASR.2025.1054

Introduction
The Vehicle Routing Problem (VRP) determines a set of vehicle
routes originating and terminating at a single depot, such that all
customers are visited exactly once, and the total demand of the
customers assigned to each route does not exceed the vehicle’s
capacity.

Time windows are imposed for customer destinations, meaning
that the vehicle is only permitted to arrive at the customer’s des-
tination within a specific time window and stay at the customer
site for the duration of the customer’s service time. Sometimes,
when waiting is permitted (soft time window), the vehicle can
arrive before the time window and wait until the early bounce of
the time window (waiting before the delivery) or wait at the pre-

vious customer’s site to arrive at the next customer on its early
bounce of the time window (waiting after the delivery). How-
ever, in megapolises, early arrival causes a problem due to the
unavailability or high cost of parking for waiting and is strictly
forbidden; therefore, hard or strict time window constraints or
VRPHTW are imposed [1-3].

In practical applications, the traversal times between the cus-
tomers are not time-invariant but may vary due to traffic conges-
tion [4]. In this case, we have a time-dependent vehicle routing
problem with time window constraints (TDVRPTW) [69], two
primary components contribute to variability in travel times. The
first component is derived from hourly, daily, weekly, or sea-
sonal deviations from the average traffic volumes. The second

www.mkscienceset.comPage No: 02 Nov Joun of Appl Sci Res 2025

component of travel time variability stems from random events,
including accidents, weather conditions, or other unforeseen cir-
cumstances. No one can foresee the second one while the first
one systematically occurs. It has been demonstrated that most
observed delays are dependent on the first or static traffic com-
ponent. This static or deterministic traffic model is widely used
in the industry [5].

Additionally, the neighbor time intervals are merged into time
buckets [6]. For example, the same traffic is observed on Sun-
days between 2:00 AM and 4:00 AM. Eventually, the traffic data
is represented as a multi-layer travel time matrix, with one layer
for each time bucket [7].

The literature survey presents many exact and heuristic solutions
for solving VRP and its extensions. One of the approaches, Ant
Colony Optimization (ACO), is a population-based metaheuris-
tic that has been successfully applied to solving the TDVRPTW
[8, 9, 3]. In this study, the ACO approach is adopted in combina-
tion with the saving principle to solve the TDVRPTW with hard
time windows efficiently [10].

Problem Description
Following traditional flow-arc formulation, the time-dependent
vehicle routing problem with hard time windows studied in this
research can be described as follows. Let us denote
a complete directed graph with n + 1 nodes, where the node-
set and is an arc set [11, 1]. The vertex
set includes the depot associated
with nodes (start node) and (return node) and the set of
customers , which must be visited. It is supposed
that there is a fleet of K available homogeneous vehicles of ca-
pacity qmax, and each vehicle is located at the depot. Each vehicle
starts a tour from the depot and must either return to the de-
pot , if the tour is closed, or finish with the last customer, if
the tour is open (Open VRP case) [12].

Each vertex in has an associated demand , a service time
, and a service time window when the location ought

to be visited. The depot also has a loading time (Pan et al., 2021)
[13] , the time needed to load commodities to a vehicle,
and the scheduled time , denotes the time when the commod-
ities are available at the depot. The arrival time of a vehicle at
customer is denoted and its departure time .Each arc
has an associated travel distance and a travel time

, depending on the departure time between location
 and the destination . It is supposed that a courier re-

ward is significantly higher than fuel expense, so the fastest path
between two locations is used. In this case, the travel dis-
tance also depends on the departure time. For example, suppose
a depot is located in the industrial zone, and a customer is in
the residential area. In this case, for delivery at 15:00, before
the pick time, a path will be taken, including a highway seg-
ment with a travel distance of 20 km and a traveling time of 20
minutes. However, for the same delivery at 17:00, due to traffic
congestion on the highway at the pickup time, the route will be
rerouted through city streets, resulting in a 10 km travel distance
and a 40-minute travel time. The cost per kilometer traveled is
denoted cd, and the cost per hour of the route duration is denoted
ct. Besides, to ensure the welfare and safety of couriers, the total

trip duration per vehicle is limited by the maximum working
shift CSmax and the maximum number of stop points on each tour
Nmax [13].

We assume that a feasible solution exists, i.e., it is always possi-
ble to serve any customer starting from the depot within its time
window:

 (1)
where is the travel time from the depot to custom-
er j at the time of . Let us denote a binary decision
variable that indicates whether vehicle travels between
customers i and j. The primary objective function is the minimi-
zation of the number of routes, meaning:

(2)

(3)
Since V0 denotes the start depot and the final depot, then

 (4)

Let us denote another decision variable , which indicates the
expected arrival time (ETA) for customer i served by vehicle k.
The secondary objective function is to minimize the price for the
minimal number of vehicles. With these notations, the secondary
objective function can be written as follows:

The primary and secondary objectives are defined in (2) and (5).
The constraints are defined as follows: vehicle capacity cannot
be exceeded (6); all customers must be visited only once (7);
if a vehicle arrives at a customer, it must also depart from that
customer (8). Each vehicle departs from and returns to the depot
only once (9); ETA must satisfy time windows early (10) and
late (11) times, obey the traffic equation (12), and not violate the
working regulations (13) and (14). Unlike previous formulations
for TDVRPTW (Figliozzi, 2012), no waiting is allowed in this
case [1].

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

www.mkscienceset.comPage No: 03 Nov Joun of Appl Sci Res 2025

Literature Review
To the author’s knowledge, the first reference to a time-depen-
dent travel time model belongs to [14]. The author adapted the
saving algorithm to consider two periods of the planning horizon
with different values of travel times. Later, the time-dependent
VRP (TDVRP) without time windows (TW) was first formulated
by Malandraki (1989) [68] and Malandraki and Daskin (1992)
[69]. In these studies, the travel times are computed using step
functions. Nearest-neighbor (greedy) heuristics for the TDTSP
and the TDVRP without time windows and a branch-and-cut al-
gorithm are proposed based on the mixed linear programming
formulation for solving small-scale problems with 10–25 nodes.
A study (Hill & Benton, 1992) [64] considered a node-based
time-dependent vehicl routing problem (without time win-
dows). They proposed a modeling approach in which each node
was assigned a time-dependent piecewise constant speed func-
tion. Then, at each edge, the travel time duration was derived
from the average speed of the incident nodes. Computational re-
sults for one vehicle and five customers were reported. The time
windows and the time-dependent travel time model were first in-
troduced by Ahn and Shin (1991) [15]. They discussed modifica-
tions to the savings, insertion, and local improvement algorithms
to better deal with TDVRPTW. They reported computation time
reductions in randomly generated instances as a percentage of
the “unmodified” savings, insertions, and local improvements
achieved by these algorithms. A study by Malandraki and Dial
(1996) [17] proposed a restricted dynamic programming algo-
rithm for a time-dependent traveling salesman problem (TSP),
specifically for a fleet of one vehicle with a given scheduling
time when the delivery is ready for dispatching and a constant
service time at each customer. They reported on solving random-
ly generated problems for up to 55 customers.

An important property for time-dependent problems is the First–
In–First–Out (FIFO) property [15-17]. A model with a FIFO
property ensures that if a vehicle travels between two locations,
a later departure cannot result in an earlier arrival at the destina-
tion. The formal definition given in is as follows:

(15)

The FIFO property is kept whenever the shortest path between
two locations is selected. However, the FIFO assumption is not
necessarily satisfied if the fastest route is selected between two
locations for distance and duration estimations. Ahn and
Shin (1991) [15] demonstrated that real traffic does not always
maintain the FIFO property, as a courier prefers the fastest route
over the shortest one.

Ichoua et al. (2003) [16] introduced the Ichoua-Gendreau-Pot-
vin (IGP) traffic model, guaranteeing the FIFO property. They
proposed a tabu search solution method, based on the work of
Taillard et al. (1997) [22], to solve the time-dependent vehicle
routing problem (VRP) with soft time windows. Instead of two
objective functions, (2) and (5), they deal only with one objec-
tive function, which consists of the sum of total travel time plus
penalties associated with the sum of lateness. At the same time,
the early arrival, causing the waiting, is not penalized. They
showed that ignoring time dependency. i.e., using VRP models
with constant speed leads to poor solutions. Ichoua et al. (2003)
[16] tested their method using a set of 56 problems from Marius
Solomon (1987) [37] with three different traffic scenarios. Each

scenario in the IGP model is described with a 3x3 time-depen-
dent travel speed matrix, where each row corresponds to a cate-
gory of arc and each column to a time interval.

Contribution, (Fleischmann et al., 2004) [18] however, pointed
out that the IGP model relies on constant edge distances, which
is a hypothesis suitable for road networks but not for VRP, where
links between customers represent the fastest paths, which
change due to traffic congestion during rush hours (Fleischmann
et al., 2004) [18]. Typically, couriers get these paths online from
a navigation system. The authors created a non-FIFO (non-pass-
ing condition) traffic model from Berlin travel time data and
solved incapacitated TDVRP with and without time windows. A
study proposed a solution to minimize the sum of costs associat-
ed with the number of vehicles, distance, duration, and lateness
[19]. They used a genetic algorithm to solve the problem up to
30 stop points.

Donati et al. (2008) [9] presented an Ant Colony System (ACS)
for the first time to solve the TDVRP with hard time windows
(TW) constraints, allowing, however, waiting at the site before
delivery. While adopting the FIFO traffic model, they employed
two objective functions: fleet size (the primary objective) and
total route duration (the secondary objective). The algorithm
was applied to a real road network in the Padua logistics district
in the Veneto province of Italy. Balseiro et al. (2008) [43] sug-
gested improving the algorithm of Donati et al. (2008) [9] on
the Solomon (1987) [37] benchmarks, utilizing aggressive inser-
tion heuristics that rely on the minimum delay metric, which is
combined with ACS to fill the gap. The authors studied dynam-
ic traffic models with 10-minute intervals (144 time zones per
day) and used TABU-search (TS) to solve the problem [20]. The
algorithm was tested on the Augerat et al. (1998) [57] bench-
mark with different time-dependent speed models. Maden et al.
(2010) [23] developed the LANTIME algorithm, which mini-
mizes CO₂ emissions or total route duration. The algorithm is
based on parallel insertion and neighborhood moving operations
[21, 22]. The LANTIME algorithm was applied to the South
West England truck traffic with 15-minute intervals (time band)
or 672 distance-duration matrices for the entire week. The route
between any two points never changes to ensure the FIFO prop-
erty. Ehmke and Mattfeld (2012) [29] used Taxi drivers’ GPS
data (Floating Car Data (Taxi-FCD)) from Stuttgart, Germany,
to create 24x7 weekly time buckets. They applied k-means clus-
tering to distinguish between 6 kinds of traffic models and then
used the LANTIME algorithm [23].

Figliozzi (2012) [1] presented an Iterative Route Construction
and Improvement (IRCI) solution for hard and soft time win-
dows. He also introduced the TD benchmarks, based on the
instances of Solomon (1987) [37] and different travel time
distributions, adapted to the FIFO property, over the delivery
planning horizon. Additionally, some genetic algorithms have
been proposed (Kumar & Panneerselvam, 2017) [67], as well
as meta-heuristics [24]. More detailed information about TD-
VRPTW is specified in the review by Michel Gendreau et al.
(2015) [4]. Recently, Teng et al. (2024) [75] successfully demon-
strated the advantages of ACS for solving the dynamic VRPTW
on the modified Solomon (1987) [37] benchmark.

There are various exact algorithms for small-scale tasks with a

www.mkscienceset.comPage No: 04 Nov Joun of Appl Sci Res 2025

small number of stop points (up to 40) [25-27]. Some of these
works do not ensure that the FIFO property is observed. The
latter study introduces the makespan secondary objective: to
finish the vehicle route as early as possible, in contrast to the
minimal duration route [26-28]. The following example illus-
trates the difference between the two objectives. Let us suppose
that the traffic model is described by time buckets, such as the
Vienna multi-layer travel times matrix model, and the earliest
depot departure time is 7:00 AM [6]. Suppose the depot-to-cus-
tomer duration is 65 minutes at 7:00 and 40 minutes at 10:00,
and the customer time window is [8:00, 11:00]. In this case, the
optimal makespan solution is for the depot to depart at 7:00 and
for the customer to arrive at 8:05. The total duration is 1 hour
and 5 minutes. The courier is free at 8:05. The optimal minimal
duration solution is the depot departure at 10:00 and the custom-
er arrival at 10:40, with a total duration of 40 minutes, but the
courier is free only at 10:40. In this paper, the makespan objec-
tive, which is commonly accepted in the industry is studied [26].
Furthermore, the IGP model has not been used since, according
to Mancini (2014) [5], it is a substantial simplification that does
not accurately represent real urban networks.

Static Traffic Model
All researchers universally accept that there is no standard for
a static traffic model; however, each city has its specific model.
Kok et al. (2012) [66] described the TIGER/Line speed model
for Rhode Island, Connecticut, Maryland, Massachusetts, and
New Jersey. In this model, every road belongs to a category
with a corresponding average normalized speed. There are three
traffic time buckets: morning pick hours (6:30 – 9:30), evening
pick hours (15:30-19:00), and out-of-pick hours. Additionally,
each road has a degree of urbanization, which affects the relative
speed drop and direction of commuter traffic towards urban ar-
eas and industrial zones. Approximately 15,000 to 38,000 nodes
are used to describe the city and define the degree of urbaniza-
tion, but the model does not meet the FIFO property. Simona
Mancini (2014) [5] describes an average speed model in Torino,
Italy, using a sixth-degree polynomial function. This function
approximates the traffic data collected for working weekdays
from 7:00 until 20:00 with 5-minute intervals. This model also
does not guarantee that the FIFO property is respected.
The study is based on the street network of Vienna, which in-
cludes 70,775 edges [6]. The travel times are derived from Float-
ing Car Data (FCD), which is provided by a fleet of taxis in

Vienna for each 15-minute time slot. Eventually, there are 96
buckets for a 24-hour planning horizon. The travel speed is ar-
tificially adjusted to match the travel times, ensuring the FIFO
property is maintained. Ehmke and Mattfeld (2012) [29] adopt-
ed the same model for traffic congestion modeling in Stuttgart,
Germany, having 1,147,776 edges. They used 24x7 = 168 buck-
ets to describe the average weekly traffic. Lombard et al. (2018)
[7]describe a time-dependent traffic model for the urban area of
Paris, utilizing a multi-layer travel time matrix. The data for the
matrix is collected from Google Maps with a two-week accumu-
lation interval, and the planning horizon is from 8:00 to 20:00
with time steps of two hours.

This paper adopts an edge-based, time-dependent FCD traffic
model [29, 6]. The data are collected from taxis and couriers
from mobile GPS devices with a resolution of one second. The
traffic of two cities is modeled: Tel Aviv, Israel, with 78,221 edg-
es, and Moscow, Russia, with 1,252,963 edges. In contrast to
FCD, the model also includes traffic lights and junction edges in
all possible directions with zero distance and an average waiting
time, which is also included in the total travel time. These data
undergo smoothing and alignment to the OpenStreetMap (OSM)
graph using the Kalman filter. This alignment begins with the
calculation of a priori probabilities for each junction passing, us-
ing the frequencies from the historical data collected. The rough
data from the GPS devices is generally too noisy to reconstruct
a valid vehicle path passing through the OSM edges and inter-
sections. These probabilities are used to create the discrete-time
Markov chain model [30]. They are further utilized for optimal
matching between a courier or taxi driver’s location points and
OpenStreetMap (OSM) edges.

For each edge of the OSM graph, which is the segment between
two junctions, the triple is collected. In this tri-
ple is the average duration for edge i at timestamp it
is the standard deviation of the duration for edge i at timestamp t,
and nit is the number of couriers that passed edge i at timestamp
t. The timestamp t consists of the integer starting hour, related
to the starting time for the edge i and the weekday number for
the original day of the week or code of the holiday if there is a
holiday on the date of t. Lombard et al. (2018) [7] suggested
that 168-240 initial timestamps form a multi-layer travel times
matrix.

Table 1: An example of time-bucket merging between single timestamps
Weekday/Hour Monday Tuesday Wednesday Thursday

7:00 Neighbor - 1
8:00 Neighbor - 4 Tested Timestamp Neighbor - 2
9:00 Neighbor - 3

If some edges lack sufficient data for a few timestamps, they are
merged into integrated time buckets [6, 7]. This merging reduces
the prediction error caused by the lack of data and decreases the
number of time buckets the system needs to save for traffic dura-
tion prediction. The rationale for the merging is to partition the
planning horizon into T time intervals with a constant duration
on every edge. Let us consider four neighbors of each at time-

stamp, as shown in Table 1. For weekdays, these neighbors are
the and timestamps, which are ±24 hours or ±1 hours different
from the tested timestamp. For holidays, there is ±1 hour. For
the weekend days, there are ±24 hours. To prove the statistical
equivalence between the tested timestamp Tt and its neighbor
timestamp Tn , the Student T-test is applied as follows.

www.mkscienceset.comPage No: 05 Nov Joun of Appl Sci Res 2025

Table 2: An example of time-bucket merging between the cluster and single timestamps
Weekday/Hour Monday Tuesday Wednesday Thursday Friday

7:00 Neighbor - 1
8:00 Neighbor - 6 Cluster C Neighbor - 2
9:00 Neighbor - 5 Neighbor - 3
10:00 Neighbor - 4

For each edge i, having min(niTt , niTn) ≥ 7, the absolute average
difference ∆M=|miTt-miTn| and variance are cal-
culated.

Using these values, the two-tailed significance of the T-test is
calculated as p= , where
is the inverse Student distribution with df degrees of freedom. If
p > 0.05, the two edges are considered homogeneous.

The ratio of homogeneous edges is calculated as , where
Nh is the number of homogeneous edges, and Nt is the total
number of the tested edges. This ratio measures the homogeneity
between two timestamps.

The timestamps, having the highest homogeneity ratios, are
merged and a joint triple: {mic,σic,nic} is calculated as follows:

(16)

The timestamp clusters are merged if the homogeneity ratio η
is more than 0.75. DBSCAN clustering is processed at the next
stage, and new cluster C is tested to be merged with all its four
neighbors, as shown in Table 2 [31]. The process is repeated
until a timestamp or cluster is merged. Figure 1 shows the final
merged time buckets for weekdays in Moscow, Russia.

Figure 1: An example of the final merged time buckets for Moscow, Russia

www.mkscienceset.comPage No: 06 Nov Joun of Appl Sci Res 2025

The set of n+1 locations consists of a depot, and n customers
form a directed graph with n+1 nodes and (n+1)*n arcs that
represent travel between locations. For every arc and each time
bucket, the fastest path is calculated using a time-dependent
Dijkstra algorithm [6]. As a result, a multi-layer distance du-
ration matrix A(t) is created [7]. Each element of the distance
duration matrix is a pair consisting of travel duration and

travel distance , , where t=1,…,T. Figure 2
illustrates an example of a multi-layer distance duration matrix.
For all buckets, the distance is always greater than or equal
to the shortest, time-independent, or OSM distance since traffic
congestion causes one to select the route that can be longer by
distance but faster by time.

Figure 2: An example of a multi-layer distance duration matrix

Time buckets do not necessarily produce a non-decreasing step-
wise function, so the FIFO property is not always satisfied. For
example, if the duration between locations A and B is 20 min-
utes between 19:00 and 20:00 and 15 minutes between 20:00
and 23:00, then, from the modeling perspective, the vehicle
departing from A at 19:59 will arrive at B at 20:19. The car,
departing from A two minutes later at 20:01 will arrive at B
three minutes before, at 20:16 since it will take another route,
optimal for the next time bucket. A feasible solution to the TD-
VRPTW with no waiting is a set of the TSP sequences with
TD and TW, i.e., TDTSPTW of customer-time pairs:

.Whe re ,
is the depot, k=1,…K is the vehicle, i.e., TSP index, and

is the arrival time at the customer . For the
depot , and . The relation between the conse-
quence pairs is described by the traffic equation (12):

 (17)
Solving the VRP is known to be a combinatorial NP-hard opti-
mization problem [32]. For the practical number of customers,
typically n ≥30, the exact solution is not viable on the time scale
[9]. To this end, the solution consists of two principal stages:
an initial feasible or greedy solution and iterative improvement
until a reasonable optimum is reached [33].

Greedy Feasible Solution for TDVRPTW
Route construction heuristics select nodes (or arcs) sequentially
until a feasible solution has been created [34]. There are two
principal approaches to creating greedy feasible solutions: vari-

able neighborhood search and saving heuristics [35, 10]. Vari-
able Neighbourhood Search (VNS) or Adaptive Large Neigh-
bourhood Search (ALNS) is a type of first-order operator with a
minimal computational load per iteration [36]. Still, it involves
a significant number (up to 13) of adjustable parameters. The
saving concept or Clarke-Wright (CW) concept, proposed by
Clarke and Wright (1964) [10], is a kind of second-order opera-
tor, estimating a saving measure of each arc:

 ,	 (18)

where dij is the distance between customers i and j, and customer
0 denotes the depot. Thus, the values of sij express the saving of
combining two customers, i and j, on one tour rather than serv-
ing them on two different tours. The saving algorithm forms the
basis of most tools for solving VRPs and can be easily applied to
VRPTW, as initially suggested by Solomon (1987) [37]. How-
ever, VRPTW in models like (Doerner et al., 2002) [6] has no
traffic, and the riding time between the customers equals the Eu-
clidean distance between them, so the saving criteria like C2 do
not directly apply to TDVRPTW [37, 38]. The simplified pseu-
do-code of a greedy algorithm, based on the saving principle, is
shown in Algorithm 1. The algorithm’s input is the customer list
with TWs and service times, depot TW and loading time, and
a multi-layer distance duration matrix. The output is a feasible
TDVRPTW [37].

Algorithm 1: Greedy Saving TDVRPTW Solution

Step 1	 Select the first arc of seed customers [34].
Step 2	 Create a list of unvisited customers.

www.mkscienceset.comPage No: 07 Nov Joun of Appl Sci Res 2025

Step 3: Set partial tour , , and .
Step 4 	 Until , repeat:
Step 4.1	Select the best head-interior customer from to ,

having saving 	 .
Step 4.2	Select the best tail-interior customer from to , hav-

ing saving .
Step 4.3	If add a new customer,

 to , and update list .
Step 5 	 Until the list of unvisited customers is empty, repeat:
Step 5.1	Add tour to TDVRPTW, and set
Step 5.2	Select the first arc of seed customers
from the list for a new tour.
Step 5.3	Create a new tour by repeating Steps 2-4.

Saving Concept for TDVRPTW
For TDVRPTW, let us modify the classical CW-saving algo-
rithm and, instead of a single saving matrix S, produce two ma-
trices: a saving matrix S and a time-start matrix T₀. It’s supposed
that the fleet is homogeneous, i.e., all vehicles are the same type
[10]. The element of the saving matrix S means the saving
from using the path instead of two paths: and

. The element of the time-start matrix T₀ means the ear-
liest time of arriving at the starting location on the path
from the depot (location 0) if the path is . The path is not

always feasible. For example, if the time window at location
is and at location j is the path
is infeasible, but the path is feasible, providing the travel
time between , and the service time of customer i at the time
bucket of 12:00 exceeds 20 minutes. If the path is infea-
sible and . Thus, if or then

 and because of the time windows incompatibility.

If there are no feasible paths on the entire matrix, then all cus-
tomers get the point-to-point solution: and .

The elements of the matrices and are calcu-
lated based on the objective function, traffic model, and con-
straints. For example, if vehicle capacity is ten items, customer
i demands five items, and customer i demands six items, both
paths and are infeasible because of the capacity
violation. So, if , then ,=0 and , where

 is the vehicle capacity.

If , then the earliest arrival time at location i is , thus
. Otherwise, the earliest departure time from i to j is

the root of the traffic equation or the backward travel time func-
tion:
		 (19)

Equation (19) is solved iteratively, and Figure 3 illustrates the de-
livery process [13]. The initial guess is minute,
i.e., the previous time bucket if it is different from the time buck-
et of ej .The iterations are processing for
k=0,1,2,... until . Sometimes, the iteration pro-
cess is prone to oscillations. Let’s consider an example depicted
in Figure 4. There is a depot with a time window [6:00-12:00],
loading time , and customer i with TW = [7:55-
9:30]. The depot-to-customer travel time is =
40 minutes (before traffic congestion) and =
70 minutes or 1:10 at the rush time. The process (19) starts with

- 0:01 = 7:54, and = 7:55 - 1:10 = 6:45. The next iter-
ation gets = 7:55 - 0:40 = 7:15. Thus, there is an oscillation:
6:45, 7:15, 6:45, etc. In this case, the target time = 7:55 is un-
reachable, and there is a dead zone between 7:40 and 8:10. In the
dead zone, the customer cannot be reached from the depot. The
solution of (19) is the earliest departure time of the time bucket
at the start time, i.e., 7:00, and the arrival time at the location
j is 7:00 + 1:10 = 8:10. In this case, the arriving time at the depot

, is = 7:00 – 0:30 = 6:30.

Figure 3: An illustration of the delivery process for the depot with TW = [6:00-12:00], g0=0:30 and two customers i with TW =
[8:00-10:00], service time gi=0:15 and j with TW = [9:30-12:00], service time gj=0:20

Figure 4: An illustration of the oscillations in solving equation (19)

www.mkscienceset.comPage No: 08 Nov Joun of Appl Sci Res 2025

In many cases, equation (19) has a multi-root solution. For
example, let customer has TW = [19:05-19:40] with the de-
pot-to-customer travel time = 3 minutes
(after the rush) and = 6 minutes (at the rush
time). In this case, there are two roots: = 19:02 and 18:59, so
a minimal duration (3 minutes at 19:02) is chosen.

To know the time when the vehicle has to leave the depot to
arrive at location at (depot departure time), the follow-
ing backward time equation, similar to equation (19), has to be
solved:

				 (20)

The root of (20) is clipped into the TW interval . Eventu-
ally, for the route (0,i,j,0) there is a sequence of the arrival times:

,where the depot arrival time is just
, where is the depot departure time from (20), is the depot
return time and is the depot loading time, i.e., the time need-
ed for the pickup. This time does not depend on traffic; however,
the rest of the arrival times are traffic-dependent and are calcu-
lated using the forward propagation, or ready time function [13]:

+ , ,

	 (21)

If or or , then the pair is
infeasible and , .Besides, following the regula-
tions, the tour duration should not exceed the maximum courier
shift working time, i.e.:

, (22)
				
where is the maximal courier working shift. If condition
(22) is violated, then , and .

The saving matrix elements are:

	 			
Times and are also roots of equations (20) and (21),
and are the earliest departure time for a point-to-point tour,
and they are defined as a root of the backward time equation:

 (24)	
	 	
The First Seed Arc Selection for the Greedy Algorithm
The first step is to find a pair of “seed” customers to initialize the
path construction [34]. The path starts with the earliest possible
delivery pair, having the maximal saving:

.	 (25)	
	
Where set A consists of the earliest pairs , where

 is the earliest late time window for all of the custom-
ers, i.e., = . Let us denote this route, consisting
of the first pair, as a set containing the path and arrival times:

,where the depot depa-
ture time is the root of equation (20). The route is feasible

if the arrival times and are inside their time windows,
is inside the depot time window, and the total courier

shift duration does not exceed the maximum courier shift work-
ing time (22). The already visited sites are collected in the visit-
ed customers list .

The first seed arc selection requires the calculation of n(n-1)
items of the saving matrix (complexity) and their sorting
(complexity O(n(n-1)ln(n(n-1)))), therefore its overall complex-
ity is .

The Head Interior Heuristics for the Greedy Algorithm
Let us suppose that we have already created a partial solution
of VRP with k ready feasible paths: ,where

is an ordered list of the visited sites,
along with the pickup time . Besides, we still have a list of
m unvisited customers: and the current
feasible path under construction. To find
the next best partial greedy solution of VRP, we would have to
test push-forward insertions (Solomon, 1987) [37].
For a large number of customers, the overall time complexity
following [39] is O(n3), and this becomes infeasible due to the
computational load [39]. Instead, only head and tail interior in-
sertions are processed as suggested in the original Clarke-Wright
heuristic [10]. In addition to the insertions of m unvisited cus-
tomers, we check the relocate heuristic with the last visited cus-
tomers of each ready path πi, subject to . Let us denote this
list ST = as a soft tabu list. In our traffic
model, the backward update (Bräysy and Gendreau, 2005a) [39]
demands solving n times the equation (20) [34]. To reduce the
computational load, only the forward update is processed for the
soft tabu list.

The algorithm is described in Algorithm 2. For the current path,
the arrival time at each site is known. Let us denote this
value, or ready time, as . The following site, to be visited in
the current path, is selected from the list of unvisited sites Y and
the soft tabu list ST (Step 1) [13]. If the tested customer y does
not meet capacity, time window, or maximal shift duration con-
straints (Steps 2.1-2.3), the next customer from the list is tested.
For each valid customer, its saving value is calculated (Step 2.6),
and if this saving exceeds the initial saving , a modification of
the Coefficient Weighted Distance Time Heuristics (CWDTH)
or level of urgency is calculated as follows [41, 42].

Let be the arrival time at the customer y, which is calcu-
lated in Step 2.2, then the time left to the end of the delivery
is . The measure of actual urgency also de-
pends on the planning horizon of customer y and is defined as

. Let be the maximal gap
to the end of the delivery time window for all valid customers,
then the weight . Among the unvisited
customers , a customer with the max-
imum weighted saving (Step 2.7) is
selected. The output of the algorithm is the updated current path

.

Algorithm 2: TDVRPTW Greedy Head Interior Insertion

(23)

www.mkscienceset.comPage No: 09 Nov Joun of Appl Sci Res 2025

Step 1	 Create a soft tabu list and
for the current path , calculate the
following parameters:

Step 1.1	Current demand .
Step 1.2	Arrival time at the last customer .
Step 1.3	On-demand duration, i.e., the sum of durations for de-
pot-to-customer delivery to each customer separately:

,	
 (26)
where is the earliest departure time from the depot for a sin-
gle-point , which is defined as a root of equation (23).
Step 1.4	Current path duration:

.	
 (27)
Step 1.5	Current saving .
Step 2	 For each customer repeat the following steps:
Step 2.1	If customer violates capacity constraints, i.e.,

, or > exceeds the maximal avail-
able amount of the stop points , continue with the next cus-
tomer.
Step 2.2	Calculate the arrival time at customer :

 .If the arrival time is too late,
i.e., or too early, i.e., , continue with the next
customer.
Step 2.3	Calculate total delivery shift duration:
, where . If , contin-
ue with the next customer; otherwise, calculate the saving value
as follows.
Step 2.4	Calculate on-demand duration (sum of durations for
depot-to-customer delivery to each customer separately):

 , (28)
where is the earliest departure time from the depot for single
point y, which is defined as a root of equation (24).
Step 2.5	Calculate the path duration with customer y:

 , 	
 (29)
where is the arrival time at customer y, calculated in Step 2.2.
Step 2.6	Calculate the saving value .If ,
there is no reason to process customer y, in this case, continue
with the next customer.
Step 2.7	Calculate and (Carić et al., 2007) [41]
weighted time-saving :

				
Step 3	 Find , and .
Step 4	 For each customer z, associated with the path πi from
the soft tabu list z ST repeat the following steps:
Step 4.1	If customer z violates capacity constraints, i.e.,

 or > exceeds the maximal avail-
able amount of the stop points , continue with the next
customer.
Step 4.2	Calculate the arrival time at customer z:

. If the arrival time is too late, i.e.,

 or too early, i.e., , continue with the next cus-
tomer.
Step 4.3	Calculate total delivery shift du-

ration: , where

. If , contin-
ue with the next customer; otherwise, calculate the saving value
as follows.
Step 4.4	Calculate current saving for path , correspond-
ing to the last customer : , where is calcu-
lated using (26) and using (27) for path
Step 4.5	Calculate on-demand duration (sum of durations
for delivery to each customer separately) without customer z:

, where is the duration of the
tour , calculated by equation (26).
Step 4.6	Calculate the path duration up to the customer before z:

where is the path associated
with the customer , is the pickup time for the path , and
the time is the arrival time at the customer

Step 4.7	Calculate the savings lost for finishing the path
without customer z:

 (32)	
			
Step 4.8	Calculate the saving value for head inserting user z
into the current path by applying Steps 2.1-2.6 to customer z
instead of y.
Step 4.9	Calculate the actual savings concerning the savings lost
and the level of urgency:

 (33)	
		
Step 5 If , then the updated path with the cus-
tomer z is better than the previous path with the customer y. In
this case, the new path is the algorithm’s output. Other-
wise, the output is the old path .
Step 6	 If the new saving value , then path cannot
be updated by head interior insertion.

Suppose the algorithm selected a customer from a soft tabu list.
In that case, we must calculate the saving loss for withdrawing
a soft tabu customer from its path to compare with the unvisited
customers (Step 4). A soft tabu flag indicates that the path
(associated with customer z) ought to be updated since anoth-
er unvisited customer might replace the withdrawn customer z.
Soft tabu testing is a type of local search and insertion operation
[43].

If Algorithm 2 returns , then one of the possible
reasons might be the gap between the next possible earliest de-
livery and the already finished delivery at the current path
. In this case, we need to check the possibility of adjusting the
pickup time to synchronize the customers’ TWs. Let be
the subset of unvisited customers Y, passing the capacity con-

(31)

(30)

www.mkscienceset.comPage No: 10 Nov Joun of Appl Sci Res 2025

ditions (Step 4.1). Let be the earliest de-
livery time for all customers . Then, we can add the next cus-
tomer to the route if the pickup time is delayed by the positive
value Δt=max i.e., the maximal gap among
the earliest delivery time customers. This new pickup time is
applied to the path , and now, if
in the time-shifted path all customers are inside their TWs:

. Algorithm 2 is applied again to the
current path . Algorithm 2 involves m+k tests, and each test
involves no more than n calculations since max(m+k)=n-2, then
its complexity is O(n2).

The Tail Interior Heuristics for the Greedy Algorithm
Besides head interior insertion, the tail interior insertion is also
tested, as Clarke and Wright (1964) [10] suggested. The input is
the same: a partial VRP with k feasible paths:
, where is an ordered list of the
visited sites, along with the pickup time , a list of m unvis-
ited customers: , and the current path

 under construction. In the case of
the tail interior heuristics, the potential customer is tested to be
delivered before . So, two backward-time equations have to
be solved:
1 Arrival time at the tested customer y:

 (34)
 			
where t1 is the arrival time at the first customer , calculated as

. Equation (34) is solved iteratively, like
equation (20), with the initial guess
New pickup time for the current path :
			

Equation (35) is also solved iteratively, with the initial guess

.

The feasibility of the new path, starting with the customer y is
tested by iterative forward propagation. Let, be the arrival
time at the customer y, then the arrival time at the first customer
of the initial path is

,	 (36)	
	
If ,then the path is infeasible. The rest of the
arrival times on the path are updated as follows:

	 (37)

If , then the path is infeasible.

The process is summarized in Algorithm 3, having the same in-
put and output as Algorithm 2.

Algorithm 3: TDVRPTW Greedy Tail Interior Insertion
Step 1	 Create soft tabu list
Step 2	 Calculate parameters Qc, D0 and s0 of the current path

using Step 1 of Algorithm 2.
Step 3	 Calculate the arrival time at the first customer as

.
Step 4	 For each customer repeat the following steps:
Step 4.1	If customer y violates capacity constraints, i.e.,

, or > exceeds the maximal
available amount of the stop points , continue with the
next customer.
Step 4.2	Calculate arrival time at the customer y as the root
of equation (34) and the pickup time as the root of equa-
tion (35). If , continue with the next customer.
Step 4.3	Find the arrival time at the first customer location of the
initial path , using equation (36). If this time ,
continue with the next customer.
Step 4.4	Find the arrival time at the rest of the customer loca-
tions from the initial path , , using equation
(37). If one of these times is out of TW, i.e., , con-
tinue with the next customer.
Step 4.5	Calculate total delivery shift duration:
	

If , continue with the next customer.
Step 4.6	Calculate on-demand duration (sum of durations for
depot-to-customer delivery to each customer separately)
with equation (28).
Step 4.7	Calculate the path duration with the customer y:

where is the arrival time at the customer location, recur-
sively calculated by (17) as: .
Step 4.8	For the new path, calculate the saving value ' using
Steps 2.6 and 2.7 of Algorithm 2.
Step 5	 Find , and .
Step 6	 For each customer z, associated with the path πi from
the soft tabu list repeat the following steps:
Step 6.1	If customer z violates capacity constraints, i.e.,

 or > exceeds the maximal
available amount of the stop points , continue with the
next customer.
Step 6.2	Calculate arrival time at the customer z as the root of
equation (34) and the pickup time as the root of equation
(35). If , continue with the next customer.
Step 6.3	Apply step 4 for customer z and calculate the saving
value .
Step 6.4	Calculate the lost savings , using Steps 4.7 and 4.8
of Algorithm 2.
Step 6.5	Calculate actual saving ' according to the saving loss
and level of urgency (33).

(39)

(38)

(35)

www.mkscienceset.comPage No: 11 Nov Joun of Appl Sci Res 2025

Step 7	 If , then the updated path with the cus-
tomer z is better than the previous path with the customer y. In
this case, the new path is the algorithm’s output. Other-
wise, the output is the old path .
Step 8	 If new saving then path cannot be up-
dated by tail interior insertion.

There are three exceptional cases when Algorithm 3 cannot cre-
ate a tail interior path.
1. All unvisited sites have to be visited after the first customer ,
i.e., . In this case, instead of the tail interior path, the
Solomon insertion or Push-Forward Insertion Heuristics (PFIH)
at position is processed, where
according to the maximal free time (MFT) heuristic (see Algo-
rithm 4) [37, 43].
2. All unvisited sites have to be visited before the first customer

, i.e., . In this case, the pickup time may be started
early by , where ε is a small confidence
constant, say 10 seconds, to prevent rounding errors. The time
shift is applied to the path with
the new pickup time . If in the shifted path , all the
customers are inside their TWs: , Algo-
rithm 3 is applied again with the new current path . The time
shift is tested for all customers y, sorted in ascending order of

 and the first feasible time shift is applied.
3. If there are valid customers and no insertion in cases 1 and
2 were found, then there is no feasible path due to the TW in-
compatibility. In this case, Solomon’s insertion PFIH at posi-
tion ν is tested, where , where

, i.e., maximal index, having the minimal late
time TW over the current path , cf. minimum delay metric
[43]. In this case, Algorithm 4 is applied to the index ν.

Algorithm 3 checks m+k customers, and each test requires
k forward calculations; thus, the Algorithm 3 complexity is
O(k(m+k)). In the worst case, it becomes O(n2).

Solomon’s PFIH for the TDVRPTW Greedy Algorithm
Push-forward insertion heuristics are processed if the tail in-
sertion fails, and instead of the first position, the new insertion
position ν is tested according to the MFT heuristic [43]. In this
case, the new customer is inserted into any predefined position ν
between 1 and nc of the current path πc. The process is described
by Algorithm 4, and the output of the algorithm is the updated
current path .

Algorithm 4: TDVRPTW Greedy Solomon PFIH Insertion
Step 1	 Create soft tabu list ..
Step 2	 Calculate parameters Qc, D0 and s0of the current path
using Step 1 of Algorithm 2.
Step 3	 Using equation (34), calculate the arrival time at the
first ν customers .
Step 4	 Calculate the on-demand duration (when each custom-
er is served with a separate vehicle) up to the customer . That
is a particular case of equation (26) and is read as:

	

Step 5	 Calculate the current path duration up to the customer
 without return to the depot, which is written as:

	
	
Step 6	 For each customer , repeat the following steps:
Step 6.1	Calculate arrival time at the customer y as the result
of the forward propagation using equation (37). If
, continue with the next customer.
Step 6.2	Find the arrival time for the rest of the customers from
the initial path , ,using equation (36). If one of
these times is out of TW, i.e., , continue with the
next customer.
Step 6.3	Calculate total delivery shift duration CS using equa-
tion (38). If CS>CSmax , continue with the next customer.
Step 6.4	Calculate on-demand duration (sum of durations for
depot-to-customer delivery to each customer separately) us-
ing equation (28).
Step 6.5	Calculate the path duration with the customer y:

	

where is the result of (41), is the arrival time at the cus-
tomer , recursively calculated by (17), is the arrival time
at the customer , and is the arrival time at customer .
Step 6.6	For the new path, calculate the saving value using
Steps 2.6 and 2.7 of Algorithm 2.
Step 7	 Find , and .
Step 8	 For each customer , associated with the path from
the soft tabu list repeat the following steps:
Step 8.1 	If customer violates capacity constraints, i.e.,

 or > exceeds the maximal avail-
able amount of the stop points , continue with the next cus-
tomer.
Step 8.2	Calculate arrival time at the customer as the result
of the forward propagation using equation (37). If ,
continue with the next customer.
Step 8.3	Repeat Steps 6.2 and 6.3 for the customer z.
Step 8.4	Calculate on-demand duration (sum of durations for
depot-to-customer delivery to each customer separately) us-
ing equation (28) and the path duration with the customer , using
equation (42).
Step 8.5	Apply Steps 6.4-6.6 for customer and calculate the
saving value .
Step 8.6	Calculate the lost saving , using Steps 4.7 and 4.8
of Algorithm 2.
Step 8.7	Calculate actual saving , concerning saving loss and
the level of urgency (33).
Step 9	 If , then the updated path with the
customer is better than the previous path with the customer
. In this case, the new path is the algorithm’s output. Oth-
erwise, the output is the old path .
There are two exceptional cases when Algorithm 4 cannot create
Solomon’s PFIH interior path.
1 All unvisited sites are incompatible with TW with the arrival
time at insertion index : . In this case, the new
insertion index is defined as . If

, then the PFIH interior is identical to the head interior; (40)

(41)

www.mkscienceset.comPage No: 12 Nov Joun of Appl Sci Res 2025

otherwise, Algorithm 4 is repeated with the new insertion index
.

2 If there are valid customers and no insertion related to
case 1, then there is no feasible path due to the TW incom-
patibility. In this case, the new insertion index is defined as

 , where i.e.,
maximal index, having the minimal late time over TW on the
current path . If , then the PFIH interior is identical
to the head interior; otherwise, Algorithm 4 is repeated with the
new insertion index .
The complexity of Algorithm 4 is also , and in the
worst case, it becomes .

The Current Path Growth in the TDVRPTW Greedy Feasible
Solution
Let us suppose that we created a partial solution of VRP with
feasible paths: , , ..., , where

is the ordered list of visited sites, along with the pickup time
. Besides, we still have a list unrouted customers:

 , and the current path under con-
struction: . By applying Algorithm 2
(TDVRPTW Greedy Head Interior Insertion), we get a candi-
date for the updated current path:
, having the saving value and by applying Algorithm 3 (TD
VRPTW Greedy Tail Interior Insertion), get another candidate:

 with the saving value . Alter-
natively, if insertion before is infeasible, then Algorithm 4
(TDVRPTW Greedy Solomon’s PFIH Insertion) is used, and
the candidate path is . For each can-
didate, let us introduce the urgency indicator , where
if and zero otherwise. For the tail interior: if

 and zero otherwise, and for Solomon’s PFIH inser-
tion if and zero otherwise, where
the adjustable urgency parameter = 100 minutes. The winning
candidate is selected using the rules collected in Table 3.

 If a new customer y, which was added to the winning path, was
selected from the set of un-routed customers, i.e., , then
y is inserted into the tabu list, and the path growth is continued
with the winning path. If the new customer was selected from
the soft tabu list, i.e., , then the following actions of Algo-
rithm 5 ought to be taken.

Algorithm 5: Updating the Path after Selecting a Customer
from the Soft Tabu List.
Step 1 Remove the last customer from the path

, associated with the customer .
Step 2	 Apply Algorithm 2 to the path without Step 4, i.e.,
only for unvisited sites. Let be the resulting candidate path
with the saving value .
Step 3	 Apply Algorithm 3 to the path without Step 6 (only
for unvisited sites) or (if tail insertion is infeasible) Algorithm 4
without Step 8. Let be the resulting candidate path with the
saving value .
Step 4	 If 0 then path cannot be updated,
and the process goes on with the reduced path without cus-
tomer .
Step 5 If 0, then update path , as
, where , add the newly inserted customer
into the tabu, and repeat Steps 2-5 for the updated path until

 0.

Starting a New Path in the TDVRPTW Greedy Feasible
Solution
When the current path meets the stopping criteria and can-
not grow any further, a new feasible path must be initiated.
Let be the list of m unrouted customers.

If this list is empty, all sites have been visited, and the greedy
feasible solution is ready. If m=1, then the new path is trivi-
al: . If m>1, then the new path can be obtained
by applying Algorithm 1 on reduced matrices , and

, where .

Eventually, the Solution Creation Algorithm is summarized
in Algorithm 6 as follows. The output of the algorithm is the
list of feasible paths: , where
i=1,...,k.

Algorithm 6: The Greedy Solution Creation
Step 1 Create the first seed pair using equation (25) as described
in section 5.2.
Step 2 Grow the new path , using Algorithms 2-4, described
in section 5.6, until the saving is positive.
Step 3 If there is more than one unvisited site after updating the
tabu list, create a new path and repeat Steps 2 and 3.
Step 4 The solution is ready if the list of unvisited sites is empty
or contains only one customer.

Algorithm 6 complexity in the worst case is the same as Algo-
rithm 1, i.e., . Since the greedy solution processes algo-
rithms 1-4 in the worst case for all n-2 customers, the overall
complexity is .

Eventually, the saving of the greedy VRP solution is the sum of
the savings of the TSP greedy solutions, i.e., .
The saving of each greedy TSP πi= is the sum
of its arc savings: . To prove this additive

Table 3:	The winning candidate selection
State Winning path

 sh > 0, st > 0, κt =0, and κh = 1 πh

 sh > 0, st> 0, κt = 1, and κh = 0 0πt

 max (sh, st) > 0, and κh=κt πζ, where ζ=argmax (sh,st)
 sh > 0, and st=0 πh

 sh > 0, and sh=0 πt

 max (sh,st)≤ 0 New path πc is started

www.mkscienceset.comPage No: 13 Nov Joun of Appl Sci Res 2025

Figure 5: Relation between the relative saving improvement in percent on the number of customers, based on 4,806 deliveries in
the Tel Aviv area

Improving the Greedy Feasible Solution for TDVRPTW by
Ant Colony Optimization
Ant Colony Optimization (ACO) was initially introduced by
Marco Dorigo et al. (1996) [8]. The idea behind the ACO is to
select the subsequent head insertion of the growing current path
with a probability proportional to the path distance or saving val-
ue [8, 38]. The ACO has two principal advantages: it can easily
adapt to time window constraints by considering the probabil-
ities of subsequent customer selection, and it enables parallel
implementation [44]. The ACO is inspired by natural models of
the foraging behavior of N ants looking for food. Studies on real
ants show that despite not having a sense of sight, they can find
the shortest path from the food sources to the nest [45]. Ants
randomly explore their surroundings, and when they find food,
they return to the nest, depositing a pheromone trail, a trace of a
chemical substance that can be smelled by other ants [46].

Suppose each ants create a feasible VRP solution using the se-

lection probabilities and constraints. At the first or the explora-
tion stage, the likelihood of selecting the customer j after the
customer i is proportional to the saving value. Following the
Gibbs sampling, it can be written as: 	

where R is the set of all valid customers j that are reachable
from the customer i and = . The scale factor T
is a control parameter or simulated annealing (SA) temperature
[47]. The incentive behind the SA is explained in Figure 6. When
the temperature is zero, we have the pure greedy solution by
selecting at any insertion. When T= ∞,
we have an entirely random choice at every insertion. The local-
ly optimal temperature is located somewhere between zero and
infinity. To this end, the SA temperature measures the selection
sensitivity to the saving value.

Figure 6: Duration (D) dependency on the simulated annealing temperature (T)

saving property, let us consider a simplified TSP: π=(0, A, B, C, 0)
with the saving
, where pij is a price calculated by objective (5) for the travers-
al arc (i, j). The saving of the TSP with only one arc (A, B)
is S(AB)= and the saving of the TSP with only
one arc (B, C) is S(B, C)= . Thus, S(AB-
C)=S(AB)+S(B,C). Besides, the saving function is always posi-
tive S(π)>0; otherwise, Algorithms 2-4 meet the stopping crite-
rion. Moreover, the saving function is also monotone since every
customer added to the path π only increases the saving function.
Following (Nemhauser et al., 1978) [70], if the greedy saving
function is also submodular, then the upper bound of the global
saving function is estimated as:
 			
	
Let us prove the greedy saving function submodularity property,

i.e., that for every new customer x:
	

	 (44)
Applying the adaptive saving property to inequality (44) allows
us to rewrite the inequality as: . Since
Algorithm 1 is greedy, it always selects the customer with the
maximum savings addition. Thus, customer x cannot be a prede-
cessor of the customer un, and the savings difference decreases
every time a new customer is added.
	
Figure 5 shows the relationship between the relative saving im-

provement vs. the number of customers
for 4,806 industrial deliveries in the Tel Aviv area. The number
of customers varies from 2 to 140, and the maximum improve-
ment is consistently below 35%, reaching its peak for 35-55 cus-
tomers.

(45)

(43)

www.mkscienceset.comPage No: 14 Nov Joun of Appl Sci Res 2025

To select a starting value of the temperature T let us introduce
the half-life of saving values (Schrimpf et al., 2000) [73]. Let
us suppose that the half-life length equals 5% of the maximal
saving value s_max, and the probability of an arc selection re-
duces by half per half-life. Thus, we have the decay equation:

. However, the value of is
unknown before the optimization is finished, but it can be
estimated from the greedy solution using the upper bound
(43) as , where is the number of
customers, and is the number of greedy paths. After the
substitution and taking the logarithm from both parts of
the equation, we have ; there-
fore, the initial SA temperature is
 (46)

After the pure exploration stage, which is typically implement-
ed with Ne=25-40 trials we have Ne different solutions with the
saving values Si, total durations Di and the number of paths ki,
where i=1,2,…,Ne. Besides, there is the greedy solution with the
saving value S0, total duration D0 and the number of paths k0.
If, at the exploration stage, the greedy solution was improved,
i.e., miniki < k0 or miniki =k0 and , where i* is the
best solution according to objectives (2) and (5), then the initial
temperature T is close to the optimal, and ACO continues with
the temperature T. Otherwise, Algorithm 7 for SA temperature
selection is applied. The input of the algorithm is a greedy solu-
tion S0, D0, k0, Ne exploration solutions: Si, Di, ki and initial tem-
perature T.

Algorithm 7: Selection of the Working SA Temperature
Step 1	 Introduce a penalty factor for the non-minimal number
of paths as D0/k0, and calculate penalized durations for explora-
tion solutions: 		
 (47)
Step 2	 Save values and
Step 3	 Rerun another Ne trials with decreased temperature
Tnew= γTold , where decay factor γ = 0.95, and for these solu-
tions, calculate , using (47) and Step 2, and then calculate
δ=Tnew-Told.
Step 4	 If the new best solution shows an improvement,
then Tnew is the working temperature; otherwise, save values

, and calculate the new temperature as
follows. If , then Tnew= βTprev, , where incremen-
tal factor β = 0.01, otherwise, Tnew= γTprev.
Step 5 Rerun another Ne trials with a new temperature Tnew. If
the best solution improves, then Tnew is the working tempera-
ture; otherwise, apply the Newton-Raphson process: calculate
the central difference central difference
, current gradient , previous gradient

, and Hessian . Save values

and calculate the new temperature If
, then the Newton-Raphson process be-

comes unstable, and the new temperature is calculated using
Step 4.
Step 6	 Repeat Step 5 ten times, and if improvement is not

reached, then continue ACO with the initial temperature T.

Pheromone Updating Policy
The saving matrix is updated every time the ants finish all the
paths (local pheromone information) to reward the most suc-
cessful solutions or penalize the less successful ones. Let us
represent the continuously updated saving matrix as a sum of
the initial saving matrix and pheromone trace matrix:
, where is a pheromone matrix. In this case, Gibbs sampling
(44) becomes Metropolis sampling:

		
The initial pheromone trace matrix is zero
, and then it is updated after each trial (iteration) as:

 where r is the incumbent solution
and pairs (i,j) , i.e., all pairs in the solution.

The pheromone updating term is calculated as follows.
Using all the data collected while the working SA temperature is
calculated, evaluate the following statistics:
1. Minimal penalized saving value , where

 where

2. Maximal penalized saving value

3. Average penalized saving value

4. The standard deviation of the penalized saving value
.

To reduce the noisy behavior, only λ≈ 0.2 of the solutions cause
the pheromone updating. Compared to the long short-term
memory (LSTM) approach proposed by Hochreiter and Schmid-
huber (1997) [43], λ is the dropout factor, which is widely used
for optimization process stabilization. Let us suppose that there
are N ants at the colony, and the colony increases the maximal
saving value twice if where Q is a pheromone up-
dating policy or an activation function in LSTM. Selection of the
Parametric Rectified Linear Unit (pReLU) function (He et al.,
2015) [63] gets the following expression for Q.

1. if . In this case, the significantly
successful solution is rewarded with positive Q.
2. Q=0, if in this case, the solution is close to
the average solution or is unsuccessful and does not affect the
pheromone trace.

The pheromone updating policy Q(s) is shown in Figure 7. Let
us suppose that the solution savings distribution is close to the
Gaussian, then the parameter α of the pReLU function is α=

, where is inverse Gaussian cumulative dis-
tribution function; for λ=0.2, so α≈ 0.8415.

(48)

www.mkscienceset.comPage No: 15 Nov Joun of Appl Sci Res 2025

Figure 7: Pheromone updating function (Q) dependency on the solution saving (s)

The pheromone updating process can be described as LSTM
training with stochastic gradient descent (SGD) [48]. Then, the
training epoch is the number of trials sufficient for coverage of
all possible arcs, so the epoch is:

In equation (49) kmin is the number of paths in the best solution.
Following this definition, the pheromone evaporation process
becomes the LSTM forget gate and can be implemented as a
moving average over one epoch [49].

To define the maximal number of iterations Na, let us examine
the pheromone matrix as a matrix of stochastic gradients. The
convergence of the stochastic gradient descent (SGD) process
takes 10-100 epochs, so Na≈ 10-100n. However, due to the lack
of computational resources, typically Na is limited to 2-3K iter-
ations for most tasks. The number of iterations can be computed
within 2-6 computational hours on a standard 4-core computer
between finishing the VRP data collection and dispatching the
package.

ACO Convergence to the Global Minimum
Let us apply the results of the adaptive random search study
by Zhigljavsky & Žilinskas (2008) [77] to study the conver-
sion of the ACO to a global minimum. We suppose that after

 iterations, there are solutions, having a min-
imal number of paths kmin and the total duration
,..,Lmin. If Nmin and Lmin are big enough (following Zhigljavsky
(1991), Lmin>200), then k minimal records durations obey the
Weibull’s distribution with the cumulative distribution function
(c.d.f.):

	 (50)

where α is an unknown tail index. The number of record du-

rations should be big enough, but So, Zhigl-
javsky (1991) [76] suggests choosing , where [.] is
the ceiling function. For a given value k, the expected minimal
duration is estimated using one of two methods: the maxi-

mum likelihood estimator and the linear estimator.

The maximum likelihood estimator estimates without know-
ing the tail index α [50]. Let us denote ηi, i=1,..,k the first k re-
cord durations in ascending order: η1≤η2…≤ηk. Then, the lower
duration bound is the root of the equation:

where If equation (51) has more than one root in
the open interval (η1, 0), the minimal root is taken. The equation
(51) is solved using Newton-Raphson iterations, starting with
three initial values: where

 as i=0,1,..,
providing until The de-
rivative H' is written as:

Where:

If equation (51) has no valid solution, the tail index α should be
estimated. There are two popular tail index estimators: the Hill
(Hill, 1975) [64] and the Pickands (Pickands, 1975) [71] estima-
tors. Following the Hill estimator,

 (53)
The Pickands estimator suggests:

 			

If , it is supposed that there is not
enough data for the expected minimum estimation; otherwise,
the expected minimum is:

 				
		 (55)

where , where γ≈0.577 is the Euler-Mascheroni
constant and ψ(.) is the digamma function. Since k is an in-
teger, If the estimated minimum improves the incum-

 (49)
 (51)

(52)

(54)

www.mkscienceset.comPage No: 16 Nov Joun of Appl Sci Res 2025

bent solution for less than 15 seconds, the ACO process can be
stopped to reduce the computational load.To find a solution,
using the transition probabilities (44) and (47), Algorithms 1-5
have to be slightly modified. Derigs and Reuter (2009) [59] and
Fleszar et al. (2009) [61] reported that ACO is eeasily adapted to
VRPTW and TDVRPTW. .

The First Step of the TDVRPTW ACO Feasible Solution
Following the maximal free time (MFT) heuristic (Balseiro et
al., 2008) [43]), the path is started with the earliest possible de-
livery pair, having t0= . The first pair is selected from
set A=argmin (see equation 25) of the customers with the
same minimal arrival time. The transition probability (48) is ap-
plied to these pairs, and a random seed pair is selected according
to the given transition probability distribution. The process is
described in Algorithm 8. The input of the algorithm is the sav-
ing matrix start time matrix , pheromone
matrix , and working SA temperature T from Algo-
rithm 7.

Algorithm 8: Selection of the first seed pair
Step 1	 Sort all values in ascending order and put into
the list TU.
Step 2	 If the list TU is empty, i.e., no positive saving exists,
then the optimization cannot be done, and the on-demand deliv-
ery is optimal. Otherwise, find the list of unique values of
TU: tU, arranged in ascending order.
Step 3	 For each t ∈ tU repeat the following steps until a pair of

 is not found:
Step 3.1	Find set .
Step 3.2	Extract from the saving matrix S set S set SU= {sij |(i,j)∈
A} and calculate smax =

Step 3.3	If smax≤0, then continue with the next t ∈ tU.
Step 3.4	Extract from the pheromone matrix Φ set

, and calculate the sum of SΦ
U=SU+ΦU.

Step 3.5	If , then continue with the next T ∈ tU.
Step 3.6	For each calculate probability:

Step 3.7	Calculate PS=∑p(s), sort p(s) in descending order, cal-
culate the softmax , where the cumulative sum (prob-
ability distribution function) is P(s)=
Step 3.8	Pick a random number and find the first
s=argmin(P(s)≥ζ)
Step 3.9	Find a pair (u1,u2)={(u1,u2) A|s(u1,u2)=s}, having the
saving value s.
Step 4	 If no pair is found, the optimization cannot be done,
and the on-demand delivery is optimal; otherwise, create the
tabu list T={u1,u2} of already visited customers.
Step 5	 Define the seed route as:

,
where the depot departure time is the root of equation
(20).

The Head Interior Heuristics for the TDVRPTW ACO Fea-
sible Solution
The input for the head insertion heuristics for the ACO solution

is the same as for the greedy solution: k ready feasible paths:
π1,π2,...,πk, where is an ordered
list of the visited sites, along with the pickup time , a list
of m unvisited customers: Y = (y1, y2,...,ym) and the current
feasible path under construction. Be-
sides, we have the pheromone matrix Φ=‖φij‖, and working SA
temperature T. As in Section 5, let us denote a soft tabu list as

. Algorithm 9 describes the process and
returns the updated current path

Algorithm 9: TDVRPTW ACO Head Interior Insertion
Step 1	 For the current path, calculate the following parame-
ters using the expressions (28)-(33) from Algorithm 2: current
demand Qc, the arrival time at the last customer tc, total delivery
shift , on-demand duration Do , calculated by equation (26),
current path duration Dc, calculated by equation (27), and cur-
rent saving .
Step 2	 If the customer y ∈Y does not violate capacity and time
constraints, calculate the saving , following
Steps 2.1 – 2.6 of Algorithm 2.
Step 3	 For each customer z ∈ ST from the soft tabu, calculate
sz=D0i-Di, using Steps 4.1-4.4 of Algorithm 2 and Δsz, using
Steps 4.5-4.7 of Algorithm 2.
Step 4	 For relevant customers, having sy> s0 , add pheromone
factor and calculate weighted time-saving [41]:

 	 	
	
Step 5	 For each customer from the soft tabu list z ∈ ST calcu-
late the weighted time-saving concerning saving lost Δsz, calcu-
lated by (31) and pheromone factor:

Step 6	 Concatenate all valid customers from Y, having sy> s0
and all valid customers from ST, having sz-Δsz>s0. Get a concat-

enated list and sort sx in descending order.
Step 7	 Calculate the maximal saving in the list: smax=max(sx)
and probability density function:

Step 8	 Calculate the normalizing factor P0=∑p(x) , and the cu-
mulative distribution function:

 		 		
	
Step 9	 Pick a random number 0≤ ξ ≤1 and find the first argu-
ment x for which P(s) exceeds the random number ξ.
Step 10	 If x∈Y, then path πc is updated along with its saving
value . It x∈ST, than path πc is updated by the insertion of
customer x, and customer x is removed from the source path πz .

If Algorithm 8 did not detect any valid customers and returned
with smax≤0, the same actions as in Algorithm 2 are taken, and a
new insertion position ν is calculated.

The Tail Interior Heuristics for the TDVRPTW ACO Feasi-
ble Solution
The input and output are identical to Algorithm 9 of TDVRPTW
ACO Head Interior Insertion. The tail interior insertion algo-
rithm is described in Algorithm 10 as follows.

(56)

(57)

(58)

www.mkscienceset.comPage No: 17 Nov Joun of Appl Sci Res 2025

Algorithm 10: TDVRPTW ACO Tail Interior Insertion
Step 1 For the current path, calculate the following parameters
using the expressions (28)-(33) from Algorithm 3: current de-
mand Qc, the arrival time at the last customer tc, total delivery
shift , on-demand duration D0 , calculated by equation (26),
current path duration Dc, calculated by equation (27), current
saving s0, and the arrival time at the first customer of the
current path
Step 2	 If the customer y∈Y does not violate capacity and time
constraints, calculate saving following Steps
4.1-4.7 of Algorithm 3.
Step 3 For relevant customers, having sy> s0 , add pheromone
factor and calculate weighted time-saving [41]:
 	 	
	
Step 4 If the customer z∈ST does not violate capacity and time
constraints, calculate saving along with the lost
saving following Steps 6.1-6.4 of Algorithm 3.
Step 5	 For each customer from the soft tabu list z∈ST calcu-
late the weighted time-saving concerning saving lost , calcu-
lated by (31) and pheromone factor:

	
Step 6	 Repeat Steps 6-10 of Algorithm 10 and get the updated
current path 𝜋𝑐 = . If Algorithm 9 did not
detect any valid customers and returned with 𝑠𝑚𝑎𝑥 ≤ 0, the same
actions as in Algorithm 3 are taken, and a new insertion position
ν is calculated.

Solomon’s PFIH for the TDVRPTW ACO Feasible Solution
In this case, the new customer is inserted at any position 1 < 𝜈 <
𝑛C of the current path 𝜋𝑐. The tail PFIH algorithm is described in
Algorithm 11. The input of algorithms is the partial VRP with
k feasible paths: 𝜋1,𝜋2,...,𝜋K, where ,
along with the list of the visited sites, with the pickup time 𝑡𝑖

d, a
list of m unvisited customers: Y = (y1,y2,...,ym), the current feasi-
ble path πc= pheromone matrix 𝚽 = ‖𝜑𝑖𝑗‖,
working SA temperature T, and insertion position 1 < 𝜈 < 𝑛C .
The output is the updated current path 𝜋C=

Algorithm 11: Solomon’s PFIH for ACO of TDVRPTW
Step 1	 Create a soft tabu list ST = , and
calculate path parameters Qc, D0, and s0 by applying Step 1 of
Algorithm 9.
Step 2 Calculate the on-demand duration D0ν up to the customer

 , using equation (40), and the current path duration up to the
customer uν

c without returning to the depot Dν , using equation
(41).
Step 3 If the customer y∈Y does not violate capacity and time
constraints, calculate the arrival time ty, and saving sy=Dy

0-Dy,
following Steps 6.1-6.5 of Algorithm 4.
Step 4	 For relevant customers, having sy> s0, add pheromone
factor and calculate weighted time-saving [41]:

	
	
Step 5 If the customer z∈ST does not violate capacity and time

constraints, calculate saving sz=D0i-Di, along with the lost sav-
ing 𝛥𝑠z, following Steps 8.1-8.6 of Algorithm 4.
Step 6	 For each customer from the soft tabu list z∈ST calcu-
late the weighted time-saving concerning saving lost 𝛥𝑠z, calcu-
lated by (32) and pheromone factor:

	
	

Step 7 Repeat Steps 6-10 of Algorithm 10 and get the updated
current path 𝜋𝑐 =

If Algorithm 11 did not detect any valid customers and returned
with 𝑠𝑚𝑎𝑥 ≤ 0, the same actions as in Algorithm 4 are taken, and
a new insertion position ν is calculated.

Starting a New Path in the TDVRPTW ACO Feasible Solu-
tion
After each insertion into the current path, the best path is select-
ed according to the rules collected in Table 3. If the new custom-
er was selected from the soft tabu list, some additional actions,
described in Section 5.6, will be processed. When the current
path growth meets the terminal criteria, and no new customer
can be inserted, a new path is started. Let Y = (y1,y2,...,ym) be
the list of m unrouted customers. If this list is empty, all sites
have been visited, and the greedy feasible solution is ready. If
m=1, then the new path is trivial: π= (0, y, 0). If m>1, then the
new path can be obtained by applying Algorithm 8 on reduced
matrices, and , where 𝑖,
𝑗 ∈ Y. Eventually, the ACO solution creation algorithm is sum-
marized as follows.

Algorithm 12: TDVRPTW Solution Creation
Step 1 Create the greedy solution using Algorithms 1-6. Set the
best solution to the greedy solution and initial pheromone matrix

 to zero matrix, . Calculate the working
SA temperature T using Algorithm 7.
Step 2	 Create the first seed pair using Algorithm 8.
Step 3	 Grow the new path πc , using Algorithms 9-11 until the
saving is positive.
Step 4	 If there is more than one unvisited site after updating
the tabu list, create a new path on the reduced matrices and re-
peat Steps 2 and 3.
Step 5	 The current solution is ready if the list of unvisited
sites is empty or contains only one customer.
Step 6	 If the current solution has fewer paths, i.e.,
, replace the best solution with the current one, according to the
primary objective (2).
Step 7	 If the current solution has the same number of paths
(k=kbest), but the saving exceeds the best saving (S0<Sbest), re-
place the best solution with the current one, according to the
secondary objective (5).
Step 8 Update the pheromone matrix where

Step 9	 Estimate the minimal duration as the root of equa-
tion (51) or using equation (55). If the potential improvement is
less than 15 seconds, i.e., <15sec, the best solution is
ready. Where the value is the sum of the durations of all paths
in the best solution.

(59)

(60)

(62)

(61)

www.mkscienceset.comPage No: 18 Nov Joun of Appl Sci Res 2025

Step 10	 Repeat Steps 2-9 until the convergence (Step 9) or the
maximum number of iterations , or computational time limit
(typically 1-4 hours) is reached.

As greedy as the ACO algorithm for a single path has the same
complexity, i.e., Since the maximal number of paths is
limited by n, the overall complexity of one solution is
. Since is also proportional to epoch, the overall complexity
to get the best solution is . Figure 7 illustrates the typ-
ical progression of the ACO optimization, with the number of
paths as the primary objective and the minimal makespan dura-
tion as the secondary objective.

ACO Solution Acceleration for TDVRPTW Using the Riun
and Recreate Strategy
After 1.5–2 epochs of the ACO algorithm's execution, there is
sufficient pheromone and historical VRP statistics to accelerate
the optimization process using the Ruin and Recreate (R&R)
strategy (Shaw, 1998) [74]. With this data, the top ten elite solu-
tions, which have the best saving values or minimal total dura-
tion (47), are inserted into the Tabu List. This Tabu List is also
known as Short-Term Memory (STM) (Glover & Laguna, 1997)
[62], component of Long Short-Term Memory (LSTM). The in-
cumbent solution is selected from the Tabu List according to the

SA temperature (Schrimpf et al., 2000) [73]. For each solution,
the probability of being selected is:

			
 (63)

Where, si is the saving of solution i from the Tabu List, T is the
SA temperature, smax=max(si), and .

ACO Ruin Method
At the ruin stage, 10% of the shortest tours with low string
cardinality and less than 80% of the vehicle load are removed
from the incumbent solution [51]. The vehicle load is defined
as the ratio of the number of parcels distributed on the path to
the vehicle capacity qmax (see inequality (6)). The rationale for
this small removal rule is shown in Figure 8 [36]. The histo-
gram of Figure 7(a) shows that the short paths are only a small
fraction of the total path length distribution, and Figure 7(b)
shows that the short paths are underloaded. Typically, the short
paths consist of customers who are hardly incorporated into the
longer paths, and their removal gives them another chance to
integrate these short paths into longer ones. To reach a suffi-
cient number of removed customers, an integer random number
min(0.1n,30)≤γ≤min(0.4n,60) is selected [36].

(a)
(b)

Figure 8: Histogram of the length of the tours on 950 historical solutions, limited to 16 stop points (a) and the average vehicle
load's dependency on the path length (b)

Figure 7: The ACO TDVRPTW optimization progress vs. iterations, the number of paths is the primary objective, and the total
minimal makespan duration is

www.mkscienceset.comPage No: 19 Nov Joun of Appl Sci Res 2025

If the sum of the customers in the removed top shortest paths is
less than γ, the rest of the customers are removed according to
the relatedness matrix R=‖rij‖ (Pisinger & Ropke, 2007; Shaw,
1998) [36, 74], where

	 (64)

In equation (64) ∆Dij is the duration impact that is calculated as:

 if path (i, j) is feasible and ∆Dij = 1 other-
wise.

Where (see equation (18)) and
is the root of equation (22). Maximum is calcu-
lated for the feasible paths only, having . Following the
recommendation by Pisinger and Ropke (2007) [36], duration
weight .

Time impact J(wi,wj) is the time-windows intersection over
union (IoU) ratio, or Jaccard index

 (65)

Time-windows weight following Pisinger and Ropke (2007)
[36] is set to , capacity weight , and pheromone
weight .

The next customer to be removed or seed customer (Christiaens
& Berghe, 2020) [51] is selected using the Shaw removal algo-
rithm on the relatedness matrix (64). The process is summarized
in Algorithm 13, which receives as input the relatedness matrix

, and the list of removed customers ,
where . The algorithm returns seed customers .

Algorithm 13: Seed Customer Selection
Step 1 For all until is not found, do the following
steps:
Step 1.1	From matrix R, extract row =
Step 1.2	Sort row L in ascending order.
Step 1.3	Pick a uniformly distributed random number r [0,1]
and select the customer at the position in the sorted
list L, i.e., , where denotes the inte-
ger part. The power p following Pisinger and Ropke (2007)[36]
is set to p=3, so the average selected position is
with the standard deviation of 3(n-1)⁄(4√7).
Step 1.4	If c∈D repeat Steps 1.1-1.3, otherwise , and
the seed customer is found.
Step 2	 If a seed customer is not found after Step 1 is passed for
the entire list D, create a row flat vector , of
length n(n-1), and sort it in ascending order.
Step 3	 Pick a uniformly distributed random number
and select the pair of customers at the position in the
sorted list , where p = n-1.
Thus, the average pair position is (n-1), and the standard devia-

tion is .

Step 4	 Create a minimal spanning tree (MST) on matrix R us-
ing the Kruskal algorithm [52]. This step is processed only once
if needed.
Step 5	 Cluster removal heuristics is applied on the MST be-
tween pairs of customers from and cluster is cre-
ated [53].
Step 6	 If all customers of is already removed, i.e.,

∈D, repeat Steps 3 and 5.
Step 7 If at least one of the customers in is not already
removed, then = .

If the seed customer is the last in the tour, the
route is updated as

 and customer is add-
ed to the list of removed customers D. If the seed customer is
the first customer in the tour πc, the route is updated as

 where Δt is the shift of the
depot arrival time concerning the MFT principle, calculated with
Algorithm 3. If the seed customer is located at position 1<ν<nc
in the middle of the tour, try to insert the following customers

 after the customer in the same order again
using Algorithm 4. If the tour is feasible, the updated tour is

. If the tour be-
comes infeasible, string removal (Christiaens & Berghe, 2020)
[52] is applied, and customers are removed
along with the seed customer . If ν=2 and string removal is
applied, the pass πc is completely removed so as not to leave a
route with only one customer.

All removed customers are added to the list of removed cus-
tomers D, and if , the next customer from is
removed. If the list is empty, Algorithm 13 is applied
again until at least γ customers are removed.

ACO Recreation Method
The recreation method is based on the parallel regret heuristics
(Potvin & Rousseau, 1993) [21]. The difference from the greedy
interior insertion algorithms (Algorithms 2-4) is in the input
and output. The input consists of two kinds of paths: untouched
paths and ruined

paths . If ,the
greedy interior insertion Algorithms 1-5 are processed without
change. The list of unvisited customers:
is the list of removed customers D (in this case, Y=D). The out-
put is an updated list of the paths: πi and πc, and the list of unvis-
ited customers Y. The soft tabu list ST is calculated for only un-
touched paths πi. Algorithms 2-4 are finished by calculating the
savings for unvisited customers and the savings for the
soft tabu. Eventually, two candidate paths are created. There are
the best routes and , having maximal saving values

 for head and tail interior insertion and the second-best
routes: and , where j=1,…,m, and c=1,…,l. For
all these routes, the maximal 2-regret heuristic is calculated as
follows [36]:

www.mkscienceset.comPage No: 20 Nov Joun of Appl Sci Res 2025

providing and , where
is the saving value. The process of greedy recreation using the
parallel regret heuristics is summarized in Algorithm 14, which is
finished with the solution: ,
where
Algorithm 14: Greedy Recreation Using the Parallel Regret
Heuristics
Step 1	 While the list of unvisited customers Y is not empty and
there are at least two ruined paths (l>1) do the following steps:
Step 1.1 For each ruined path πc calculate savings {s'(πhj
(c)),s'(πtj (c))} for head and tail interior insertions.

Step 1.2	If ,i.e., tour πc cannot grow
anymore, remove πc from ruined paths and add to the untouched
paths.
Step 1.3	Otherwise, calculate regret value, using the best and the
second-best savings as follows:

	 (67)
where ,

, and , are the second-best savings. If the
winner of (67) does not have the second-best savings, ∆c=∆max.
If the urgency indicator , the winner in (67) changes
according to Table 3.
Step 1.4	Using (67), create a regret list ∆={∆c,πc,πnc }, where πc
and πnc are the best and the second-best paths. If the second-best
path does not exist
Step 1.5	Select the requested path c*,y*=argmax(∆c), and up-
date the appropriate path with .
Step 1.6	Remove customer y* from the list Y and all items from
the regret list ∆, having an intersection with the updated path,
i.e., .
Step 1.7	If the regret list is not empty, repeat Steps 1.5 and 1.6;
otherwise, repeat Steps 1.1-1.6.
Step 2	 If the list of unvisited customers Y is not empty but has
fewer than two ruined paths, apply greedy Algorithms 2-4.
The complexity of Algorithm 14 can be roughly estimated as
O(αkmnNitr), where kr=αk is the number of ruined paths as part
of the total number of paths k, typically, α≤0.2, and Nitr is the
maximal number of iterations of Step 1 of the algorithm. Since,

Nitr<m and , then the complexity is . For a
large number of customers (200 or more), the number of delet-
ed customers is a constant, so the complexity is . For
a small number of customers m~n, so the complexity is O(n4).

The ACO recreation has two changes from the greedy recre-
ation algorithm. First, savings sy and sz' are calculated with
pheromone matrix Φ, as in Algorithms 9-11. Second, if there
are more than two items on the joint list of , the roulette
wheel selection principle (58) is applied twice on the removal,
and two savings and , are selected. The regret value is

. Besides, in Step 2, algorithms
9-12 are applied. The complexity of the ACO recreation algo-
rithm is also for a large number of customers. The R&R
algorithm is typically 2-5 times faster than ACO for 200–1,433
customers. When the R&R greedy or ACO solution is finished,
the Tabu List is updated if needed.

To manage the adaptation between ACO (exploration) and R&R
ACO (exploitation) algorithms, let us introduce a mini-batch
(segment) size ϕ [48]. Following the recommendations of (Ri-
biero & Laporte, 2012) [53], the segment size is 50, but for the
sake of the parallel computations, it is set to 32 [53]. Since in
the R&R method, only a tiny part of the customers are deleted,
and a small part of the tours are ruined, the epoch (49) becomes:
		 			
 (68)

For example, if n = 200, and kmin = 20, then the ACO epoch (49)
is E = 221. If m = 30, and kr= 5, then the R&R epoch is Er = 35.
So after Er exploitations, all feasible arcs will be revised, and the
rest of the segment trials can be used for exploration. Let us de-
fine the minimal number of explorations per segment as Emin=min
(Er,0.4ϕ), and the maximal number as Emax=max(ϕ-Er,0.8ϕ). To
define the proportion between exploration and exploitation, let
us consider the results of the latest Ntsolutions, where Nt is set to
200. These solutions can be subdivided into results of exploita-
tion and exploration algorithms, i.e., Nt=Nexploration+Nexploitation. If
there are no representative statistics, i.e., Nexploration<Nmin or Nex-

ploitation<Nmin, then the number of recreations or exploitations is set
to Emin if Nexploitation<Nmin and to Emax if Nexploitation<Nmin, where Nmin
is set to 20. If there are representative statistics, two arrays Kex-

ploration, and Kexploitation of the number of paths in exploitation and
exploration solutions are collected. The number of recreations is

a convex combination: , where
pw=Wilcoxon(Kexploration,Kexploitation) is the p-value of the Wilcoxon
rank sum test about the statistical equivalence of the medians
of Kexploration and Kexploitation arrays. The statistics collected for 186
industrial deliveries in Moscow, Russia, for 179-837 custom-
ers show the following distribution of the winning solutions.
A greedy solution (Algorithms 2-5) wins 13% of the solutions.
ACO solution (Algorithms 8-12) wins 23% of the solutions. The
greedy R&R solution is the best in 40% of the industrial tasks,
and the R&R ACO solution is the best at 24%. Thus, the greedy
R&R solution is the cheapest and the most effective.

Results
The schematic chart of the TDVRPTW dispatching technology
used in Gett Delivery is shown in Figure 9 [54]. The chart re-
flects the next-day delivery technology.

For each depot, the TDVRPTW task is solved once a day, typ-
ically between 1:00 a.m. and 5:00 a.m., for the next delivery
date, which usually happens between 6:00 a.m. and 11:00 p.m.

www.mkscienceset.comPage No: 21 Nov Joun of Appl Sci Res 2025

Tel Aviv, Israel Metropolitan Area
The traffic model in the Tel Aviv, Israel, metropolitan area in-
cludes 78,275 edges with 45 different time buckets. Since de-
livery does not operate on weekends and holidays, only the
weekday buckets are relevant. The 35-day test, conducted from
July 29 to September 13, 2018, was selected for evaluation. The
automatic dispatcher distributes, every day, up to 257 parcels
(37,582 in total) between 2-155 customers (1.22 parcels per cus-
tomer on average). There were 1-3 time window slices, rounding
to a whole hour, and each slice lasted at least 4 hours. So, time

windows do not significantly affect the routes.

An example of VRP in Figure 10 is similar to the VRP of aca-
demic benchmarks, cf. Solomon (1987) [37]. Additionally, there
are some differences in dispatching within the Tel Aviv metro-
politan area. First, the VRP is open, so the vehicle does not re-
turn to the depot but goes home after the last delivery. Second,
there is only one objective function instead of (2) and (5). The
functions are merged using a starting price for every tour, and
the merged function is:

Figure 10: An example of the open VRP in the Tel Aviv metropolitan area

 (69)
where cst is a starting price. Third, the cost per kilometer cd is
not constant but is 3.3 NIS/km for the first 13 km and 2.75 NIS/
km starting from the 14th km. The cost per hour ct is 30 NIS/
hour, and the start price cst is 29 NIS. The service time gi is

constant for all customers and equals 10 minutes per stop point.
The measure of the improvement is the relative price reduction
in percent.

 (70) 	
	
where P0 is the price of the traditional dispatching and Popt is the
optimal price (69). The dependence of the average value of μP

The information includes the depot's geographical coordinates
(latitude and longitude), street address, and open hours (time
window). The new customer orders, collected from the previous
day, along with the returned parcels, are the input for the task
creator. Each customer provides its street address, converted to
geographical coordinates using geocoding, contact information,
a list of parcels to be delivered, a time window with a 5-minute
rounding, a minimum length of 30 minutes, and the service time.
The TDVRPTW solver receives the traffic model and the created
task. The solver is written in Go and runs on the AWS server.
The load balancer selects an appropriate server of 4-32 cores,
depending on the number of customers per task. The resulting

tours are sent to the relevant couriers, who use a courier routing
application to manage the trip. The service dashboard displays
routes and other information for the customer and the courier
support. The customer receives a notification about the exact
dispatching time. During the route, the courier's coordinates
are collected every second to update the traffic model and the
service time. The experiments were conducted in two different
cities: Tel Aviv, Israel, and Moscow, Russia. The challenge in
these experiments lies in comparing the TDVRPTW dispatch-
ing method with traditional dispatching when the city is divided
among couriers, with each courier serving a specific area only.

Figure 9: The TDVRPTW technology scheme of the dispatching system

www.mkscienceset.comPage No: 22 Nov Joun of Appl Sci Res 2025

Figure 12: Dependency of the average relative number of tours reduction (71) from the number of customers (a) and the number
of the initial paths (b) in Tel Aviv, Israel

(a) (b)

from the number of customers and the initial number of paths
are shown in Figure 11. The average price reduction is 19.2%.
The relatively low improvement for the considerable number of
customers (50 or more) is explained by using some optimiza-
tion (greedy no traffic, no time windows) for these tasks in the
traditional dispatching. Although the number of tours is not an
objective of (69) optimization, improving the number of path
reductions is also evaluated similarly to (70).

The measure of the number of tours reduction is

		 (71)
where k0 is the number of tours of the traditional dispatching and
kopt is the optimal number of tours resulting from the minimiza-
tion (69). The dependencies of the average value of μT from the
number of customers and the initial number of paths are shown
in Figure 12. The average price reduction is 26.2%. Although
the number of tours is not an objective of the optimization, there
is also a significant improvement in the number of paths.

Figure 11: Dependency of the average relative price reduction (70) from the number of customers (a) and the number of the initial
paths (b)

(a) (b)

www.mkscienceset.comPage No: 23 Nov Joun of Appl Sci Res 2025

The traffic model in the Moscow, Russia, metropolitan area in-
cludes 1,201,717 edges with 58 weekly time buckets. The prima-
ry objective function is (2), and the secondary is (5). A conven-
tional taxi fleet is used for delivery, with a maximum capacity of
30 parcels and a service time of 12.5 minutes. The service time
does not depend on the number of parcels per customer. Loading
time is 30 minutes, and the maximum duration of a courier’s
working shift is 8 hours. The experiment spans 102 working
days, from October 15, 2018, to January 19, 2020, involving
three depots and 125 VRP tasks. On these VRP tasks, 12-1,022
parcels were distributed per task (27,414 parcels in total) be-
tween 12-837 customers (22,879 customers in total). During the
optimization, the automatic dispatcher created 2-44 tours with
1-15 hard-constrained time window slices (5.9 on average per
VRP). Hard-constrained time windows and traffic constraints
make the routes messy and far from a fine academic shape. An
example of a tour is shown in Figure 13.

In the traditional dispatching for the same tasks, 2-57 tours were
created; however, only 12.6% of these routes were feasible,

meaning every customer got parcels within the time window.
The feasibility dependency from the initial paths is shown in
Figure 14. The feasibility decreases with the number of paths,
dropping from 20-40% for 4-8 paths to 2% for more than 40
paths. The plots in Figure 15 depict the effectiveness (71) of re-
ducing the number of tours vs. the number of customers 15a and
the number of initial paths 15b. The optimization process reduc-
es the number of tours by an average of 18.5%. Due to the com-
putational load, the computation time was limited to two hours.
For this reason, for 500 or more customers, only one epoch was
processed. As a result, the effectiveness of reducing the number
of paths is slightly lower for a large number of customers and
the initial paths.

The measure of improvement for the secondary objective func-
tion is the relative reduction in total VRP duration in percentage
as follows:

,	 (72)

Moscow, Russia Metropolitan Area

Figure 13: An example of the TDVRPTW tour in the Moscow metropolitan area: hard time windows, makespan, and traffic make
the tour messy

Figure 14: Dependency of the path feasibility of the traditional dispatching vs. the number of initial paths

www.mkscienceset.comPage No: 24 Nov Joun of Appl Sci Res 2025

where D0 is the total VRP duration for the traditional dispatching
and Dopt is the optimal total VRP duration. The plots in Figure 16
depict the average relative total VRP duration reduction (72) vs.
the number of customers 16a and the number of the initial paths
16b. The optimization process reduces the total VRP duration
by an average of 59.3% and is independent of the number of

customers or the initial paths.

Although the total VRP distance is not an objective of the opti-
mization, the relative distance reduction can also be measured
using (72) by substituting distances instead of durations.

Figure 15: Dependency of the average relative number of tours reduction (71) vs. the number of customers (a) and the number of
the initial paths (b) in Moscow, Russia

(a) (b)

Figure 16: Dependency of the average relative total VRP duration reduction (72) vs. the number of customers (a) and the number
of the initial paths (b) in Moscow, Russia

(a) (b)

The plots in Figure 17 depict the average relative total VRP dis-
tance reduction vs. the number of customers 17a and the number
of the initial paths 17b. The optimization process reduces the

total VRP duration by an average of 69.7% and is independent
of the number of customers or the number of initial paths.

Figure 17: Dependency of the average relative total VRP distance reduction vs. the number of customers (a) and the number of
the initial paths (b) in Moscow, Russia

(a) (b)

www.mkscienceset.comPage No: 25 Nov Joun of Appl Sci Res 2025

Instance Number of
Vehicles best

Number of
Vehicles found

Vehicles differ-
ence

The sum of
durations best

The sum of du-
rations found

Duration dif-
ference

R211 2 3 1 1964.63 2152.01 187.38
R210 3 3 0 2669.36 2391.77 -277.59
R110 3 3 0 2163.95 2384.15 220.2
R109 11 13 2 2228.45 2456.25 227.8
R101 19 22 3 3275.11 3542.18 267.07
R112 10 11 1 2093.97 2195.46 101.49
R107 10 12 2 2181.04 2406.34 225.3
R108 9 10 1 1516.5 1663.63 143.13
R103 13 15 2 2609.55 2809.9 200.35
R102 17 19 2 2346.74 2597.49 250.75
R105 14 14 0 2278.48 2468.464 189.98
R104 10 11 1 2212.9 2451.25 238.35
R201 4 4 0 3334.9 3018.46 -316.44
R202 3 4 1 2749.39 2772.6 23.21
R203 3 3 0 2626.21 2418.52 -207.69
R204 2 3 1 1989.14 2108.16 119.02
R205 3 3 0 2397.49 2355.95 -41.54
R206 3 3 0 2434.91 2304.88 -130.03
R207 2 3 1 1983.48 2169.93 186.45
R208 2 3 1 1858.36 1946.32 87.96
R209 3 3 0 2267.0 2385.41 118.41
R111 10 12 2 2189.54 2406.97 217.43
R106 12 13 1 2413.09 2524.47 111.38
C207 3 3 0 9660.4 9919.22 258.82
C206 3 4 1 9588.49 9816.83 228.34
C205 3 3 0 9588.88 9678.61 89.73
C204 3 4 1 9590.6 9691.03 100.43
C203 3 4 1 9601.72 9620.43 18.71
C202 3 4 1 9591.56 9666.33 74.77
C201 3 3 0 9591.56 9591.56 0
C208 3 3 0 9744.23 9641.11 -103.12
C108 10 10 0 9828.93 10017.51 188.58
C109 10 10 0 9828.93 10006.91 177.98

Gehring & Homberger Benchmark
Comparing the TDVRPTW algorithms is challenging due to
the varying traffic models and diverse constraints prevalent in
the industry. Academic benchmarks, such as Solomon’s bench-
mark or Gehring and Homberger's benchmark, comprise a set
of 25-1000 customers, where each customer is represented as a
2D point with a given time window and service time [36, 55].
The Euclidean distance between the points is equivalent to the
trip duration between the customers, and the benchmarks do not
involve any traffic model. The benchmarks include randomized
problems (R), clustered problems (C), and randomized-clustered
problems (RC), and they are generated so that 75% of the cus-

tomers, including the depot, have different time windows.

The reported best results were associated with the soft time win-
dow constraint, allowing for waiting before delivery [56]. The
secondary objective function is the minimal sum of VRP dis-
tances. Following Figliozzi (2012) [1], these benchmarks repre-
sent the archetypal and ubiquitous case, where the central depot
services a set of surrounding customers. To compare with the
proposed industrial algorithms, let us compare the sum of VRP
durations of the best algorithms given in [56]. The results for
Solomon’s benchmark are provided in Table 4.

Table 4: Comparative analysis with the best results on Solomon’s benchmark. The first column is the instance's name, the second
is the number of vehicles (tours) in the best solution, and the third is the number of vehicles found. Column “Vehicles difference”
is the difference between the found and the best numbers of vehicles [56]. Column “The sum of duration best” contains the sum of
VRP durations of the best solution, and the next column is the same sum for the found solution. The last column is the difference
between the found and the best sum of durations.

www.mkscienceset.comPage No: 26 Nov Joun of Appl Sci Res 2025

C104 10 10 0 10014.6 10101.57 86.97
C105 10 10 0 9828.93 9897.3 68.37
C106 10 11 1 9828.93 10070.95 242.02
C107 10 10 0 9828.93 9845.14 16.21
C101 10 10 0 9828.93 9878.06 49.13
C102 10 10 0 9828.93 10035.53 206.6
C103 10 11 1 10063.03 10158.71 95.68

RC102 12 14 2 2671.18 2795.68 124.5
RC201 4 5 1 3358.42 3222.83 -135.59
RC202 3 4 1 2683.88 2873.57 189.69
RC203 3 4 1 2670.9 2619.99 -50.91
RC204 3 3 0 2371.1 2238.71 -132.39
RC205 4 5 1 3286.82 3023.4 -263.42
RC206 3 4 1 2444.87 2586.82 141.95
RC207 3 4 1 2417.51 2477.53 60.02
RC103 11 12 1 2416.12 2534.14 118.02
RC101 14 16 2 2956.33 3005.78 49.45
RC107 11 13 2 2346.32 2523.14 176.82
RC106 11 13 2 2466.45 2536.23 69.78
RC105 13 15 2 2829.3 3010.08 180.78
RC104 10 11 1 2259.3 2337.51 78.21
RC208 3 3 0 2040.14 2137.69 97.55
RC108 10 12 2 2247.13 2347.39 100.26

Table 4 shows that soft time window constraints reduce the num-
ber of paths by 11.2% on average and the sum of duration in
72% of the instances, with an average reduction of 2.1%. Some-
times, one to two additional tours are added to avoid waiting be-
fore delivery, or the tour is extended to accommodate this. Thus,
the courier spends the time on the route instead of waiting on site

[57]. In real life, the courier does the same when he cannot find
parking. For the clustered problems (C), the difference is less
significant, with only 5% more tours and the sum of durations in-
creasing by 1.1%. The results for the 200 customers for the Geh-
ring and Homberger benchmark are provided in Table 5 [58].

Table 5: Comparison with the best results on the 200-customers Gehring and Homberger benchmark. The best solutions for instanc-
es R1_2_2 and RC1_2_7 are infeasible and are not included in the table.

Instance Number of
Vehicles best

Number of
Vehicles found

Vehicles differ-
ence

The sum of
durations best

The sum of du-
rations found

Duration dif-
ference

R2_2_1 4 5 1 8716.66 9208.44 491.78

R1_2_7 18 19 1 8885.08 9526.84 641.76

R2_2_10 4 4 0 7936.55 6725.57 -1210.98
R1_2_10 18 18 0 8076.92 7166.44 -910.48
R1_2_3 18 20 2 9272.66 9802.95 530.29
R1_2_1 20 22 2 10556.83 10685.47 128.64

R1_2_2 18 19 1 9153.27 8750.87 -402.4

R2_2_8 4 4 0 7557.33 5999.59 -1557.74

R1_2_6 18 20 2 9386.6 9467.73 81.13

R1_2_8 18 18 0 8530.38 7951.27 -579.11

R2_2_3 4 5 1 8162.32 8550.82 388.5

R1_2_4 18 20 2 9093.99 9715.19 621.2

R2_2_2 4 5 1 8412.9 8619.92 270.02
R2_2_4 4 4 0 8069.15 7186.26 -882.89

R2_2_9 4 5 1 8441.09 7593.83 -847.26

www.mkscienceset.comPage No: 27 Nov Joun of Appl Sci Res 2025

R1_2_5 18 20 2 9330.58 9647.16 316.58

R2_2_5 4 4 0 8507.56 7895.2 -612.36

R2_2_6 4 4 0 8285.85 7919.07 -366.78
R2_2_7 4 4 0 7922.48 9084.5 1162.01
C1_2_5 20 20 0 20771.36 20913.27 141.91

C2_2_6 6 7 1 19944.46 21206.9 1262.44

C2_2_2 6 7 1 20586.91 21444.3 857.39

C1_2_10 18 19 1 20724.36 21562.58 838.33

C2_2_4 6 7 1 20724.45 21101.5 377.05

C1_2_9 18 19 1 20702.82 21277.21 574.39

C2_2_5 6 6 0 20035.82 20075.36 39.54

C1_2_4 18 18 0 21009.45 21988.21 978.76

C2_2_1 6 6 0 19931.44 19935.26 3.82
C2_2_10 6 6 0 20150.78 20464.18 313.4

C1_2_7 20 20 0 20708.35 20984.54 276.10

C1_2_3 18 20 2 20708.35 21361.59 653.24

C2_2_3 6 7 1 20600.67 20722.77 122.1

C2_2_7 6 7 1 19913.8 20443.32 529.52

C1_2_2 18 20 2 21188.54 22151.95 963.41
C1_2_1 20 20 0 20788.07 20953.51 165.44

C2_2_8 6 6 0 19895.06 20269.04 373.98

C2_2_9 6 7 1 19944.6 20704.45 759.85
C1_2_6 20 22 2 20820.75 21451.92 631.17

C1_2_8 19 21 2 20841.41 21408.68 567.27

RC2_2_7 4 5 1 7999.51 7083.55 -915.96
RC2_2_4 4 5 1 6503.51 7229.99 726.48
RC2_2_3 4 5 1 7005.62 7917.79 912.17

RC2_2_8 4 5 1 7793.43 6631.37 -1162.06
RC1_2_3 18 19 1 8036.41 7154.3 -882.11
RC1_2_5 18 20 2 7702.14 8384.31 682.17

RC2_2_2 5 6 1 9880.44 9223.38 -657.06
RC2_2_6 4 5 1 8378.88 6928.98 -1449.9

RC1_2_8 18 19 1 7202.46 6616.12 -586.34

RC1_2_9 18 19 1 7319.88 6581.99 -737.89
RC2_2_1 6 8 2 11610.36 8600.49 -3009.87

RC2_2_9 4 5 1 5604.53 6117.24 512.71

RC1_2_10 18 18 0 6510.07 6994.95 484.88

RC1_2_1 18 20 2 8206.83 8363.97 157.14

RC2_2_5 4 6 2 8425.86 7292.44 -1133.42
RC1_2_2 18 19 1 7970.14 8128.69 158.55
RC1_2_4 18 19 1 6691.86 6091.76 -600.1
RC1_2_6 18 19 1 7672.45 7725.75 53.3

RC2_2_10 4 4 0 7026.54 5868.85 -1157.69

www.mkscienceset.comPage No: 28 Nov Joun of Appl Sci Res 2025

Table 6: Comparison with the best results on the 400-customers Gehring and Homberger benchmark. The best solutions for instanc-
es R2_4_4, C1_4_2, RC1_4_8, RC2_4_2, and RC1_4_10 are infeasible and are not included in the table.

Instance Number of
Vehicles best

Number of
Vehicles found

Vehicles differ-
ence

The sum of
durations best

The sum of du-
rations found

Duration dif-
ference

R1_4_1 40 42 2 25982.71 27388.14 1405.43
R2_4_3 8 11 3 20939.27 21030.41 91.14
R1_4_4 36 39 3 20516.4 21245.44 729.04
R2_4_6 8 9 1 20095.05 22082.67 1987.62
R2_4_10 8 8 0 19426.61 15481.86 -3944.75
R2_4_1 8 11 3 21844.88 22683.51 838.63
R1_4_5 36 39 3 23255.8 23059.48 -196.32
R1_4_10 36 37 1 20931.92 17686.39 -3245.53
R2_4_2 8 11 3 21258.2 23634.7 2376.5
R2_4_8 8 8 0 19579.65 15503.25 -4076.4
R2_4_9 8 9 1 20278.93 18199.83 -2079.1
R1_4_7 36 40 4 21987.45 22677.07 689.62
R2_4_5 8 9 1 20747.97 17308.45 -3439.52
R1_4_2 36 40 4 23942.06 25540.72 1598.66
R1_4_6 36 40 4 23136.36 25505.44 2369.08
R1_4_3 36 40 4 23331.03 26256.5 2925.47
R1_4_8 36 40 4 18063.94 20131.89 2067.95
R1_4_9 36 40 4 22159.22 19720.62 -2438.6
R2_4_7 8 9 1 19552.09 20214.92 662.83
C1_4_10 36 38 2 43119.26 45556.11 2436.85
C2_4_10 11 12 1 39927.68 42265.89 2338.21
C1_4_5 40 40 0 43562.05 43698.66 136.61
C2_4_8 11 12 1 40233.2 42076.54 1843.34
C1_4_9 36 38 2 43164.86 45555.07 2390.21
C1_4_6 40 44 4 43558.23 46679.35 3121.12
C2_4_3 11 14 3 40248.81 43170.79 2921.98
C2_4_7 12 14 2 40704.18 43027.38 2323.2
C2_4_4 11 12 1 40208.82 42719.96 2511.44
C2_4_5 12 14 2 40699.22 41807.24 1108.02
C2_4_1 12 12 0 40277.39 40262.46 -14.93
C2_4_3 36 39 3 43990.81 46038.42 2047.61
C2_4_2 12 14 2 41104.13 43551.93 2447.8
C1_4_4 36 37 1 43593.59 47712.64 4119.05
C1_4_1 40 40 0 43676.04 43748.43 72.39
C1_4_8 37 41 4 43477.78 45405.12 1927.34
C2_4_9 12 14 2 40215.73 44283.84 4068.11
C2_4_6 12 13 1 40306.53 44213.94 3907.41
C1_4_7 39 41 2 43517.3 44687.31 1170.01

RC1_4_3 36 37 1 17583.16 18647.71 1064.55
RC1_4_1 36 40 4 19727.44 20476.29 748.85

Table 5 shows that 40 out of 58 instances require one or two
additional tours to meet the hard window constraints. The num-
ber of paths increases by 7.5% on average, varying from 6% for
clustered problems to 9.7% for randomized-clustered problems
[59]. Although in 38 out of 58 instances, the total duration is
longer for the hard-windows constraints, the average duration
decreases by 0.1%. For the randomized problems, the average

duration decreases by 14.6%, and for the randomized-clustered
problems, it decreases by 6.2%. However, the average duration
increases by 2.5% for clustered problems with the maximum
sum of the durations [60-63]. The results for the 400 custom-
ers for the Gehring and Homberger benchmark are provided in
Table 6.

www.mkscienceset.comPage No: 29 Nov Joun of Appl Sci Res 2025

Table 7: Comparison with the best results on the 600-customers Gehring and Homberger benchmark. The best solution for the
RC2_6_10 instance is infeasible and not included in the table.

Instance Number of
Vehicles best

Number of
Vehicles found

Vehicles differ-
ence

The sum of
durations best

The sum of du-
rations found

Duration dif-
ference

R2_6_1 11 16 5 45380.01 46283.73 903.72
R1_6_4 54 60 6 43208.03 48989.42 5781.39
R2_6_10 11 13 2 42717.59 30847.98 -11869.61
R2_6_6 11 12 1 42089.66 45080.08 2990.42
R2_6_3 11 14 3 43300.34 46076.56 2776.22
R1_6_10 54 56 2 48165.64 37569.47 -10576.17
R1_6_1 59 66 7 57705.58 62896.45 5190.77
R1_6_3 54 60 6 52052.31 57609.73 5557.42
R1_6_7 54 56 2 51213.63 51281.85 68.22
R2_6_4 11 13 2 42832.2 39367.62 -3464.58
R1_6_5 54 60 6 52473.93 51494.84 -979.09
R2_6_7 11 12 1 42256.58 40389.94 -1866.64
R2_6_5 11 15 4 44269.2 36508.63 -7760.67
R1_6_8 54 56 2 41603.94 43082.44 1478.5
R1_6_9 54 60 6 50895.16 45861.53 -5033.63
R2_6_8 11 11 0 40749.71 32286.83 -8462.88
R2_6_9 11 16 5 44342.27 37364.23 -6978.04
R2_6_2 11 16 5 45192.93 50781.1 5588.17
R1_6_2 54 60 6 54161.14 57631.05 3469.91
R1_6_6 54 59 5 51268.35 54306.64 3038.29
C2_6_4 17 19 2 61740.41 67217.56 5477.15
C1_6_3 56 60 4 69679.84 75899.35 6219.51
C1_6_1 60 60 0 68508.46 69310.16 801.7

RC2_4_5 8 12 4 20179.13 20855.89 676.76
RC2_4_7 8 10 2 19946.12 19105.9 -840.22
RC2_4_10 8 8 0 16842.17 14361.54 -2480.63
RC1_4_9 36 37 1 18758.29 16391.05 -2367.24
RC2_4_1 11 15 4 26896.81 18923.56 -7973.25
RC1_4_2 36 40 4 19861.16 21457.07 1595.91
RC1_4_4 36 37 1 15729.24 16217.69 488.45
RC2_4_2 9 13 4 21834.57 17839.72 -3994.85
RC1_4_6 36 39 3 19879.74 19066.85 -812.89
RC1_4_5 36 40 4 18719.41 21676.15 2956.74
RC2_4_3 8 12 4 19786.69 21737.83 1951.14
RC2_4_8 8 9 1 18992.04 15912.39 -3079.65
RC1_4_7 36 38 2 19501.69 19089.34 -412.35
RC2_4_6 8 12 4 20137.76 16310.08 -3827.68
RC2_4_9 8 8 0 18313.96 15120.81 -3193.15

Table 6 shows that 48 out of 55 instances require from one to
four additional tours to meet the hard window constraints. This
fact can be explained by the growth in paths, which is twice
the average number of 400 customers compared to 200 cus-
tomers [64]. The number of paths increases by 8.8% on aver-
age, varying from 6.7% for clustered problems to 10.5% for
randomized-clustered problems. Although the total duration is
longer in 37 out of 55 instances due to the constraints of the

hard-time window, the average duration increases by only 1.2%.
For the randomized problems, the average duration decreases by
0.4%, and for the randomized-clustered problems, it decreases
by 6.2%. However, the average duration increases by 4.8% for
clustered problems with the maximum sum of the durations. The
results for the 600 customers for the Gehring and Homberger
benchmark are provided in Table 7 [65-68].

www.mkscienceset.comPage No: 30 Nov Joun of Appl Sci Res 2025

C2_6_4 17 21 4 62185.0 68475.88 6290.88
C1_6_9 56 58 2 67813.96 73628.19 5814.23
C2_6_2 17 22 5 62446.42 67378.06 4931.64
C1_6_2 56 62 6 69331.56 75795.6 6464.04
C1_6_7 57 61 4 69744.4 71933.41 2189.01
C2_6_9 17 21 4 61967.03 68013.95 6046.92
C2_6_6 18 20 2 62036.68 67211.48 5174.8
C2_6_8 17 19 2 61810.35 64068.77 2258.42
C1_6_5 60 60 0 68316.27 69305.71 989.44
C2_6_1 18 18 0 62198.33 62150.72 -47.61
C1_6_4 56 57 1 69126.88 75661.97 6535.09
C1_6_8 56 63 7 68542.78 73391.35 4848.57
C2_6_10 17 18 1 61564.35 64510.53 2946.18
C1_6_10 56 58 2 67890.08 73343.03 5452.95
C2_6_5 18 18 0 61732.77 64772.78 3040.01
C2_6_7 18 21 3 62468.15 69419.11 6950.96
C1_6_6 59 61 2 69946.75 75546.33 5599.58

RC2_6_4 11 12 1 38305.06 37396.49 -908.57
RC2_6_5 11 18 7 41367.43 38477.17 -2890.26
RC2_6_8 11 17 6 40982.48 33295.63 -7686.85
RC1_6_9 55 57 2 44248.88 32809.64 -11439.24
RC2_6_3 11 17 6 43092.9 42958.69 -134.21
RC1_6_1 55 60 5 45915.06 43752.08 -2162.98
RC1_6_8 55 57 2 44355.38 35539.82 -8815.56
RC2_6_7 11 17 6 40875.78 35530.43 -5345.35
RC1_6_6 55 60 5 46203.2 43994.21 -2208.99
RC1_6_2 55 59 4 46063.41 43986.12 -2077.29
RC2_6_1 14 20 6 53169.69 42100.67 -11069.02
RC1_6_10 55 56 1 42074.31 31946.69 -10127.62
RC2_6_9 11 14 3 40185.54 31319.1 -8866.44
RC2_6_6 11 18 7 42371.52 33189.89 -9181.63
RC1_6_4 55 58 3 35892.54 35075.31 -817.23
RC2_6_2 12 15 3 46684.92 43160.04 -3524.88
RC1_6_3 55 58 3 41653.53 41197.05 -456.48
RC1_6_7 55 60 5 44894.05 41640.06 -3253.99
RC1_6_5 55 60 5 44823.87 47414.94 2591.07

Table 7 shows that 54 out of 59 instances require from one to
seven additional tours to meet the hard window constraints [69].
This fact can be explained by the growth of almost twice the av-
erage number of paths for 600 customers vs. 400 customers. The
number of paths increases by 9.1% on average, varying from
6.3% for clustered problems to 10.9% for randomized-clustered
problems. So, the number of paths growing is the same as for
400 customers [70]. Although in 31 out of 59 instances, the total

duration is longer for the hard-windows constraints, the aver-
age duration decreases by 0.7%. For the randomized problems,
the average duration decreases by 2.2%, and for the random-
ized-clustered problems, it decreases by 12%. However, the av-
erage duration increases by 6.4% for clustered problems with
the maximum sum of the durations. The results for the 800 cus-
tomers for the Gehring and Homberger benchmark are provided
in Table 8 [71].

Table 8: Comparison with the best results on the 800-customers Gehring and Homberger benchmark. The best solutions for instanc-
es RC2_8_2 and RC1_8_9 are infeasible and are not included in the table.

Instance Number of
Vehicles best

Number of
Vehicles found

Vehicles differ-
ence

The sum of
durations best

The sum of du-
rations found

Duration dif-
ference

R2_8_3 15 17 2 79888.63 81854.45 1965.82
R2_8_6 15 18 3 82801.05 75950.72 -6850.33

www.mkscienceset.comPage No: 31 Nov Joun of Appl Sci Res 2025

R2_8_5 15 16 1 78211.64 69133.05 -9078.59
R1_8_6 72 81 9 91144.99 95233.93 4088.94
R2_8_9 15 21 6 80973.53 61847.89 -19125.64
R1_8_4 72 78 6 78433.66 86261.93 7828.27
R2_8_4 15 15 0 77512.9 66386.3 -11126.6
R1_8_2 72 82 10 64471.29 74577.73 10106.44
R1_8_8 72 74 2 73708.7 77615.24 3906.54
R1_8_7 72 76 4 87412.16 88341.47 929.31
R1_8_5 72 76 4 92393.98 86622.93 -5771.05
R1_8_9 72 80 8 89154.23 77514.0 -11640.23
R1_8_10 72 74 2 87514.99 64163.49 -23351.5
R2_8_5 15 20 5 82816.71 62583.11 -20223.6
R2_8_2 15 23 8 82562.11 86704.2 4142.09
R2_8_8 15 16 1 73305.77 50102.25 -23203.52
R2_8_1 15 24 9 82350.64 86329.35 3978.71
R1_8_1 80 91 11 103848.6 112930.84 9082.24
R2_8_10 15 16 1 79369.34 53453.39 -25915.95
R1_8_3 72 80 8 90212.2 108122.71 17910.51
C1_8_9 72 80 8 96371.22 106294.4 9923.18
C1_8_2 72 84 12 100110.3 120746.53 20636.23
C1_8_7 77 83 6 98804.3 103245.91 4441.61
C2_8_1 24 24 0 84384.4 84192.57 -818.93
C2_8_10 23 24 1 84067.4 87817.96 3750.56
C1_8_8 73 80 7 98294.13 110581.76 12287.63
C2_8_4 22 27 5 83218.9 97278.57 14059.67
C1_8_3 72 79 7 98471.23 120228.28 21759.05
C2_8_8 23 25 2 83363.45 91260.45 7897.0
C1_8_4 72 75 3 101370.3 110136.43 8766.13
C1_8_5 80 80 0 97812.43 99136.32 1323.89
C2_8_5 24 27 3 84559.57 88817.33 4257.76
C2_8_7 23 29 6 85590.77 96411.73 10820.96
C1_8_6 79 87 8 99114.66 119793.71 20679.05
C2_8_9 23 28 5 83805.93 94630.04 10824.11
C2_8_3 23 28 5 84919.02 102493.41 17574.39
C1_8_6 23 27 4 84293.77 92074.98 7781.21
C1_8_1 80 80 0 97730.41 98959.41 1229.0
C2_8_2 23 31 8 84819.19 99309.66 14490.47
C1_8_10 72 79 7 96263.12 108166.27 11903.15
RC1_8_5 72 77 5 81800.44 82523.87 723.43
RC1_8_10 72 75 3 77365.26 55585.74 -21779.52
RC2_8_9 15 19 4 33332.79 45469.14 12136.35
RC2_8_8 15 21 6 73669.62 57588.65 -16080.97
RC2_8_1 18 29 11 90798.43 70708.25 -20090.18
RC2_8_5 15 27 12 75666.24 60079.97 -15586.27
RC2_8_6 15 25 10 74734.67 53947.32 -20787.35
RC1_8_3 72 75 3 72076.91 80087.78 8010.87
RC1_8_7 72 82 10 80751.65 79618.23 -1133.42
RC2_8_3 15 24 9 71067.1 70286.21 -780.89
RC2_8_10 15 17 2 71931.11 44297.74 -27633.37

www.mkscienceset.comPage No: 32 Nov Joun of Appl Sci Res 2025

Table 10: The changes in the relative total duration for different types of problems and the various numbers of customers. The last
row indicates the number of instances where the algorithm improves the state-of-the-art (SOTA).

Problem vs. Num-
ber of customers

100 200 400 600 800

Average 2.14% -0.14% 1.27% -0.67% -0.5%
R 3.84% -14.6% -0.41% -2.2% -5.9%
C 1.07% 2.48% 4.89% 6.3% 10.05%

RC 1.9% -6.19% -6.23% -12.03% -11.47%
SOTA improve-
ment instances

7 8 4 2 2

The tables show that the randomized-clustered problems require
the maximum addition to tours for the hard time window con-
straints and the maximum total duration reduction. In contrast,
the clustered problems demand minimal new tours but maximal-
ly increase the total duration [77].

Conclusion, Discussion, and Future Work
This paper presented the solution to a time-dependent vehi-
cle routing problem with hard time window constraints using
a saving ant colony approach. Recently, the problem has gar-
nered increasing attention due to the growing popularity of
parcel dispatching in megacities, limited parking capacity, and
traffic congestion. The approach developed here is based on a
real-life, auto-updated static traffic model using a multi-layer
distance-duration matrix without limitation to the FIFO proper-
ty. Various constraints and multiple objective functions, such as
(2) and (5), are implemented using the saving ant colony optimi-
zation [78]. The fuzziness of the saving ant colony optimization
allows for the addition of other diverse constraints, such as open
VRP, package compatibility, and lunch break time for the cou-

rier, by minor adaptations of the proposed algorithms. Another
advantage of saving ant colony optimization is its closeness to
the LSTM network, which allows the use of a known technique
to estimate the number of iterations and evaluate convergence to
the global minimum.

Results showed that the proposed approach is feasible for re-
al-life applications with the software written in Go for a multi-
core computer. The proposed approach significantly reduces the
number of vehicles and the total travel duration compared to the
naïve dispatching system used in megacities such as Moscow,
Russia, and Tel Aviv, Israel. The comparison to the Gehring
and Homberger benchmark showed that the hard time windows
constraint significantly affects the tours, and the real-life algo-
rithms do not always provide the best results on the existing
benchmarks. The proposed method demonstrates its maximum
effectiveness for medium-sized tasks with 40-450 customers,
which are the most popular delivery tasks in last-mile delivery
problems. Figures 12 and 16 show the maximum reduction in
the number of vehicles for this size of task. The existing exact

RC2_8_7 15 26 11 72575.83 60053.71 -12522.12
RC1_8_8 72 78 6 77047.52 66102.54 -10944.98
RC1_8_4 72 75 3 60126.82 67067.75 6940.93
RC2_8_4 15 18 3 66802.17 58167.45 -8634.72
RC1_8_2 72 82 10 78923.57 78337.52 -586.05
RC1_8_1 72 77 5 81519.86 75494.18 -6025.68
RC1_8_6 72 81 9 81157.38 80014.12 -1143.26

Table 8 shows that 54 out of 58 instances require 1-12 additional
tours to meet the hard window constraints due to a 30% increase
in the average number of path growth for 800 customers com-
pared to 600 customers [72-75]. The number of paths increases
by 10.8% on average, varying from 9% for clustered problems to
13.4% for randomized-clustered problems. Therefore, the num-
ber of paths increases slightly compared to the 400-600 customer
range [76]. Although in 33 out of 58 instances, the total duration

is longer for the hard-windows constraints, the average duration
decreases by 0.5%. For the randomized problems, the average
duration decreases by 5.9%, and for the randomized-clustered
problems, it decreases by 11.5%. However, the average duration
increases by 10% for clustered problems with the maximum sum
of the durations. The growth in the average relative number of
paths and changes in the average relative total duration for vari-
ous customer numbers are summarized in Tables 9 and 10.

Table 9: The growth in the relative average number of paths for different types of problems and the different numbers of customers
Problems vs.

Number of cus-
tomers

100 200 400 600 800

Average 11.3% 7.6% 8.6% 9.2% 10.8%
R 12.1% 7.3% 9.5% 10.4% 10.2%
C 5.0% 6.0% 6.7% 6.4% 9.0%

RC 14.5% 9.7% 10.6% 10.9% 13.4%

www.mkscienceset.comPage No: 33 Nov Joun of Appl Sci Res 2025

solutions are well-suited for small tasks and are typically faster
than the proposed method. For a large number of customers, the
technique demands significant computational resources that are
not always available in city logistics. Another limitation is the
adaptation of makespan to industrial delivery, so the proposed
method is not optimal for academic benchmarks. Nevertheless,
Table 10 shows SOTA improvement for some instances, typical-
ly of 100-400 customers.
Another future research path involves applying the developed
approach to the pickup and delivery problem (TDPDPTW),
the split delivery problem (TDSDVRPTW), and the VRP with
backhauls (TDVRPBTW), among others, including those with
time windows and traffic constraints. Moreover, using the
time-dependent pheromone matrix should provide further per-
formance improvement. The relatively high overall complexity

 is the most significant limitation for a large num-
ber of customers, necessitating the use of multi-core computers
for implementation. This limitation can be partially alleviated by
testing (56) not for all available customers in the head and tail
interior selection but for customers with the positive pheromone
trace only.

Finally, although the current paper is devoted to the static ap-
proach, in real-life applications, dynamic traffic changes and a
user’s unpredicted inability to receive packages occur after the
vehicle is on the route. In this case, a branch-and-bound algo-
rithm is applied to correct TDTSPTW after every change in the
data, starting from the nearest stop point.

References
1.	 Figliozzi, M.A. (2012). The time-dependent vehicle rout-

ing problem with time windows: Benchmark problems, as
efficient solution algorithm, and solution characteristics.
Transportation Research Part E Logistics and Transporta-
tion Review, 48(3), 616–636.

2.	 Qureshi, A. G., Taniguchi, E., & Yamada, T. (2010). Exact
solution for the vehicle routing problem with a semi-soft
time window and its application. Procedia Social and Be-
havioral Science, 2(3), 5931-5943.

3.	 Yıldırım, U. M., & Çatay, B. (2009). An ant colony algo-
rithm for time-dependent vehicle routing problem with
time windows. In Fleischmann, B. et al. (Eds.), Operations
Research Proceedings 2008, pp. 337-342. Springer, Berlin,
Heidelberg.

4.	 Gendreau, M., Ghiani, G., & Guerriero, E. (2015). Time-de-
pendent routing problems: A review. Computers & Opera-
tions Research 64(2), 189-197.

5.	 Mancini, S. (2014). Time-dependent travel speed vehicle
routing and scheduling on a real road network: the case
of Torino. Transportation Research Procedia, 3, 433-441,
DOI:10.1016/j.trpro.2014.10.024

6.	 Kritzinger, S., Doerner, K., F., Hartl, R., F., Kiechle, G.,
Stadler, H., & Manohar, S., S. (2012). Using traffic infor-
mation for time-dependent vehicle routing. Procedia - So-
cial and Behavioral Sciences, 39, 217-229, DOI:10.1016/j.
sbspro.2012.03.103

7.	 Lombard, A., Tamayo, S., & Fontane, F. (2018). Model-
ing the time-dependent VRP through open data. arXiv:
1804.07555, April 2018, DOI:10.48550/arXiv. 1804.07555.

8.	 Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant sys-
tem: Optimization by a colony of cooperating agents. IEEE

Transactions on Systems, Man, and Cybernetics, 26(1), pp.
29-41.

9.	 Donati, A., Montemanni, R., Casagrande, N., Rizzoli,
A., & Gambardella, L. M. (2008). Time-dependent vehicle
routing problem with a multi-ant colony system. European
Journal of Operational Research, 185(3), 1174-1191

10.	 Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles
from a central depot to a number of delivery points. Opera-
tions Research, 12(4), 568-581.

11.	 Desrochers, M., Lenstra, J. K., Savelsbergh, M. W. P., &
Soumis, F. (1988). Vehicle routing with time windows: Op-
timization and approximation. In Golden, B. L. and Assad,
A. A. (Eds.), Vehicle Routing: Methods and Studies 16, pp.
65–84. Elsevier Science Publishers B. V. (North-Holland).

12.	 Tarantilis, C. D., Ioannou, G., Kiranoudis, C. T., & Prasta-
cos, G. P. (2005). Solving the open vehicle routing problem
via a single parameter metaheuristics algorithm. Journal of
the Operational Research Society, 56(6), 588-596.

13.	 Pan, B., Zhang, Z., & Lim, A. (2021). Multi-trip time-de-
pendent vehicle routing problem with time windows. Euro-
pean Journal of Operational Research, 291(1), pp. 218-231.

14.	 Beasley, J.E. (1981). Adapting the saving algorithm for
varying inter-customer travel times. Omega, 9(6), 658-659.

15.	 Ahn, B. H., & Shin, J. Y. (1991). Vehicle routing with time
windows and time-varying congestion. Journal of the Op-
erational Research Society, 42(5), 393-400.

16.	 Ichoua, S., Gendreau, M., & Potvin, J.-Y. (2003). Vehicle
dispatching with time-dependent travel times. European
Journal of Operational Research, 144(2), 379-396.

17.	 Malandraki, C., & Dial, R. B. (1996). A restricted dynam-
ic programming heuristic algorithm for the time-dependent
traveling salesman problem. European Journal of Opera-
tional Research, 90(1), 45–55.

18.	 Fleischmann, B., Gietz, M., & Gnutzmann, S. (2004)
‘Time-varying travel times in vehicle routing. Transporta-
tion Science, 38(2), pp. 160-173.

19.	 Haghani, A., & Jung, S. (2005). A dynamic vehicle routing
problem with time-dependent travel times. Computers and
Operations Research, 32(11), 2959–2986.

20.	 Van Woensel, T., Kerbache, L., Peremans, H., & Vandaele,
N. (2008). Vehicle routing with dynamic travel times: a
queuing approach. European Journal of Operational Re-
search, 186(3), 990–1007.

21.	 Potvin, J.-Y., & Rousseau, J.-M. (1995). An exchange heu-
ristic for routing problems with time windows. Journal of
Operations Research Society, 46(2), 1433-1446.

22.	 Taillard, E., Badeau, P., Gendreau, M., Guertin, F., & Potvin,
J.Y. (1997). A tabu search heuristic for the vehicle routing
problem with soft time windows. Transportation Science,
31(2), 170–186.

23.	 Maden, W., Eglese, R., & Black, D. (2010). Vehicle routing
and scheduling with time-varying data: A case study. Jour-
nal of Operations Research Society, 61(3), 515-522.

24.	 Wen, L., & Eglese, R. (2015). Minimum cost VRP with
time-dependent speed data and congestion charge. Comput-
ers and Operations Research, 56(C), 41-50, DOI:10.1016/j.
cor.2014.10.007.

25.	 Arigliano, A., Ghiani, G., Grieco, A., Guerriero, E., & Pla-
na, I. (2019). Time-dependent asymmetric traveling sales-
man problem with time windows: Properties and an exact
algorithm. Discrete Applied Mathematics, 261(3), 28-39.

www.mkscienceset.comPage No: 34 Nov Joun of Appl Sci Res 2025

26.	 Duc Minh, V., Hewitt, M., Boland, N., & Savelsbergh, M.
(2019). Dynamic discretization discovery for solving the
time-dependent traveling salesman problem with time win-
dows. Transportation Science, 54(3), pp. 1-18.

27.	 Montero, A., Mendez-Diaz, I., & Miranda-Bront, J. J. (2017).
An integer programming approach for the time-dependent
traveling salesmen problem with time windows. Comput-
ers and Operational Research, 88, 280-288, DOI:10.1016/j.
cor.2017.06.026

28.	 Adamo, T., Ghiani, G., Greco, P., & Guerriero, E. (2021).
Learned upper bounds for the time-dependent traveling
salesman problem. arXiv: 2107.1364v1 [cs.AI] 28 Jul.
2021, DOI:10.48550/arXiv.2107.13641

29.	 Ehmke, J. F., & Mattfeld, D. C. (2012). Vehicle routing for
attend-home delivery in city logistics. Procedia Social and
Behavioral Science, 39(12), 622-632.

30.	 Halpern, J. (1977). Shortest route with time-dependent
length of edges and limited delay possibilities in nodes.
Zeitschrift für Operations Research, 21, 117–124, DOI:
https://doi.org/10.1007/BF01919767

31.	 Esher, M., Kriegel, H-P., Sander, J., & Xu, X. (1996). A den-
sity-based algorithm for discovering clusters in large spatial
databases with noise. In KDD-96: Proceedings of the Sec-
ond International Conference on Knowledge Discovery and
Data Mining, pp. 226-231. AAAI Press.

32.	 Dantzig, G., Fulkerson, R., & Johnson, S. (1954). Solution
of a large-scale traveling salesman problem. Operations Re-
search, 2, 393–410.

33.	 Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2013).
Heuristics for multi-attribute vehicle routing problems: a
survey and synthesis. European Journal of Operational Re-
search, 231(1), pp. 1-21.

34.	 Bräysy, O., & Gendreau, M. (2005). Vehicle routing prob-
lem with time windows, Part I: Route construction and local
search algorithms. Transportation Science, 39(1), 104-118.

35.	 Mladenović, N., & Hansen, P. (1997). Variable Neighbour-
hood Search. Computers and Operational Research, 24(11),
1097-1100.

36.	 Pisinger, D., & Ropke, S. (2007). A general heuristic for
vehicle routing problems. Computers and Operational Re-
search, 34(8), 2403-2435.

37.	 Solomon, M. M. (1987). Algorithms for the vehicle rout-
ing and scheduling problems with time window constraints.
Operations Research, 35, 254–265, DOI: http://dx.doi.
org/10.1287/opre.35.2.254.

38.	 Doerner, K., Gronalt, M., Hartl, R. F., Reimann, M., Strauss,
C., & Stummer, M. (2002). Savings ants for the vehicle
routing problem. In Cagnoni, S. et al. (Eds.), Applications
of Evolutionary Computing. EvoWorkshops 2002. Lecture
Notes in Computer Science, Vol. 2279, pp. 11-20. Springer,
Berlin, Heidelberg.

39.	 Bräysy, O., & Gendreau, M. (2005a). Vehicle routing prob-
lem with time windows, Part II: Metaheuristics. Transporta-
tion Science, 39(1), 119-139.

40.	 Kilby, P., Prosser, P., & Shaw, P. (1997). Guided local search
for the vehicle routing problems. In MIC97: Proceedings
of the 2nd International Conference on Metaheuristics, pp.
1-10. Sophia-Antipolis, France, July 21-24.

41.	 Carić, T., Fosin, J., Galić, A., Gold, H., & Reinholz, A.
(2007). Empirical analysis of two different metaheuristics
for real-world vehicle routing problems. In Bartz-Beiel-

stein, T. et al. (Eds.), Hybrid Metaheuristics, Lecture Notes
in Computer Science (LNCS), Vol. 4771, pp. 31-44. Spring-
er-Verlag, Berlin/Heidelberg, DOI:10.1007/978-3-540-
75514-2_3.

42.	 Pillac, V., Gendreau, M., Guéret, C., & Medaglia, A. (2013).
A review of dynamic vehicle routing problems. European
Journal of Operational Research, 225(1), 1–11.

43.	 Balseiro, S.R., Loiseau, I., & Ramonet, J. (2008). An ant
colony algorithm hybridized with insertion heuristics for
the time-dependent vehicle routing problem with time win-
dows. Computers and Operations Research, 38(6), 954–966.

44.	 Yu, B., Yang, Z-Z., & Xie, J-X. (2011). A parallel improved
ant colony optimization for multi-depot vehicle routing
problem. Journal of the Operational Research Society
62(1), 183-188.

45.	 Khoshbakht, M. Y., and Sedighpour, M. (2012). An opti-
mization algorithm for capacitated vehicle routing problem
based on ant colony system. Australian Journal of Basic and
Applied Science, 5(12), 2729-2737.

46.	 Rizzoli, A. E., Oliverio, F., Montemanni, R., & Gambardel-
la, L. M. (2004). Ant Colony Optimisation for vehicle rout-
ing problems: from theory to applications. Galleria Rasseg-
na Bimestrale Di Cultura, 9(1), pp. 1-50.

47.	 Osman, I. H. (1993). Metastrategy simulated annealing and
tabu search algorithms for the vehicle routing problem. An-
nals of Operations Research, 41(4), 421-451, DOI: https://
doi.org/10.1007/BF02023004.

48.	 Bengio, Y. (2012). Practical recommendations for gradi-
ent-based training of deep architectures. In Montavon, G.
et al. (Eds.), Neural Networks: Tricks of the Trade (pp. 437-
478). Springer, Berlin, Heidelberg.

49.	 Hochreiter, S., & Schmidhuber, J. (1997). Long short-term
memory. Neural Computation, 9(8), 1735-80.

50.	 Hall, P. (1982). On estimating the endpoint of a distribu-
tion. Annals of Statistics, 10(2), 556-568.

51.	 Christiaens, J., & Berghe, G. V. (2020). Slack induction by
string removals for vehicle routing problems. Transporta-
tion Science, 54(2), 417-433.

52.	 Kruskal, J. B. (1956). On the shortest spanning subtree of a
graph and the traveling salesman problem. Proceedings of
the American Mathematical Society, 7(1), 48-50.

53.	 Ribiero, G. M., & Laporte, G. (2012). An adaptive large
neighborhood search heuristic for the cumulative capaci-
tated vehicle routing problem. Computers and Operational
Research, 39(3), 728-735.

54.	 Gett Delivery (2022, January, 17). https://www.gett.com/il/
delivery/.

55.	 Gehring, H., & Homberger, J. (1999). A parallel hybrid evo-
lutionary metaheuristic for the vehicle routing problem with
time windows. In Miettinen, K., Mäkelä, M. and Toivanen
J. (Eds.), Proceedings of EUGOGEN99 – Short Course on
Evolutionary Algorithms in Engineering and Computer Sci-
ence, pp. 57-64. University of Jyväskylä.

56.	 SINTEF (2008, February, 17) Benchmarks-Vehicle rout-
ing and traveling salesperson problems, SINTEF Applied
Mathematics, Department of Optimization, Norway https://
www.sintef.no/projectweb/top/vrptw/.

57.	 Augerat, P., Belenguer, J.M., Benavent, E., Corber, A., &
Naddef, D. (1998). Separating capacity constraints in the
CVRP using tabu search. European Journal of Operational
Research, 106(2-3), 546-557.

www.mkscienceset.comPage No: 35 Nov Joun of Appl Sci Res 2025

Copyright: ©2025 Uri Lipowezky. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

58.	 Cordeau, J., Desaulniers, G., Desrosiers, J., Solomon, M.
M., & Soumis, F. (2001). VRP with time windows. In Toth,
P. and Vigo, D. (Eds.), The vehicle routing problem. SIAM
Monographs on Discrete Mathematics and Applications, pp.
157-193. SIAM Publishing, Philadelphia, PA.

59.	 Derigs, U., & Reuter, K. (2009). A simple and efficient tabu
search heuristic for solving the open vehicle routing prob-
lem. Journal of the Operational Research Society, 60(12),
1658-1669.

60.	 Eksioglu, B., Vural, A. V., & Reisman, A. (2009). The ve-
hicle routing problem: A taxonomic review. Computers and
Industrial Engineering, 57(4), 1472–1483.

61.	 Fleszar, K., Osman, I. H., & Hindi, K. S. (2009). A vari-
able neighborhood search algorithm for open vehicle rout-
ing problem. European Journal of Operational Research,
195(3), 803-809.

62.	 Glover, F., & Laguna, M. (1997). Tabu Search, Kluwer Ac-
ademic, Boston.

63.	 He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep
into rectifiers: Surpassing human-level performance on Im-
ageNet classification. in ICCV, Proceedings IEEE Inter-
national Conference on Computer Vision, pp. 1026-1034.
Santiago, Chile, DOI: 10.1109/ICCV.2015.123.

64.	 Hill, A. V., & Benton, W. C. (1992). Modeling intra-city
time-dependent travel speed for vehicle scheduling prob-
lems. Journal of the Operational Research Society, 43(4),
343-351.

65.	 Hill, B. M. (1975), A simple general approach to inference
about the tail of a distribution. Annals of Statistics, 3(5),
1163-1174.

66.	 Kok, A. L., Hans, E. W., & Schutten, J. M. J. (2012). Vehi-
cle routing under time-dependent travel times: the impact
of congestion avoidance. Computers and Operations Re-
search 39(5), 910–918.

67.	 Kumar, S. N., & Panneerselvam, R. (2017). Development of
an efficient genetic algorithm for the time-dependent vehi-
cle routing problem with time windows. American Journal
of Operations Research, 7(1), pp. 1-25.

68.	 Malandraki, C. (1989). Time-Dependent Vehicle Routing
Problems: Formulations, Solution Algorithms and Compu-

tational Experiments, PhD Thesis, Northwestern Universi-
ty, Evanston, Illinois.

69.	 Malandraki, C., & Daskin, M. S. (1992). Time-dependent
vehicle-routing problems – formulations, properties, and
heuristic algorithms. Transportation Science, 26(3), 185–
200.

70.	 Nemhauser, G. L., Wolsey, L., A. & Fisher, M. L. (1978).
An analysis of approximations for maximizing submodu-
lar set functions-I. Mathematical Programming, 14(1), pp.
265-294.

71.	 Pickands, J. (1975). Statistical inference using extreme or-
der statistics. Annals of Statistics, 3(1), pp. 119-131, DOI:
http://dx.doi.org/10.1214/aos/1176343003.

72.	 Potvin, J.-Y., & Rousseau, J.-M. (1993). A parallel route
building algorithm for the vehicle routing and the schedul-
ing problem with time windows. European Journal of Oper-
ational Research, 66(3), 331–340.

73.	 Schrimpf, G., Schneider, G., Stamm-Wilbrandt, H., &
Duek, J. (2000). Record-breaking optimization results using
the ruin and recreate principle. Journal of Computational
Physics, 159(2), 139-171.

74.	 Shaw, P. (1998). Using constraint programming and lo-
cal search methods to solve vehicle routing problems. In
CP’98: Proceedings of the 4th International Conference on
Principle and Practice of Constraint Programming, pp. 417-
431. London, UK, Springer-Verlag

75.	 Teng, Y., Chen, J., Zhang, S., Wang, J., & Zhang, Z. (2024).
Solving dynamic vehicle routing problem with time win-
dows by ant colony system with bipartite graph matching.
Egyptian Informatics Journal, 25, 1-12, DOI:10.1016/j.
eij.2023.100421

76.	 Zhigljavsky A. (1991). Theory of global random search,
Kluwer Acadademic Publishers, Dordrecht.

77.	 Zhigljavsky A., and Žilinskas A. (2008). Stochastic Global
Optimization, 1st ed., Springer Berlin, Heidelberg.

78.	 SINTEF (2008, February, 17) Benchmarks-Vehicle rout-
ing and traveling salesperson problems, SINTEF Applied
Mathematics, Department of Optimization, Norway https://
www.sintef.no/projectweb/top/vrptw/.

