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Abstract
The present study considers a method of parcel dispatching based on a solution of a capacitated vehicle routing 
problem with hard time windows per customer (no waiting is available) and an auto-updated static time-dependent 
traffic model. The static traffic model update is based on the actual duration from historical delivery data and the 
couriers’ location data, which comes from their mobile devices’ global positioning systems (GPS). The solution to 
the vehicle routing problem is based on a two-stage algorithm: obtaining an initial feasible (greedy) solution at the 
first stage and sequentially improving this initial solution at the second stage. The improvement of the initial feasible 
solution is based on the combination of selecting the appropriate simulated annealing (SA) temperature in the SA 
process and applying a saving matrix-based ant colony optimization (ACO) algorithm, which is accomplished using 
the Ruin and Recreate (R&R) method. This research aims to enhance existing dispatching systems by reducing the 
number of vehicles as the primary objective and minimizing the total route duration for the minimum number of 
available vehicles as the secondary objective. The application to real industrial delivery tasks shows that the pro-
posed approach is highly effective.

https://doi.org/10.63620/MKNJASR.2025.1054

Introduction
The Vehicle Routing Problem (VRP) determines a set of vehicle 
routes originating and terminating at a single depot, such that all 
customers are visited exactly once, and the total demand of the 
customers assigned to each route does not exceed the vehicle’s 
capacity. 

Time windows are imposed for customer destinations, meaning 
that the vehicle is only permitted to arrive at the customer’s des-
tination within a specific time window and stay at the customer 
site for the duration of the customer’s service time. Sometimes, 
when waiting is permitted (soft time window), the vehicle can 
arrive before the time window and wait until the early bounce of 
the time window (waiting before the delivery) or wait at the pre-

vious customer’s site to arrive at the next customer on its early 
bounce of the time window (waiting after the delivery). How-
ever, in megapolises, early arrival causes a problem due to the 
unavailability or high cost of parking for waiting and is strictly 
forbidden; therefore, hard or strict time window constraints or 
VRPHTW are imposed [1-3]. 

In practical applications, the traversal times between the cus-
tomers are not time-invariant but may vary due to traffic conges-
tion [4]. In this case, we have a time-dependent vehicle routing 
problem with time window constraints (TDVRPTW) [69], two 
primary components contribute to variability in travel times. The 
first component is derived from hourly, daily, weekly, or sea-
sonal deviations from the average traffic volumes. The second 



 

www.mkscienceset.comPage No: 02 Nov Joun of Appl Sci Res 2025  

component of travel time variability stems from random events, 
including accidents, weather conditions, or other unforeseen cir-
cumstances. No one can foresee the second one while the first 
one systematically occurs. It has been demonstrated that most 
observed delays are dependent on the first or static traffic com-
ponent. This static or deterministic traffic model is widely used 
in the industry [5].

Additionally, the neighbor time intervals are merged into time 
buckets [6]. For example, the same traffic is observed on Sun-
days between 2:00 AM and 4:00 AM. Eventually, the traffic data 
is represented as a multi-layer travel time matrix, with one layer 
for each time bucket [7]. 

The literature survey presents many exact and heuristic solutions 
for solving VRP and its extensions. One of the approaches, Ant 
Colony Optimization (ACO), is a population-based metaheuris-
tic that has been successfully applied to solving the TDVRPTW 
[8, 9, 3]. In this study, the ACO approach is adopted in combina-
tion with the saving principle to solve the TDVRPTW with hard 
time windows efficiently [10].

Problem Description
Following traditional flow-arc formulation, the time-dependent 
vehicle routing problem with hard time windows studied in this 
research can be described as follows. Let us denote  
a complete directed graph with n + 1 nodes, where the node-
set  and  is an arc set [11, 1]. The vertex 
set   includes the depot associated 
with nodes (start node) and  (return node) and the set of 
customers , which must be visited. It is supposed 
that there is a fleet of K available homogeneous vehicles of ca-
pacity qmax, and each vehicle is located at the depot. Each vehicle 
starts a tour from the depot  and must either return to the de-
pot , if the tour is closed, or finish with the last customer, if 
the tour is open (Open VRP case) [12]. 

Each vertex in  has an associated demand , a service time 
, and a service time window  when the location ought 

to be visited. The depot also has a loading time (Pan et al., 2021)
[13] , the time needed to load commodities to a vehicle, 
and the scheduled time , denotes the time when the commod-
ities are available at the depot. The arrival time of a vehicle at 
customer  is denoted  and its departure time .Each arc 
has an associated travel distance  and a travel time 

, depending on the departure time between location 
 and the destination . It is supposed that a courier re-

ward is significantly higher than fuel expense, so the fastest path 
between two locations  is used. In this case, the travel dis-
tance also depends on the departure time. For example, suppose 
a depot is located in the industrial zone, and a customer is in 
the residential area. In this case, for delivery at 15:00, before 
the pick time, a path will be taken, including a highway seg-
ment with a travel distance of 20 km and a traveling time of 20 
minutes. However, for the same delivery at 17:00, due to traffic 
congestion on the highway at the pickup time, the route will be 
rerouted through city streets, resulting in a 10 km travel distance 
and a 40-minute travel time. The cost per kilometer traveled is 
denoted cd, and the cost per hour of the route duration is denoted 
ct. Besides, to ensure the welfare and safety of couriers, the total 

trip duration per vehicle is limited by the maximum working 
shift CSmax and the maximum number of stop points on each tour 
Nmax [13].

We assume that a feasible solution exists, i.e., it is always possi-
ble to serve any customer starting from the depot within its time 
window:

 (1) 
where  is the travel time from the depot to custom-
er  j at the time of . Let us denote  a binary decision 
variable that indicates whether vehicle  travels between 
customers i and j. The primary objective function is the minimi-
zation of the number of routes, meaning:

(2)

(3)
Since V0 denotes the start depot and  the final depot, then 

                                                                                                    (4)
 
Let us denote another decision variable , which indicates the 
expected arrival time (ETA) for customer i served by vehicle k. 
The secondary objective function is to minimize the price for the 
minimal number of vehicles. With these notations, the secondary 
objective function can be written as follows:

The primary and secondary objectives are defined in (2) and (5). 
The constraints are defined as follows: vehicle capacity cannot 
be exceeded (6); all customers must be visited only once (7); 
if a vehicle arrives at a customer, it must also depart from that 
customer (8). Each vehicle departs from and returns to the depot 
only once (9); ETA must satisfy time windows early (10) and 
late (11) times, obey the traffic equation (12), and not violate the 
working regulations (13) and (14). Unlike previous formulations 
for TDVRPTW (Figliozzi, 2012), no waiting is allowed in this 
case [1]. 

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)
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Literature Review
To the author’s knowledge, the first reference to a time-depen-
dent travel time model belongs to [14]. The author adapted the 
saving algorithm to consider two periods of the planning horizon 
with different values of travel times. Later, the time-dependent 
VRP (TDVRP) without time windows (TW) was first formulated 
by Malandraki (1989) [68] and Malandraki and Daskin (1992) 
[69]. In these studies, the travel times are computed using step 
functions. Nearest-neighbor (greedy) heuristics for the TDTSP 
and the TDVRP without time windows and a branch-and-cut al-
gorithm are proposed based on the mixed linear programming 
formulation for solving small-scale problems with 10–25 nodes. 
A study (Hill & Benton, 1992) [64] considered a node-based 
time-dependent vehicl  routing problem (without time win-
dows).  They proposed a modeling approach in which each node 
was assigned a time-dependent piecewise constant speed func-
tion. Then, at each edge, the travel time duration was derived 
from the average speed of the incident nodes. Computational re-
sults for one vehicle and five customers were reported. The time 
windows and the time-dependent travel time model were first in-
troduced by Ahn and Shin (1991) [15]. They discussed modifica-
tions to the savings, insertion, and local improvement algorithms 
to better deal with TDVRPTW. They reported computation time 
reductions in randomly generated instances as a percentage of 
the “unmodified” savings, insertions, and local improvements 
achieved by these algorithms. A study by Malandraki and Dial 
(1996) [17] proposed a restricted dynamic programming algo-
rithm for a time-dependent traveling salesman problem (TSP), 
specifically for a fleet of one vehicle with a given scheduling 
time when the delivery is ready for dispatching and a constant 
service time at each customer. They reported on solving random-
ly generated problems for up to 55 customers.

An important property for time-dependent problems is the First–
In–First–Out (FIFO) property [15-17]. A model with a FIFO 
property ensures that if a vehicle travels between two locations, 
a later departure cannot result in an earlier arrival at the destina-
tion. The formal definition given in is as follows:

(15)

The FIFO property is kept whenever the shortest path between 
two locations is selected. However, the FIFO assumption is not 
necessarily satisfied if the fastest route is selected between two 
locations for distance  and duration  estimations. Ahn and 
Shin (1991) [15] demonstrated that real traffic does not always 
maintain the FIFO property, as a courier prefers the fastest route 
over the shortest one.

Ichoua et al. (2003) [16] introduced the Ichoua-Gendreau-Pot-
vin (IGP) traffic model, guaranteeing the FIFO property. They 
proposed a tabu search solution method, based on the work of 
Taillard et al. (1997) [22], to solve the time-dependent vehicle 
routing problem (VRP) with soft time windows. Instead of two 
objective functions, (2) and (5), they deal only with one objec-
tive function, which consists of the sum of total travel time plus 
penalties associated with the sum of lateness. At the same time, 
the early arrival, causing the waiting, is not penalized. They 
showed that ignoring time dependency. i.e., using VRP models 
with constant speed leads to poor solutions. Ichoua et al. (2003) 
[16] tested their method using a set of 56 problems from Marius 
Solomon (1987) [37] with three different traffic scenarios. Each 

scenario in the IGP model is described with a 3x3 time-depen-
dent travel speed matrix, where each row corresponds to a cate-
gory of arc and each column to a time interval. 

Contribution, (Fleischmann et al., 2004) [18] however, pointed 
out that the IGP model relies on constant edge distances, which 
is a hypothesis suitable for road networks but not for VRP, where 
links between customers represent the fastest paths, which 
change due to traffic congestion during rush hours (Fleischmann 
et al., 2004) [18]. Typically, couriers get these paths online from 
a navigation system. The authors created a non-FIFO (non-pass-
ing condition) traffic model from Berlin travel time data and 
solved incapacitated TDVRP with and without time windows. A 
study proposed a solution to minimize the sum of costs associat-
ed with the number of vehicles, distance, duration, and lateness 
[19]. They used a genetic algorithm to solve the problem up to 
30 stop points. 

Donati et al. (2008) [9] presented an Ant Colony System (ACS) 
for the first time to solve the TDVRP with hard time windows 
(TW) constraints, allowing, however, waiting at the site before 
delivery. While adopting the FIFO traffic model, they employed 
two objective functions: fleet size (the primary objective) and 
total route duration (the secondary objective). The algorithm 
was applied to a real road network in the Padua logistics district 
in the Veneto province of Italy. Balseiro et al. (2008) [43] sug-
gested improving the algorithm of Donati et al. (2008) [9] on 
the Solomon (1987) [37] benchmarks, utilizing aggressive inser-
tion heuristics that rely on the minimum delay metric, which is 
combined with ACS to fill the gap. The authors studied dynam-
ic traffic models with 10-minute intervals (144 time zones per 
day) and used TABU-search (TS) to solve the problem [20]. The 
algorithm was tested on the Augerat et al. (1998) [57] bench-
mark with different time-dependent speed models. Maden et al. 
(2010) [23] developed the LANTIME algorithm, which mini-
mizes CO₂ emissions or total route duration. The algorithm is 
based on parallel insertion and neighborhood moving operations 
[21, 22]. The LANTIME algorithm was applied to the South 
West England truck traffic with 15-minute intervals (time band) 
or 672 distance-duration matrices for the entire week. The route 
between any two points never changes to ensure the FIFO prop-
erty. Ehmke and Mattfeld (2012) [29] used Taxi drivers’ GPS 
data (Floating Car Data (Taxi-FCD)) from Stuttgart, Germany, 
to create 24x7 weekly time buckets. They applied k-means clus-
tering to distinguish between 6 kinds of traffic models and then 
used the LANTIME algorithm [23].

Figliozzi (2012) [1] presented an Iterative Route Construction 
and Improvement (IRCI) solution for hard and soft time win-
dows. He also introduced the TD benchmarks, based on the 
instances of Solomon (1987) [37] and different travel time 
distributions, adapted to the FIFO property, over the delivery 
planning horizon. Additionally, some genetic algorithms have 
been proposed (Kumar & Panneerselvam, 2017) [67], as well 
as meta-heuristics [24]. More detailed information about TD-
VRPTW is specified in the review by Michel Gendreau et al.  
(2015) [4]. Recently, Teng et al. (2024) [75] successfully demon-
strated the advantages of ACS for solving the dynamic VRPTW 
on the modified Solomon (1987) [37] benchmark. 

There are various exact algorithms for small-scale tasks with a 
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small number of stop points (up to 40) [25-27]. Some of these 
works do not ensure that the FIFO property is observed. The 
latter study introduces the makespan secondary objective: to 
finish the vehicle route as early as possible, in contrast to the 
minimal duration route [26-28]. The following example illus-
trates the difference between the two objectives. Let us suppose 
that the traffic model is described by time buckets, such as the 
Vienna multi-layer travel times matrix model, and the earliest 
depot departure time is 7:00 AM [6]. Suppose the depot-to-cus-
tomer duration is 65 minutes at 7:00 and 40 minutes at 10:00, 
and the customer time window is [8:00, 11:00]. In this case, the 
optimal makespan solution is for the depot to depart at 7:00 and 
for the customer to arrive at 8:05. The total duration is 1 hour 
and 5 minutes. The courier is free at 8:05. The optimal minimal 
duration solution is the depot departure at 10:00 and the custom-
er arrival at 10:40, with a total duration of 40 minutes, but the 
courier is free only at 10:40. In this paper, the makespan objec-
tive, which is commonly accepted in the industry is studied [26]. 
Furthermore, the IGP model has not been used since, according 
to Mancini (2014) [5], it is a substantial simplification that does 
not accurately represent real urban networks.

Static Traffic Model
All researchers universally accept that there is no standard for 
a static traffic model; however, each city has its specific model. 
Kok et al. (2012) [66] described the TIGER/Line speed model 
for Rhode Island, Connecticut, Maryland, Massachusetts, and 
New Jersey. In this model, every road belongs to a category 
with a corresponding average normalized speed. There are three 
traffic time buckets: morning pick hours (6:30 – 9:30), evening 
pick hours (15:30-19:00), and out-of-pick hours. Additionally, 
each road has a degree of urbanization, which affects the relative 
speed drop and direction of commuter traffic towards urban ar-
eas and industrial zones. Approximately 15,000 to 38,000 nodes 
are used to describe the city and define the degree of urbaniza-
tion, but the model does not meet the FIFO property. Simona 
Mancini (2014) [5] describes an average speed model in Torino, 
Italy, using a sixth-degree polynomial function. This function 
approximates the traffic data collected for working weekdays 
from 7:00 until 20:00 with 5-minute intervals. This model also 
does not guarantee that the FIFO property is respected.
The study is based on the street network of Vienna, which in-
cludes 70,775 edges [6]. The travel times are derived from Float-
ing Car Data (FCD), which is provided by a fleet of taxis in 

Vienna for each 15-minute time slot. Eventually, there are 96 
buckets for a 24-hour planning horizon. The travel speed is ar-
tificially adjusted to match the travel times, ensuring the FIFO 
property is maintained. Ehmke and Mattfeld (2012) [29] adopt-
ed the same model for traffic congestion modeling in Stuttgart, 
Germany, having 1,147,776 edges. They used 24x7 = 168 buck-
ets to describe the average weekly traffic. Lombard et al. (2018)  
[7]describe a time-dependent traffic model for the urban area of 
Paris, utilizing a multi-layer travel time matrix. The data for the 
matrix is collected from Google Maps with a two-week accumu-
lation interval, and the planning horizon is from 8:00 to 20:00 
with time steps of two hours.

This paper adopts an edge-based, time-dependent FCD traffic 
model [29, 6]. The data are collected from taxis and couriers 
from mobile GPS devices with a resolution of one second. The 
traffic of two cities is modeled: Tel Aviv, Israel, with 78,221 edg-
es, and Moscow, Russia, with 1,252,963 edges. In contrast to 
FCD, the model also includes traffic lights and junction edges in 
all possible directions with zero distance and an average waiting 
time, which is also included in the total travel time. These data 
undergo smoothing and alignment to the OpenStreetMap (OSM) 
graph using the Kalman filter. This alignment begins with the 
calculation of a priori probabilities for each junction passing, us-
ing the frequencies from the historical data collected. The rough 
data from the GPS devices is generally too noisy to reconstruct 
a valid vehicle path passing through the OSM edges and inter-
sections. These probabilities are used to create the discrete-time 
Markov chain model [30]. They are further utilized for optimal 
matching between a courier or taxi driver’s location points and 
OpenStreetMap (OSM) edges.

For each edge of the OSM graph, which is the segment between 
two junctions, the triple  is collected. In this tri-
ple  is the average duration for edge i at timestamp  it 
is the standard deviation of the duration for edge i at timestamp t, 
and nit is the number of couriers that passed edge i at timestamp 
t. The timestamp t consists of the integer starting hour, related 
to the starting time for the edge i and the weekday number for 
the original day of the week or code of the holiday if there is a 
holiday on the date of t. Lombard et al. (2018) [7] suggested 
that 168-240 initial timestamps form a multi-layer travel times 
matrix. 

Table 1: An example of time-bucket merging between single timestamps
Weekday/Hour Monday Tuesday Wednesday Thursday

7:00 Neighbor - 1
8:00 Neighbor - 4 Tested Timestamp Neighbor - 2
9:00 Neighbor - 3

If some edges lack sufficient data for a few timestamps, they are 
merged into integrated time buckets [6, 7]. This merging reduces 
the prediction error caused by the lack of data and decreases the 
number of time buckets the system needs to save for traffic dura-
tion prediction. The rationale for the merging is to partition the 
planning horizon into T time intervals with a constant duration 
on every edge. Let us consider four neighbors of each  at time-

stamp, as shown in Table 1. For weekdays, these neighbors are 
the and timestamps, which are ±24 hours or ±1 hours different 
from the tested timestamp. For holidays, there is ±1 hour. For 
the weekend days, there are ±24 hours. To prove the statistical 
equivalence between the tested timestamp Tt and its neighbor 
timestamp Tn , the Student T-test is applied as follows. 
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Table 2: An example of time-bucket merging between the cluster and single timestamps
Weekday/Hour Monday Tuesday Wednesday Thursday Friday

7:00 Neighbor - 1
8:00 Neighbor - 6 Cluster C Neighbor - 2
9:00 Neighbor - 5 Neighbor - 3
10:00 Neighbor - 4

For each edge i, having min(niTt , niTn) ≥ 7, the absolute average 
difference ∆M=|miTt-miTn| and variance   are cal-
culated. 

Using these values, the two-tailed significance of the T-test is 
calculated as p= , where   
is the inverse Student distribution with df degrees of freedom. If 
p > 0.05, the two edges are considered homogeneous.

The ratio of homogeneous edges is calculated as , where 
Nh is the number of homogeneous edges, and Nt is the total 
number of the tested edges. This ratio measures the homogeneity 
between two timestamps.

The timestamps, having the highest homogeneity ratios, are 
merged and a joint triple: {mic,σic,nic} is calculated as follows:

(16)

The timestamp clusters are merged if the homogeneity ratio η 
is more than 0.75. DBSCAN clustering is processed at the next 
stage, and new cluster C is tested to be merged with all its four 
neighbors, as shown in Table 2 [31]. The process is repeated 
until a timestamp or cluster is merged. Figure 1 shows the final 
merged time buckets for weekdays in Moscow, Russia.

Figure 1: An example of the final merged time buckets for Moscow, Russia
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The set of n+1 locations consists of a depot, and n customers 
form a directed graph with n+1 nodes and (n+1)*n arcs that 
represent travel between locations. For every arc and each time 
bucket, the fastest path is calculated using a time-dependent 
Dijkstra algorithm [6]. As a result, a multi-layer distance du-
ration matrix A(t) is created [7]. Each element of the distance 
duration matrix is a pair consisting of travel duration   and 

travel distance , , where t=1,…,T. Figure 2 
illustrates an example of a multi-layer distance duration matrix. 
For all buckets, the distance  is always greater than or equal 
to the shortest, time-independent, or OSM distance since traffic 
congestion causes one to select the route that can be longer by 
distance but faster by time.

Figure 2: An example of a multi-layer distance duration matrix

Time buckets do not necessarily produce a non-decreasing step-
wise function, so the FIFO property is not always satisfied. For 
example, if the duration between locations A and B is 20 min-
utes between 19:00 and 20:00 and 15 minutes between 20:00 
and 23:00, then, from the modeling perspective, the vehicle 
departing from A at 19:59 will arrive at B at 20:19. The car, 
departing from A two minutes later at 20:01 will arrive at B 
three minutes before, at 20:16 since it will take another route, 
optimal for the next time bucket. A feasible solution to the TD-
VRPTW  with no waiting is a set of the TSP sequences with 
TD and TW, i.e., TDTSPTW of  customer-time pairs: 

.Whe re ,   
is the depot,  k=1,…K  is the vehicle, i.e., TSP index, and

is the arrival time at the customer . For the 
depot , and . The relation between the conse-
quence pairs is described by the traffic equation (12):

 (17)              
Solving the VRP is known to be a combinatorial NP-hard opti-
mization problem [32]. For the practical number of customers, 
typically n ≥30, the exact solution is not viable on the time scale 
[9]. To this end, the solution consists of two principal stages: 
an initial feasible or greedy solution and iterative improvement 
until a reasonable optimum is reached [33].  

Greedy Feasible Solution for TDVRPTW
Route construction heuristics select nodes (or arcs) sequentially 
until a feasible solution has been created [34]. There are two 
principal approaches to creating greedy feasible solutions: vari-

able neighborhood search and saving heuristics [35, 10]. Vari-
able Neighbourhood Search (VNS) or Adaptive Large Neigh-
bourhood Search (ALNS) is a type of first-order operator with a 
minimal computational load per iteration [36]. Still, it involves 
a significant number (up to 13) of adjustable parameters. The 
saving concept or Clarke-Wright (CW) concept, proposed by 
Clarke and Wright (1964) [10], is a kind of second-order opera-
tor, estimating a saving measure of each arc:

 ,	                                                      (18)

where dij is the distance between customers i and j, and customer 
0 denotes the depot. Thus, the values of sij express the saving of 
combining two customers, i and j, on one tour rather than serv-
ing them on two different tours. The saving algorithm forms the 
basis of most tools for solving VRPs and can be easily applied to 
VRPTW, as initially suggested by Solomon (1987) [37]. How-
ever, VRPTW in models like (Doerner et al., 2002)  [6] has no 
traffic, and the riding time between the customers equals the Eu-
clidean distance between them, so the saving criteria like C2 do 
not directly apply to TDVRPTW [37, 38]. The simplified pseu-
do-code of a greedy algorithm, based on the saving principle, is 
shown in Algorithm 1. The algorithm’s input is the customer list 
with TWs and service times, depot TW and loading time, and 
a multi-layer distance duration matrix. The output is a feasible 
TDVRPTW [37].

Algorithm 1: Greedy Saving TDVRPTW Solution

Step 1	 Select the first arc  of seed customers [34].
Step 2	 Create a list  of unvisited customers.
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Step 3: Set partial tour  , , and .
Step 4 	 Until , repeat:
Step 4.1	Select the best head-interior customer from  to , 

having saving 	 .
Step 4.2	Select the best tail-interior customer from  to , hav-

ing saving .
Step 4.3	If add a new customer, 

 to , and update list .
Step 5 	 Until the list of unvisited customers  is empty, repeat:
Step 5.1	Add tour  to TDVRPTW, and set 
Step 5.2	Select the first arc  of seed customers 
from the list  for a new tour.
Step 5.3	Create a new tour  by repeating Steps 2-4.

Saving Concept for TDVRPTW
For TDVRPTW, let us modify the classical CW-saving algo-
rithm and, instead of a single saving matrix S, produce two ma-
trices: a saving matrix S and a time-start matrix T₀. It’s supposed 
that the fleet is homogeneous, i.e., all vehicles are the same type 
[10]. The element  of the saving matrix S means the saving 
from using the path  instead of two paths:  and 

. The element  of the time-start matrix T₀ means the ear-
liest time of arriving at the starting location  on the path  
from the depot (location 0) if the path is . The path is not 

always feasible. For example, if the time window at location  
is  and at location j is  the path  
is infeasible, but the path  is feasible, providing the travel 
time between , and the service time of customer i at the time 
bucket of 12:00 exceeds 20 minutes. If the path  is infea-
sible  and . Thus, if  or   then 

 and  because of the time windows incompatibility. 

If there are no feasible paths on the entire matrix, then all cus-
tomers get the point-to-point solution:  and .

The elements of the matrices  and  are calcu-
lated based on the objective function, traffic model, and con-
straints. For example, if vehicle capacity is ten items, customer 
i demands five items, and customer i demands six items, both 
paths  and  are infeasible because of the capacity 
violation. So, if , then ,=0 and , where

 is the vehicle capacity.

If , then the earliest arrival time at location i is , thus 
. Otherwise, the earliest departure time from i to j is 

the root of the traffic equation or the backward travel time func-
tion: 
		                                                                     (19)

Equation (19) is solved iteratively, and Figure 3 illustrates the de-
livery process [13]. The initial guess is  minute, 
i.e., the previous time bucket if it is different from the time buck-
et  of ej .The iterations  are processing for 
k=0,1,2,... until . Sometimes, the iteration pro-
cess is prone to oscillations. Let’s consider an example depicted 
in Figure 4. There is a depot with a time window [6:00-12:00], 
loading time , and customer i with TW = [7:55-
9:30]. The depot-to-customer travel time is  = 
40 minutes (before traffic congestion) and   = 
70 minutes or 1:10 at the rush time. The process (19) starts with 

- 0:01 = 7:54, and = 7:55 - 1:10 = 6:45. The next iter-
ation gets  = 7:55 - 0:40 = 7:15. Thus, there is an oscillation:  
6:45, 7:15, 6:45, etc. In this case, the target time = 7:55 is un-
reachable, and there is a dead zone between 7:40 and 8:10. In the 
dead zone, the customer cannot be reached from the depot. The 
solution of (19) is the earliest departure time of the time bucket 
at the start time, i.e.,  7:00, and the arrival time at the location 
j is 7:00 + 1:10 = 8:10. In this case, the arriving time at the depot  

, is  = 7:00 – 0:30 = 6:30.

Figure 3: An illustration of the delivery process for the depot with TW = [6:00-12:00], g0=0:30 and two customers i with TW = 
[8:00-10:00], service time gi=0:15 and  j with TW = [9:30-12:00], service time gj=0:20

Figure 4: An illustration of the oscillations in solving equation (19)
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In many cases, equation (19) has a multi-root solution. For 
example, let customer  has TW = [19:05-19:40] with the de-
pot-to-customer travel time   = 3 minutes 
(after the rush) and   = 6 minutes (at the rush 
time). In this case, there are two roots:  = 19:02 and 18:59, so 
a minimal duration (3 minutes at 19:02) is chosen.

To know the time when the vehicle has to leave the depot to 
arrive at location  at  (depot departure time), the follow-
ing backward time equation, similar to equation (19), has to be 
solved:

				              (20)

The root of (20) is clipped into the TW interval . Eventu-
ally, for the route (0,i,j,0) there is a sequence of the arrival times: 

,where the depot arrival time is just 
, where  is the depot departure time from (20),  is the depot 
return time and  is the depot loading time, i.e., the time need-
ed for the pickup. This time does not depend on traffic; however, 
the rest of the arrival times are traffic-dependent and are calcu-
lated using the forward propagation, or ready time function [13]:

+ , , 

	                                       (21)

If  or  or , then the pair is 
infeasible and , .Besides, following the regula-
tions, the tour duration should not exceed the maximum courier 
shift working time, i.e.:

,                                                      (22)
				                                                     
where  is the maximal courier working shift. If condition 
(22) is violated, then , and .

The saving matrix elements are:

	 			                                                               
Times   and   are also roots of equations (20) and (21),   
and  are the earliest departure time for a point-to-point tour, 
and they are defined as a root of the backward time equation:

                                                           (24)	
	                                                              	
The First Seed Arc  Selection for the Greedy Algorithm
The first step is to find a pair of “seed” customers to initialize the 
path construction [34]. The path starts with the earliest possible 
delivery pair, having the maximal saving: 

.	                    (25)	
	
Where set A consists of the earliest pairs  , where 

 is the earliest late time window for all of the custom-
ers, i.e., = . Let us denote this route, consisting 
of the first pair, as a set containing the path and arrival times: 

,where the depot depa-
ture time  is the root of equation (20). The route is feasible 

if the arrival times  and  are inside their time windows, 
is inside the depot time window, and the total courier 

shift duration does not exceed the maximum courier shift work-
ing time (22). The already visited sites are collected in the visit-
ed customers list . 

The first seed arc selection requires the calculation of n(n-1) 
items of the saving matrix (complexity )  and their sorting  
(complexity O(n(n-1)ln(n(n-1)))), therefore its overall complex-
ity is  .

The Head Interior Heuristics for the Greedy Algorithm
Let us suppose that we have already created a partial solution 
of VRP with k ready feasible paths: ,where 

is an ordered list of the visited sites, 
along with the pickup time . Besides, we still have a list of 
m unvisited customers:  and the current 
feasible path  under construction. To find 
the next best partial greedy solution of VRP, we would have to 
test  push-forward insertions (Solomon, 1987) [37]. 
For a large number of customers, the overall time complexity 
following [39] is O(n3 ), and this becomes infeasible due to the 
computational load [39]. Instead, only head and tail interior in-
sertions are processed as suggested in the original Clarke-Wright 
heuristic [10]. In addition to the insertions of m unvisited cus-
tomers, we check the relocate heuristic with the last visited cus-
tomers of each ready path πi, subject to . Let us denote this 
list ST =   as a soft tabu list. In our traffic 
model, the backward update (Bräysy and Gendreau, 2005a) [39] 
demands solving n times the equation (20) [34]. To reduce the 
computational load, only the forward update is processed for the 
soft tabu list.

The algorithm is described in Algorithm 2. For the current path, 
the arrival time at each site  is known. Let us denote this 
value, or ready time, as . The following site, to be visited in 
the current path, is selected from the list of unvisited sites Y and 
the soft tabu list ST (Step 1) [13]. If the tested customer y does 
not meet capacity, time window, or maximal shift duration con-
straints (Steps 2.1-2.3), the next customer from the list is tested. 
For each valid customer, its saving value is calculated (Step 2.6), 
and if this saving exceeds the initial saving , a modification of 
the Coefficient Weighted Distance Time Heuristics (CWDTH) 
or level of urgency is calculated as follows [41, 42]. 

Let  be the arrival time at the customer y, which is calcu-
lated in Step 2.2, then the time left to the end of the delivery 
is . The measure of actual urgency also de-
pends on the planning horizon of customer y and is defined as 

. Let  be the maximal gap 
to the end of the delivery time window for all valid customers, 
then the weight . Among the unvisited 
customers , a customer with the max-
imum weighted saving  (Step 2.7) is 
selected. The output of the algorithm is the updated current path 

.

Algorithm 2: TDVRPTW Greedy Head Interior Insertion

(23)
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Step 1	 Create a soft tabu list  and 
for the current path , calculate the 
following parameters:

Step 1.1	Current demand    .
Step 1.2	Arrival time at the last customer .
Step 1.3	On-demand duration, i.e., the sum of durations for de-
pot-to-customer delivery to each customer separately:

,	
                                                                                                (26)
where  is the earliest departure time from the depot for a sin-
gle-point , which is defined as a root of equation (23).
Step 1.4	Current path duration:

.	
                                                                                                (27)
Step 1.5	Current saving .
Step 2	 For each customer   repeat the following steps:
Step 2.1	If customer  violates capacity constraints, i.e., 

, or  > exceeds the maximal avail-
able amount of the stop points , continue with the next cus-
tomer.
Step 2.2	Calculate the arrival time at customer :

 .If the arrival time is too late, 
i.e.,   or too early, i.e., , continue with the next 
customer.
Step 2.3	Calculate total delivery shift duration: 
, where . If  , contin-
ue with the next customer; otherwise, calculate the saving value 
as follows.
Step 2.4	Calculate on-demand duration (sum of durations for 
depot-to-customer delivery to each customer separately):

 ,       (28)
where  is the earliest departure time from the depot for single 
point y, which is defined as a root of equation (24).
Step 2.5	Calculate the path duration with customer y:

 ,                                     	
                                                                                                (29)
where  is the arrival time at customer y, calculated in Step 2.2.
Step 2.6	Calculate the saving value .If , 
there is no reason to process customer y, in this case, continue 
with the next customer.
Step 2.7	Calculate  and (Carić et al., 2007) [41]
weighted time-saving :

				                                                                   
Step 3	 Find , and  .
Step 4	 For each customer z, associated with the path πi from 
the soft tabu list  z ST repeat the following steps:
Step 4.1	If customer z violates capacity constraints, i.e., 

 or  >  exceeds the maximal avail-
able amount of the stop points , continue with the next 
customer.
Step 4.2	Calculate the arrival time at customer z: 

. If the arrival time is too late, i.e., 

 or too early, i.e., ,  continue with the next cus-
tomer.
Step 4.3	Calculate total delivery shift du-

ration: , where 

. If , contin-
ue with the next customer; otherwise, calculate the saving value 
as follows.
Step 4.4	Calculate current saving  for path ,  correspond-
ing to the last customer :  , where  is calcu-
lated using (26) and  using (27) for path 
Step 4.5	Calculate on-demand duration (sum of durations 
for delivery to each customer separately) without customer z: 

, where  is the duration of the 
tour , calculated by equation  (26).
Step 4.6	Calculate the path duration up to the customer before z: 

                                           

where  is the path associated 
with the customer ,  is the pickup time for the path , and 
the time is the arrival time at the customer 

Step 4.7	Calculate the savings lost for finishing the path  
without customer z:

                                       (32)	
			                                                                                                                                                                                                                                                     
Step 4.8	Calculate the saving value  for head inserting user z 
into the current path  by applying Steps 2.1-2.6 to customer z 
instead of y.
Step 4.9	Calculate the actual savings concerning the savings lost 
and the level of urgency:

                            (33)	
		                                                                                                                                                                                                                                                                    
Step 5 If , then the updated path  with the cus-
tomer z is better than the previous path with the customer y. In 
this case, the new path  is the algorithm’s output. Other-
wise, the output is the old path .
Step 6	 If the new saving value , then path  cannot 
be updated by head interior insertion.

Suppose the algorithm selected a customer from a soft tabu list. 
In that case, we must calculate the saving loss for withdrawing 
a soft tabu customer from its path to compare with the unvisited 
customers (Step 4). A soft tabu flag indicates that the path  
(associated with customer z) ought to be updated since anoth-
er unvisited customer might replace the withdrawn customer z. 
Soft tabu testing is a type of local search and insertion operation 
[43].

If Algorithm 2 returns , then one of the possible 
reasons might be the gap between the next possible earliest de-
livery and the already finished delivery at the current path 
. In this case, we need to check the possibility of adjusting the 
pickup time to synchronize the customers’ TWs. Let  be 
the subset of unvisited customers Y, passing the capacity con-

(31)

(30)
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ditions (Step 4.1). Let  be the earliest de-
livery time for all customers . Then, we can add the next cus-
tomer to the route if the pickup time is delayed by the positive 
value Δt=max  i.e., the maximal gap among 
the earliest delivery time customers. This new pickup time is 
applied to the path , and now, if 
in the time-shifted path  all customers are inside their TWs: 

. Algorithm 2 is applied again to the 
current path . Algorithm 2 involves m+k tests, and each test 
involves no more than n calculations since max(m+k)=n-2, then 
its complexity is O(n2 ).

The Tail Interior Heuristics for the Greedy Algorithm
Besides head interior insertion, the tail interior insertion is also 
tested, as Clarke and Wright (1964) [10] suggested. The input is 
the same: a partial VRP with k feasible paths: 
, where  is an ordered list of the 
visited sites, along with the pickup time , a list of m unvis-
ited customers: , and the current path 

 under construction. In the case of 
the tail interior heuristics, the potential customer is tested to be 
delivered before . So, two backward-time equations have to 
be solved:
1 Arrival time at the tested customer y:

          (34)                                                                                                                                             
                                         			                                                       
where t1 is the arrival time at the first customer , calculated as 

. Equation (34) is solved iteratively, like 
equation (20), with the initial guess  
New pickup time for the current path      :
			                                                           

                                                                                                              
Equation (35) is also solved iteratively, with the initial guess 

.

The feasibility of the new path, starting with the customer y is 
tested by iterative forward propagation. Let,   be the arrival 
time at the customer y, then the arrival time at the first customer 
of the initial path  is

,	          (36)	
	                                           
If ,then the path is infeasible.  The rest of the 
arrival times on the path  are updated as follows:

	                                                                                   (37)
                                                                                              

If , then the path is infeasible.

The process is summarized in Algorithm 3, having the same in-
put and output as Algorithm 2.

Algorithm 3: TDVRPTW Greedy Tail Interior Insertion
Step 1	 Create soft tabu list 
Step 2	 Calculate parameters Qc, D0 and s0 of the current path 

using Step 1 of Algorithm 2.
Step 3	 Calculate the arrival time at the first customer  as 

.
Step 4	 For each customer  repeat the following steps:
Step 4.1	If customer y violates capacity constraints, i.e., 

, or  >  exceeds the maximal 
available amount of the stop points , continue with the 
next customer.
Step 4.2	Calculate arrival time  at the customer y as the root 
of equation (34) and the pickup time   as the root of equa-
tion (35). If , continue with the next customer.
Step 4.3	Find the arrival time at the first customer location of the 
initial path , using equation (36).  If this time , 
continue with the next customer.
Step 4.4	Find the arrival time at the rest of the customer loca-
tions from the initial path , , using equation 
(37).  If one of these times is out of TW, i.e., , con-
tinue with the next customer.
Step 4.5	Calculate total delivery shift duration:
	                                                                                                                                                                      

                                                                       
If , continue with the next customer.
Step 4.6	Calculate on-demand duration (sum of durations for 
depot-to-customer delivery to each customer separately)  
with equation (28).
Step 4.7	Calculate the path duration with the customer y:

                       

where   is the arrival time at the customer  location, recur-
sively calculated by (17) as: .
Step 4.8	For the new path, calculate the saving value ' using 
Steps 2.6 and 2.7 of Algorithm 2.
Step 5	 Find , and .
Step 6	 For each customer z, associated with the path πi from 
the soft tabu list   repeat the following steps:
Step 6.1	If customer z violates capacity constraints, i.e., 

 or  >  exceeds the maximal 
available amount of the stop points , continue with the 
next customer.
Step 6.2	Calculate arrival time  at the customer z as the root of 
equation (34) and the pickup time   as the root of equation 
(35). If , continue with the next customer.
Step 6.3	Apply step 4 for customer z and calculate the saving 
value .
Step 6.4	Calculate the lost savings , using Steps 4.7 and 4.8 
of Algorithm 2.
Step 6.5	Calculate actual saving ' according to the saving loss 
and level of urgency (33).

(39) 

(38) 

(35)
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Step 7	 If , then the updated path    with the cus-
tomer z is better than the previous path with the customer y. In 
this case, the new path  is the algorithm’s output. Other-
wise, the output is the old path .
Step 8	 If new saving  then path  cannot be up-
dated by tail interior insertion.

There are three exceptional cases when Algorithm 3 cannot cre-
ate a tail interior path.
1. All unvisited sites have to be visited after the first customer , 
i.e., . In this case, instead of the tail interior path, the 
Solomon insertion or Push-Forward Insertion Heuristics (PFIH) 
at position  is processed, where  
according to the maximal free time (MFT) heuristic (see Algo-
rithm 4) [37, 43].
2. All unvisited sites have to be visited before the first customer 

, i.e., . In this case, the pickup time may be started 
early by , where ε is a small confidence 
constant, say 10 seconds, to prevent rounding errors. The time 
shift is applied to the path   with 
the new pickup time . If in the shifted path ,  all the 
customers are inside their TWs: , Algo-
rithm 3 is applied again with the new current path . The time 
shift is tested for all customers y, sorted in ascending order of 

 and the first feasible time shift is applied.
3. If there are valid customers and no insertion in cases 1 and 
2 were found, then there is no feasible path due to the TW in-
compatibility. In this case, Solomon’s insertion PFIH at posi-
tion ν is tested, where , where 

, i.e., maximal index, having the minimal late 
time TW over the current path , cf. minimum delay metric 
[43]. In this case, Algorithm 4 is applied to the index ν.

Algorithm 3 checks m+k customers, and each test requires 
k  forward calculations; thus, the Algorithm 3 complexity is 
O(k(m+k)). In the worst case, it becomes  O(n2 ).

Solomon’s PFIH for the TDVRPTW Greedy Algorithm
Push-forward insertion heuristics are processed if the tail in-
sertion fails, and instead of the first position, the new insertion 
position ν is tested according to the MFT heuristic [43]. In this 
case, the new customer is inserted into any predefined position ν 
between 1 and nc of the current path πc. The process is described 
by Algorithm 4, and the output of the algorithm is the updated  
current path .

Algorithm 4: TDVRPTW Greedy Solomon PFIH Insertion
Step 1	 Create soft tabu list ..
Step 2	 Calculate parameters Qc, D0 and s0of the current path 
using Step 1 of Algorithm 2.
Step 3	 Using equation (34), calculate the arrival time at the 
first ν customers  .
Step 4	 Calculate the on-demand duration (when each custom-
er is served with a separate vehicle) up to the customer  . That 
is a particular case of equation (26) and is read as:

	 

Step 5	 Calculate the current path duration up to the customer 
 without return to the depot, which is written as: 

  

	
	          
Step 6	 For each customer , repeat the following steps:
Step 6.1	Calculate arrival time  at the customer y as the result 
of the forward propagation using equation (37).  If 
, continue with the next customer.
Step 6.2	Find the arrival time for the rest of the customers from 
the initial path , ,using equation (36). If one of 
these times is out of TW, i.e., , continue with the 
next customer.
Step 6.3	Calculate total delivery shift duration  CS using equa-
tion (38). If CS>CSmax  , continue with the next customer.
Step 6.4	Calculate on-demand duration (sum of durations for 
depot-to-customer delivery to each customer separately)  us-
ing equation (28).
Step 6.5	Calculate the path duration with the customer y:

	                                                                                           

where is the result of (41),  is the arrival time at the cus-
tomer , recursively calculated by (17),   is the arrival time 
at the customer   , and  is the arrival time at customer .
Step 6.6	For the new path, calculate the saving value  using 
Steps 2.6 and 2.7 of Algorithm 2.
Step 7	 Find , and .
Step 8	 For each customer , associated with the path  from 
the soft tabu list  repeat the following steps:
Step 8.1 	If customer  violates capacity constraints, i.e., 

 or  >  exceeds the maximal avail-
able amount of the stop points , continue with the next cus-
tomer.
Step 8.2	Calculate arrival time  at the customer  as the result 
of the forward propagation using equation (37).  If , 
continue with the next customer.
Step 8.3	Repeat Steps 6.2 and 6.3 for the customer z.
Step 8.4	Calculate on-demand duration (sum of durations for 
depot-to-customer delivery to each customer separately)  us-
ing equation (28) and the path duration with the customer , using 
equation (42).
Step 8.5	Apply Steps 6.4-6.6 for customer  and calculate the 
saving value  .
Step 8.6	Calculate the lost saving , using Steps 4.7 and 4.8 
of Algorithm 2.
Step 8.7	Calculate actual saving , concerning saving loss and 
the level of urgency (33).
Step 9	 If  , then the updated path   with the 
customer  is better than the previous path with the customer 
. In this case, the new path  is the algorithm’s output. Oth-
erwise, the output is the old path .
There are two exceptional cases when Algorithm 4 cannot create 
Solomon’s PFIH interior path.
1 All unvisited sites are incompatible with TW with the arrival 
time at insertion index : . In this case, the new 
insertion index is defined as . If 

, then the PFIH interior is identical to the head interior; (40)

(41)
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otherwise, Algorithm 4 is repeated with the new insertion index 
.

2 If there are valid customers and no insertion related to 
case 1, then there is no feasible path due to the TW incom-
patibility. In this case, the new insertion index is defined as

  , where  i.e., 
maximal index, having the minimal late time over TW on the 
current path . If , then the PFIH interior is identical 
to the head interior; otherwise, Algorithm 4 is repeated with the 
new insertion index .
The complexity of Algorithm 4 is also , and in the 
worst case, it becomes  .

The Current Path Growth in the TDVRPTW Greedy Feasible 
Solution
Let us suppose that we created a partial solution of VRP with  
feasible paths: , , ..., , where   

is the ordered list of visited sites, along with the pickup time 
. Besides, we still have a list  unrouted customers: 

 , and the current path under con-
struction: . By applying Algorithm 2 
(TDVRPTW Greedy Head Interior Insertion), we get a candi-
date for the updated current path:  
, having the saving value  and by applying Algorithm 3 (TD    
VRPTW Greedy Tail Interior Insertion), get another candidate: 

 with the saving value . Alter-
natively, if insertion before  is infeasible, then Algorithm 4 
(TDVRPTW Greedy Solomon’s PFIH Insertion) is used, and 
the candidate path is  . For each can-
didate, let us introduce the urgency indicator , where  
if  and zero otherwise. For the tail interior:  if 

 and zero otherwise, and for Solomon’s PFIH inser-
tion  if  and zero otherwise, where 
the adjustable urgency parameter  = 100 minutes. The winning 
candidate is selected using the rules collected in Table 3.

 If a new customer y, which was added to the winning path, was 
selected from the set of un-routed customers, i.e., ,  then 
y is inserted into the tabu list, and the path growth is continued 
with the winning path. If the new customer was selected from 
the soft tabu list, i.e., , then the following actions of Algo-
rithm 5 ought to be taken.

Algorithm 5: Updating the Path after Selecting a Customer 
from the Soft Tabu List.
Step 1 Remove the last customer  from the path  

, associated with the customer .
Step 2	 Apply Algorithm 2 to the path  without Step 4, i.e., 
only for unvisited sites. Let   be the resulting candidate path 
with the saving value  .
Step 3	 Apply Algorithm 3 to the path  without Step 6 (only 
for unvisited sites) or (if tail insertion is infeasible) Algorithm 4 
without Step 8. Let   be the resulting candidate path with the 
saving value .
Step 4	 If  0 then path  cannot be updated, 
and the process goes on with the reduced path  without cus-
tomer .
Step 5 If  0, then update path , as 
, where , add the newly inserted customer 
into the tabu, and repeat Steps 2-5 for the updated path  until 

 0.

Starting a New Path in the TDVRPTW Greedy Feasible 
Solution
When the current path   meets the stopping criteria and can-
not grow any further, a new feasible path must be initiated. 
Let  be the list of m unrouted customers. 

If this list is empty, all sites have been visited, and the greedy 
feasible solution is ready. If m=1, then the new path is trivi-
al: . If m>1, then the new path can be obtained 
by applying Algorithm 1 on reduced matrices , and 

, where .

Eventually, the Solution Creation Algorithm is summarized 
in Algorithm 6 as follows. The output of the algorithm is the 
list of feasible paths:  , where 
i=1,...,k.

Algorithm 6: The  Greedy Solution Creation
Step 1 Create the first seed pair using equation (25) as described 
in section 5.2.
Step 2 Grow the new path , using Algorithms 2-4, described 
in section 5.6, until the saving is positive.
Step 3 If there is more than one unvisited site after updating the 
tabu list, create a new path and repeat Steps 2 and 3.
Step 4 The solution is ready if the list of unvisited sites is empty 
or contains only one customer.

Algorithm 6 complexity in the worst case is the same as Algo-
rithm 1, i.e., . Since the greedy solution processes algo-
rithms 1-4 in the worst case for all n-2 customers, the overall 
complexity is . 

Eventually, the saving of the greedy VRP solution is the sum of 
the savings of the TSP greedy solutions, i.e., . 
The saving of each greedy TSP  πi=  is the sum 
of its arc savings: . To prove this additive 

Table 3:	The winning candidate selection
State Winning path

                        sh > 0, st > 0, κt =0, and  κh = 1 πh

                           sh > 0, st> 0, κt = 1, and κh = 0 0πt

                              max (sh, st) > 0, and κh=κt πζ, where ζ=argmax (sh,st) 
                                     sh > 0, and st=0 πh

                                    sh > 0, and sh=0 πt

            max (sh,st )≤ 0 New path πc is started
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Figure 5: Relation between the relative saving improvement in percent on the number of customers, based on 4,806 deliveries in 
the Tel Aviv area

Improving the Greedy Feasible Solution for TDVRPTW by 
Ant Colony Optimization
Ant Colony Optimization (ACO) was initially introduced by 
Marco Dorigo et al. (1996) [8]. The idea behind the ACO is to 
select the subsequent head insertion of the growing current path 
with a probability proportional to the path distance or saving val-
ue [8, 38]. The ACO has two principal advantages: it can easily 
adapt to time window constraints by considering the probabil-
ities of subsequent customer selection, and it enables parallel 
implementation [44]. The ACO is inspired by natural models of 
the foraging behavior of N ants looking for food. Studies on real 
ants show that despite not having a sense of sight, they can find 
the shortest path from the food sources to the nest [45]. Ants 
randomly explore their surroundings, and when they find food, 
they return to the nest, depositing a pheromone trail, a trace of a 
chemical substance that can be smelled by other ants [46].

Suppose each ants create a feasible VRP solution using the se-

lection probabilities and constraints. At the first or the explora-
tion stage, the likelihood of selecting the customer j after the 
customer i is proportional to the saving value. Following the 
Gibbs sampling, it can be written as: 	

where R is the set of all valid customers j that are reachable 
from the customer i and  = . The scale factor T 
is a control parameter or simulated annealing (SA) temperature 
[47]. The incentive behind the SA is explained in Figure 6. When 
the temperature is zero, we have the pure greedy solution by 
selecting  at any insertion. When T= ∞, 
we have an entirely random choice at every insertion. The local-
ly optimal temperature is located somewhere between zero and 
infinity.  To this end, the SA temperature measures the selection 
sensitivity to the saving value. 

Figure 6: Duration (D) dependency on the simulated annealing temperature (T)

saving property, let us consider a simplified TSP: π=(0, A, B, C, 0) 
with the saving 
, where pij is a price calculated by objective (5) for the travers-
al arc (i, j). The saving of the TSP with only one arc (A, B) 
is S(AB)=  and the saving of the TSP with only 
one arc (B, C) is S(B, C)= . Thus, S(AB-
C)=S(AB)+S(B,C). Besides, the saving function is always posi-
tive S(π)>0; otherwise, Algorithms 2-4 meet the stopping crite-
rion. Moreover, the saving function is also monotone since every 
customer added to the path π only increases the saving function. 
Following (Nemhauser et al., 1978) [70], if the greedy saving 
function is also submodular, then the upper bound of the global 
saving function is estimated as:
  			 
	                                                                                                 
Let us prove the greedy saving function submodularity property, 

i.e., that for every new customer x: 
	

	                                                                                  (44)
Applying the adaptive saving property to inequality (44) allows 
us to rewrite the inequality as: . Since 
Algorithm 1 is greedy, it always selects the customer with the 
maximum savings addition. Thus, customer x cannot be a prede-
cessor of the customer un, and the savings difference decreases 
every time a new customer is added.
	
Figure 5 shows the relationship between the relative saving im-

provement  vs. the number of customers 
for 4,806 industrial deliveries in the Tel Aviv area. The number 
of customers varies from 2 to 140, and the maximum improve-
ment is consistently below 35%, reaching its peak for 35-55 cus-
tomers.

(45) 

(43)
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To select a starting value of the temperature T let us introduce 
the half-life of saving values (Schrimpf et al., 2000) [73]. Let 
us suppose that the half-life length equals 5% of the maximal 
saving value s_max, and the probability of an arc selection re-
duces by half per half-life. Thus, we have the decay equation: 

. However, the value of  is 
unknown before the optimization is finished, but it can be 
estimated from the greedy solution using the upper bound 
(43) as , where  is the number of 
customers, and  is the number of greedy paths. After the 
substitution and taking the logarithm from both parts of 
the equation, we have ; there-
fore,  the initial SA temperature is                     
                                                                                                (46)

After the pure exploration stage, which is typically implement-
ed with Ne=25-40 trials we have Ne different solutions with the 
saving values Si, total durations Di and the number of paths  ki, 
where i=1,2,…,Ne.  Besides, there is the greedy solution with the 
saving value S0, total duration D0 and the number of paths k0. 
If, at the exploration stage, the greedy solution was improved, 
i.e., miniki < k0 or miniki =k0 and , where i* is the 
best solution according to objectives (2) and (5), then the initial 
temperature  T is close to the optimal, and ACO continues with 
the temperature  T. Otherwise, Algorithm 7 for SA temperature 
selection is applied. The input of  the algorithm is a greedy solu-
tion S0, D0, k0, Ne exploration solutions: Si, Di, ki and initial tem-
perature T.

Algorithm 7: Selection of the Working SA Temperature
Step 1	 Introduce a penalty factor for the non-minimal number 
of paths as D0/k0, and calculate penalized durations for explora-
tion solutions:  		                                             
                                                                                                (47)
Step 2	 Save values  and 
Step 3	 Rerun another Ne trials with decreased temperature 
Tnew= γTold , where decay factor γ = 0.95, and for these solu-
tions, calculate , using (47) and Step 2, and then calculate 
δ=Tnew-Told.
Step 4	 If the new best solution shows an improvement, 
then Tnew is the working temperature; otherwise, save values 

, and calculate the new temperature as 
follows. If , then Tnew= βTprev, , where incremen-
tal factor β = 0.01, otherwise, Tnew= γTprev.
Step 5 Rerun another Ne trials with a new temperature Tnew. If 
the best solution improves, then Tnew is the working tempera-
ture; otherwise, apply the Newton-Raphson process: calculate 
the central difference central difference 
, current gradient , previous gradient 

, and Hessian . Save values
 

and calculate the new temperature  If 
, then the Newton-Raphson process be-

comes unstable, and the new temperature is calculated using 
Step 4.
Step 6	 Repeat Step 5 ten times, and if improvement is not 

reached, then continue ACO with the initial temperature T.

Pheromone Updating Policy
The saving matrix is updated every time the ants finish all the 
paths (local pheromone information) to reward the most suc-
cessful solutions or penalize the less successful ones. Let us 
represent the continuously updated saving matrix as a sum of 
the initial saving matrix and pheromone trace matrix: 
, where  is a pheromone matrix. In this case, Gibbs sampling 
(44) becomes Metropolis sampling:

		                         
The initial pheromone trace matrix is zero 
, and then it is updated after each trial (iteration) as: 

 where r is the incumbent solution 
and pairs (i,j) , i.e., all pairs in the solution.

The pheromone updating term  is calculated as follows. 
Using all the data collected while the working SA temperature is 
calculated, evaluate the following statistics:
1. Minimal penalized saving value , where

 where 

2. Maximal penalized saving value 

3. Average penalized saving value 

4. The standard deviation of the penalized saving value 
.

To reduce the noisy behavior, only  λ≈ 0.2 of the solutions cause 
the pheromone updating.  Compared to the long short-term 
memory (LSTM) approach proposed by Hochreiter and Schmid-
huber (1997) [43], λ is the dropout factor, which is widely used 
for optimization process stabilization. Let us suppose that there 
are N ants at the colony, and the colony increases the maximal 
saving value twice if  where Q is a pheromone up-
dating policy or an activation function in LSTM. Selection of the 
Parametric Rectified Linear Unit (pReLU) function (He et al., 
2015) [63] gets the following expression for Q.

1.  if . In this case, the significantly 
successful solution is rewarded with positive Q.
2. Q=0, if   in this case, the solution is close to 
the average solution or is unsuccessful and does not affect the 
pheromone trace.

The pheromone updating policy Q(s) is shown in Figure 7. Let 
us suppose that the solution savings distribution is close to the 
Gaussian, then the parameter α of the pReLU function is α=

, where  is inverse Gaussian cumulative dis-
tribution function; for λ=0.2, so α≈ 0.8415.

(48)
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Figure 7: Pheromone updating function (Q) dependency on the solution saving (s)

The pheromone updating process can be described as LSTM 
training with stochastic gradient descent (SGD) [48]. Then, the 
training epoch is the number of trials sufficient for coverage of 
all possible arcs, so the epoch is:
                                                                       

 
In equation (49) kmin is the number of paths in the best solution. 
Following this definition, the pheromone evaporation process 
becomes the LSTM forget gate and can be implemented as a 
moving average over one epoch [49].

To define the maximal number of iterations Na, let us examine 
the pheromone matrix as a matrix of stochastic gradients. The 
convergence of the stochastic gradient descent (SGD) process 
takes 10-100 epochs, so Na≈ 10-100n. However, due to the lack 
of computational resources, typically Na is limited to 2-3K iter-
ations for most tasks. The number of iterations can be computed 
within 2-6 computational hours on a standard 4-core computer 
between finishing the VRP data collection and dispatching the 
package.

ACO Convergence to the Global Minimum
Let us apply the results of the adaptive random search study 
by Zhigljavsky & Žilinskas (2008) [77] to study the conver-
sion of the ACO to a global minimum. We suppose that after 

 iterations, there are  solutions, having a min-
imal number of paths kmin and the total duration 
,..,Lmin. If Nmin and Lmin are big enough (following Zhigljavsky 
(1991),  Lmin>200), then k minimal records durations obey the 
Weibull’s distribution with the cumulative distribution function 
(c.d.f.):

	        (50)
                                                                                     
where α is an unknown tail index. The number of record du-

rations should be big enough, but   So, Zhigl-
javsky (1991) [76]  suggests choosing , where [.] is 
the ceiling function. For a given value k, the expected minimal 
duration  is estimated using one of two methods: the maxi-

mum likelihood estimator and the linear estimator.

The maximum likelihood estimator estimates without know-
ing the tail index α [50]. Let us denote ηi, i=1,..,k the first k re-
cord durations in ascending order: η1≤η2…≤ηk. Then, the lower 
duration bound is the root of the equation:

where  If equation (51) has more than one root in 
the open interval (η1, 0), the minimal root is taken. The equation 
(51) is solved using Newton-Raphson  iterations, starting with 
three initial values: where 

 as  i=0,1,.., 
providing   until  The de-
rivative H' is written as:

                          

Where: 

If equation (51) has no valid solution, the tail index α should be 
estimated. There are two popular tail index estimators: the Hill 
(Hill, 1975) [64] and the Pickands (Pickands, 1975) [71]  estima-
tors. Following the Hill estimator,

    
                                                                                                (53)
The Pickands estimator suggests:

   			      
                                                                                                 

If , it is supposed that there is not 
enough data for the expected minimum estimation; otherwise, 
the expected minimum is:

 				  
		                                                                                                      (55)

where , where γ≈0.577 is the Euler-Mascheroni 
constant and ψ(.) is the digamma function. Since  k is an in-
teger,  If the estimated minimum improves the incum-

  (49)
 (51)

(52)

(54)                       
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bent solution for less than 15 seconds, the ACO process can be 
stopped to reduce the computational load.To find a solution, 
using the transition probabilities (44) and (47), Algorithms 1-5 
have to be slightly modified. Derigs and Reuter (2009) [59] and 
Fleszar et al. (2009) [61] reported that ACO is eeasily adapted to 
VRPTW and TDVRPTW.  . 

The First Step of the TDVRPTW ACO Feasible Solution 
Following the maximal free time (MFT) heuristic (Balseiro et 
al., 2008) [43]), the path is started with the earliest possible de-
livery pair, having t0= . The first pair is selected from 
set A=argmin (see equation 25) of the customers with the 
same minimal arrival time. The transition probability (48) is ap-
plied to these pairs, and a random seed pair is selected according 
to the given transition probability distribution. The process is 
described in Algorithm 8. The input of the algorithm is the sav-
ing matrix start time matrix , pheromone 
matrix , and working SA temperature T from Algo-
rithm 7.

Algorithm 8: Selection of the first seed pair 
Step 1	 Sort all values  in ascending order and put into 
the list TU.
Step 2	 If the list TU is empty, i.e., no positive saving exists, 
then the optimization cannot be done, and the on-demand deliv-
ery is optimal. Otherwise, find the list of unique values of 
TU: tU, arranged in ascending order.
Step 3	 For each t ∈ tU repeat the following steps until a pair of 

 is not found:
Step 3.1	Find set .
Step 3.2	Extract from the saving matrix S set S set SU= {sij |(i,j)∈ 
A} and calculate smax = 

Step 3.3	If smax≤0, then continue with the next t ∈ tU. 
Step 3.4	Extract from the pheromone matrix Φ set 

, and calculate the sum of  SΦ
U=SU+ΦU.

Step 3.5	If , then continue with the next T ∈ tU.
Step 3.6	For each calculate probability: 

Step 3.7	Calculate PS=∑p(s), sort p(s)  in descending order, cal-
culate the softmax  , where the cumulative sum (prob-
ability distribution function) is P(s)=
Step 3.8	Pick a random number  and find the first 
s=argmin(P(s)≥ζ)
Step 3.9	Find a pair (u1,u2)={(u1,u2 ) A|s(u1,u2)=s}, having the 
saving value s.
Step 4	 If no pair is found, the optimization cannot be done, 
and the on-demand delivery is optimal; otherwise, create the 
tabu list T={u1,u2}  of already visited customers.
Step 5	 Define the seed route as:

, 
where the depot departure time  is the root of equation 
(20).

The Head Interior Heuristics for the TDVRPTW ACO Fea-
sible Solution
The input for the head insertion heuristics for the ACO solution 

is the same as for the greedy solution: k ready feasible paths: 
π1,π2,...,πk, where  is an ordered 
list of the visited sites, along with the pickup time , a list 
of m unvisited customers: Y = (y1, y2,...,ym) and the current 
feasible path  under construction. Be-
sides, we have the pheromone matrix Φ=‖φij‖, and working SA 
temperature T. As in Section 5, let us denote a soft tabu list as 

. Algorithm 9 describes the process and 
returns the updated current path 

Algorithm 9: TDVRPTW ACO Head Interior Insertion
Step 1	 For the current path, calculate the following parame-
ters using the expressions (28)-(33) from Algorithm 2: current 
demand Qc, the arrival time at the last customer tc, total delivery 
shift , on-demand duration Do , calculated by equation (26), 
current path duration Dc, calculated by equation (27), and cur-
rent saving .
Step 2	 If the customer y ∈Y does not violate capacity and time 
constraints, calculate the saving , following 
Steps 2.1 – 2.6 of Algorithm 2. 
Step 3	 For each customer z ∈ ST from the soft tabu, calculate 
sz=D0i-Di, using Steps 4.1-4.4 of Algorithm 2 and Δsz, using 
Steps 4.5-4.7 of Algorithm 2.
Step 4	 For relevant customers, having sy> s0 , add pheromone 
factor and calculate weighted time-saving [41]:

 	 	
	
Step 5	 For each customer from the soft tabu list z ∈ ST calcu-
late the weighted time-saving concerning saving lost Δsz, calcu-
lated by (31) and pheromone factor:

Step 6	 Concatenate all valid customers from Y, having sy> s0 
and all valid customers from ST, having sz-Δsz>s0. Get a concat-

enated list   and sort sx in descending order.
Step 7	 Calculate the maximal saving in the list: smax=max(sx ) 
and probability density function:  

Step 8	 Calculate the normalizing factor P0=∑p(x) , and the cu-
mulative distribution function:

 		  		
	
Step 9	 Pick a random number 0≤ ξ ≤1 and find the first argu-
ment x for which P(s) exceeds the random number ξ.
Step 10	 If x∈Y, then path πc is updated along with its saving 
value . It x∈ST, than path πc is updated by the insertion of 
customer x, and customer x is removed from the source path πz .

If Algorithm 8 did not detect any valid customers and returned 
with smax≤0, the same actions as in Algorithm 2 are taken, and a 
new insertion position ν is calculated.

The Tail Interior Heuristics for the TDVRPTW ACO Feasi-
ble Solution 
The input and output are identical to Algorithm 9 of TDVRPTW 
ACO Head Interior Insertion. The tail interior insertion algo-
rithm is described in Algorithm 10 as follows.

(56)

(57)

(58)
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Algorithm 10: TDVRPTW ACO Tail Interior Insertion
Step 1 For the current path, calculate the following parameters 
using the expressions (28)-(33) from Algorithm 3: current de-
mand Qc, the arrival time at the last customer tc, total delivery 
shift , on-demand duration D0 , calculated by equation (26), 
current path duration Dc, calculated by equation (27), current 
saving s0, and the arrival time at the first customer  of the 
current path  
Step 2	 If the customer y∈Y does not violate capacity and time 
constraints, calculate saving  following Steps 
4.1-4.7 of Algorithm 3.
Step 3 For relevant customers, having sy> s0 , add pheromone 
factor and calculate weighted time-saving [41]:
               	 	
	                                         
Step 4 If the customer z∈ST does not violate capacity and time 
constraints, calculate saving  along with the lost 
saving  following Steps 6.1-6.4 of Algorithm 3.
Step 5	 For each customer from the soft tabu list z∈ST calcu-
late the weighted time-saving concerning saving lost , calcu-
lated by (31) and pheromone factor:

	                          
Step 6	 Repeat Steps 6-10 of Algorithm 10 and get the updated 
current path 𝜋𝑐 = . If Algorithm 9 did not 
detect any valid customers and returned with 𝑠𝑚𝑎𝑥 ≤ 0, the same 
actions as in Algorithm 3 are taken, and a new insertion position 
ν is calculated.

Solomon’s PFIH for the TDVRPTW ACO Feasible Solution 
In this case, the new customer is inserted at any position 1 < 𝜈 < 
𝑛C of the current path 𝜋𝑐. The tail PFIH algorithm is described in 
Algorithm 11. The input of algorithms is  the partial VRP with 
k feasible paths: 𝜋1,𝜋2,...,𝜋K, where , 
along with the list of the visited sites, with the pickup time 𝑡𝑖

d, a 
list of m unvisited customers: Y = (y1,y2,...,ym), the current feasi-
ble path πc=  pheromone matrix 𝚽 = ‖𝜑𝑖𝑗‖, 
working SA temperature T, and insertion position 1 < 𝜈 < 𝑛C . 
The output is the updated current path 𝜋C= 

Algorithm 11: Solomon’s PFIH for ACO of TDVRPTW
Step 1	 Create a soft tabu list ST = , and 
calculate path parameters Qc, D0, and s0 by applying Step 1 of 
Algorithm 9.
Step 2  Calculate the on-demand duration D0ν up to the customer 

 , using equation (40), and the current path duration up to the 
customer uν

c without returning to the depot Dν , using equation 
(41).
Step 3  If the customer y∈Y does not violate capacity and time 
constraints, calculate the arrival time ty, and  saving sy=Dy

0-Dy, 
following Steps 6.1-6.5 of Algorithm 4.
Step 4	 For relevant customers, having sy> s0, add pheromone 
factor and calculate weighted time-saving [41]:

	
	                         
Step 5 If the customer z∈ST does not violate capacity and time 

constraints, calculate saving sz=D0i-Di, along with the lost sav-
ing 𝛥𝑠z, following Steps 8.1-8.6 of Algorithm 4.
Step 6	 For each customer from the soft tabu list z∈ST calcu-
late the weighted time-saving concerning saving lost 𝛥𝑠z, calcu-
lated by (32) and pheromone factor:

	
	                             
                                                                                                 
Step 7 Repeat Steps 6-10 of Algorithm 10 and get the updated 
current path 𝜋𝑐 =   

If Algorithm 11 did not detect any valid customers and returned 
with 𝑠𝑚𝑎𝑥 ≤ 0, the same actions as in Algorithm 4 are taken, and 
a new insertion position ν is calculated.

Starting a New Path in the TDVRPTW ACO Feasible Solu-
tion 
After each insertion into the current path, the best path is select-
ed according to the rules collected in Table 3. If the new custom-
er was selected from the soft tabu list, some additional actions, 
described in Section 5.6, will be processed. When the current 
path growth meets the terminal criteria, and no new customer 
can be inserted, a new path is started. Let  Y = (y1,y2,...,ym) be 
the list of m unrouted customers. If this list is empty, all sites 
have been visited, and the greedy feasible solution is ready. If 
m=1, then the new path is trivial: π= (0, y, 0). If m>1, then the 
new path can be obtained by applying Algorithm 8 on reduced 
matrices,  and , where 𝑖, 
𝑗 ∈ Y. Eventually, the ACO solution creation algorithm is sum-
marized as follows.

Algorithm 12: TDVRPTW Solution Creation
Step 1 Create the greedy solution using Algorithms 1-6. Set the 
best solution to the greedy solution and initial pheromone matrix 

 to zero matrix, . Calculate the working 
SA temperature T using Algorithm 7.
Step 2	 Create the first seed pair using Algorithm 8.
Step 3	 Grow the new path πc , using Algorithms 9-11 until the 
saving is positive.
Step 4	 If there is more than one unvisited site after updating 
the tabu list, create a new path on the reduced matrices and re-
peat Steps 2 and 3.
Step 5	  The current solution is ready if the list of unvisited 
sites is empty or contains only one customer.
Step 6	 If the current solution has fewer paths, i.e., 
,  replace the best solution with the current one, according to the 
primary objective (2).
Step 7	 If the current solution has the same number of paths 
(k=kbest), but the saving exceeds the best saving (S0<Sbest), re-
place the best solution with the current one, according to the 
secondary objective (5).
Step 8 Update the pheromone matrix   where

Step 9	 Estimate the minimal duration as the root of equa-
tion (51) or using equation (55). If the potential improvement is 
less than 15 seconds, i.e.,  <15sec, the best solution is 
ready. Where the value  is the sum of the durations of all paths 
in the best solution.

(59)

(60)

(62)

(61)
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Step 10	 Repeat Steps 2-9 until the convergence (Step 9) or the 
maximum number of iterations , or computational time limit 
(typically 1-4 hours) is reached.

As greedy as the ACO algorithm for a single path has the same 
complexity, i.e.,   Since the maximal number of paths is 
limited by n, the overall complexity of one solution is 
. Since  is also proportional to epoch, the overall complexity 
to get the best solution is . Figure 7 illustrates the typ-
ical progression of the ACO optimization, with the number of 
paths as the primary objective and the minimal makespan dura-
tion as the secondary objective.

ACO Solution Acceleration for TDVRPTW Using the Riun 
and Recreate Strategy
After 1.5–2 epochs of the ACO algorithm's execution, there is 
sufficient pheromone and historical VRP statistics to accelerate 
the optimization process using the Ruin and Recreate (R&R) 
strategy (Shaw, 1998) [74]. With this data, the top ten elite solu-
tions, which have the best saving values or minimal total dura-
tion (47), are inserted into the Tabu List. This Tabu List is also 
known as Short-Term Memory (STM) (Glover & Laguna, 1997) 
[62], component of Long Short-Term Memory (LSTM). The in-
cumbent solution is selected  from the Tabu List according to the 

SA temperature (Schrimpf et al., 2000) [73]. For each solution, 
the probability of being selected is:

			                                                   
                                                                                                (63)

Where, si is the saving of solution i from the Tabu List, T is the 
SA temperature, smax=max(si ), and . 

ACO Ruin Method 
At the ruin stage, 10% of the shortest tours with low string 
cardinality and less than 80% of the vehicle load are removed 
from the incumbent solution [51]. The vehicle load is defined 
as the ratio of the number of parcels distributed on the path to 
the vehicle capacity qmax (see inequality (6)). The rationale for 
this small removal rule is shown in Figure 8 [36]. The histo-
gram of Figure 7(a) shows that the short paths are only a small 
fraction of the total path length distribution, and Figure 7(b) 
shows that the short paths are underloaded. Typically, the short 
paths consist of customers who are hardly incorporated into the 
longer paths, and their removal gives them another chance to 
integrate these short paths into longer ones. To reach a suffi-
cient number of removed customers, an integer random number 
min(0.1n,30)≤γ≤min(0.4n,60) is selected [36].

(a)
(b)

Figure 8: Histogram of the length of the tours on 950 historical solutions, limited to 16 stop points (a) and the average vehicle 
load's dependency on the path length (b)

Figure 7: The ACO TDVRPTW optimization progress vs. iterations, the number of paths is the primary objective, and the total 
minimal makespan duration is 
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If the sum of the customers in the removed top shortest paths is 
less than γ, the rest of the customers are removed according to 
the relatedness matrix R=‖rij‖ (Pisinger & Ropke, 2007; Shaw, 
1998) [36, 74], where

	                                                                                                 (64)

In equation (64) ∆Dij is the duration impact that is calculated as:

 if path (i, j) is feasible and ∆Dij = 1 other-
wise. 

Where  (see equation (18)) and 
is the root of equation (22). Maximum   is calcu-
lated for the feasible paths only, having . Following the 
recommendation by Pisinger and Ropke (2007) [36], duration 
weight .

Time impact J(wi,wj) is the time-windows intersection over 
union (IoU) ratio, or Jaccard index

       (65)                             

Time-windows weight following Pisinger and Ropke (2007) 
[36] is set to , capacity weight , and pheromone 
weight .

The next customer to be removed or seed customer (Christiaens 
& Berghe, 2020) [51] is selected using the Shaw removal algo-
rithm on the relatedness matrix (64). The process is summarized 
in Algorithm 13, which receives as input the relatedness matrix 

, and the list of removed customers , 
where . The algorithm returns seed customers .

Algorithm 13: Seed Customer Selection
Step 1 For all  until  is not found, do the following 
steps:
Step 1.1	From matrix R, extract row = 
Step 1.2	Sort row L in ascending order.
Step 1.3	Pick a uniformly distributed random number r  [0,1] 
and select the customer at the position   in the sorted 
list L, i.e., , where   denotes the inte-
ger part. The power  p following Pisinger and Ropke (2007)[36] 
is set to p=3, so the average selected position is 
with the standard deviation of 3(n-1)⁄(4√7).
Step 1.4	If c∈D repeat Steps 1.1-1.3, otherwise , and 
the seed customer is found.
Step 2	 If a seed customer is not found after Step 1 is passed for 
the entire list  D, create a row flat vector ,  of 
length n(n-1), and sort it in ascending order.
Step 3	 Pick a uniformly distributed random number 
and select the pair of customers at the position  in the 
sorted list , where p = n-1. 
Thus, the average pair position is (n-1), and the standard devia-

tion is .

Step 4	 Create a minimal spanning tree (MST) on matrix R us-
ing the Kruskal algorithm [52]. This step is processed only once 
if needed.
Step 5	 Cluster removal heuristics is applied on the MST be-
tween pairs of customers from  and cluster is cre-
ated [53].
Step 6	 If all customers of  is already removed, i.e., 

∈D, repeat Steps 3 and 5.
Step 7 If at least one of the customers in  is not already 
removed, then  = .

If the seed customer is the last   in the tour, the 
route  is updated as

 and customer  is add-
ed to the list of removed customers D. If the seed customer is 
the first customer  in the tour πc, the route is updated as 

 where Δt is the shift of the 
depot arrival time concerning the MFT principle, calculated with 
Algorithm 3. If the seed customer is located at position 1<ν<nc 
in the  middle of the tour, try to insert the following customers 

 after the customer  in the same order again 
using Algorithm 4. If the tour is feasible, the updated tour is 

. If the tour be-
comes infeasible, string removal (Christiaens & Berghe, 2020) 
[52] is applied, and customers  are removed 
along with the seed customer . If ν=2 and string removal is 
applied, the pass πc is completely removed so as not to leave a 
route with only one customer. 

All removed customers are added to the list of removed cus-
tomers D, and if , the next customer from  is 
removed. If the list  is empty, Algorithm 13 is applied 
again until at least γ customers are removed.

ACO Recreation Method 
The recreation method is based on the parallel regret heuristics 
(Potvin & Rousseau, 1993) [21]. The difference from the greedy 
interior insertion algorithms (Algorithms 2-4) is in the input 
and output. The input consists of two kinds of paths: untouched 
paths  and ruined 

paths . If ,the 
greedy interior insertion Algorithms 1-5 are processed without 
change. The list of unvisited customers:  
is the list of removed customers D (in this case, Y=D). The out-
put is an updated list of the paths: πi and πc, and the list of unvis-
ited customers Y. The soft tabu list ST is calculated for only un-
touched paths πi. Algorithms 2-4 are finished by calculating the 
savings  for unvisited customers and the savings  for the 
soft tabu. Eventually, two candidate paths are created. There are 
the best routes  and , having maximal saving values 

 for head and tail interior insertion and the second-best 
routes:  and , where j=1,…,m, and c=1,…,l. For 
all these routes, the maximal 2-regret heuristic is calculated as 
follows [36]:
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providing   and , where  
is the saving value. The process of greedy recreation using the 
parallel regret heuristics is summarized in Algorithm 14, which is 
finished with the solution: , 
where 
Algorithm 14: Greedy Recreation Using the Parallel Regret 
Heuristics
Step 1	 While the list of unvisited customers Y is not empty and 
there are at least two ruined paths (l>1) do the following steps:
Step 1.1 For each ruined path πc calculate savings {s'(πhj 
(c)),s'(πtj (c))} for head and tail interior insertions.

Step 1.2	If ,i.e., tour πc cannot grow 
anymore, remove πc from ruined paths and add to the untouched 
paths.
Step 1.3	Otherwise, calculate regret value, using the best and the 
second-best savings as follows:

	                                                                                  (67)
where ,   

, and , are the second-best savings. If the 
winner of (67) does not have the second-best savings, ∆c=∆max. 
If the urgency indicator , the winner in (67) changes 
according to Table 3.
Step 1.4	Using (67), create a regret list ∆={∆c,πc,πnc }, where πc 
and πnc are the best and the second-best paths. If the second-best 
path does not exist 
Step 1.5	Select the requested path c*,y*=argmax(∆c), and up-
date the appropriate path with .
Step 1.6	Remove customer y* from the list Y and all items from 
the regret list ∆, having an intersection with the updated path, 
i.e., .
Step 1.7	If the regret list is not empty, repeat Steps 1.5 and 1.6; 
otherwise, repeat Steps 1.1-1.6.
Step 2	 If the list of unvisited customers Y is not empty but has 
fewer than two ruined paths, apply greedy Algorithms 2-4.
The complexity of Algorithm 14 can be roughly estimated as 
O(αkmnNitr ), where kr=αk is the number of ruined paths as part 
of the total number of paths k, typically, α≤0.2, and Nitr is the 
maximal number of iterations of Step 1 of the algorithm. Since, 

Nitr<m and  , then the complexity is . For a 
large number of customers (200 or more), the number of delet-
ed customers is a constant, so the complexity is . For 
a small number of customers m~n, so the complexity is O(n4).

The ACO recreation has two changes from the greedy recre-
ation algorithm. First, savings sy and sz' are calculated with 
pheromone matrix Φ, as in Algorithms 9-11. Second, if there 
are more than two items on the joint list of , the roulette 
wheel selection principle (58) is applied twice on the removal, 
and two savings  and , are selected. The regret value is 

. Besides, in Step 2, algorithms 
9-12 are applied. The complexity of the ACO recreation algo-
rithm is also  for a large number of customers. The R&R 
algorithm is typically 2-5 times faster than ACO for 200–1,433 
customers. When the R&R greedy or ACO solution is finished, 
the Tabu List is updated if needed. 

To manage the adaptation between ACO (exploration) and R&R 
ACO (exploitation) algorithms, let us introduce a mini-batch 
(segment) size ϕ [48]. Following the recommendations of (Ri-
biero & Laporte, 2012) [53], the segment size is 50, but for the 
sake of the parallel computations, it is set to 32 [53]. Since in 
the R&R method, only a tiny part of the customers are deleted, 
and a small part of the tours are ruined, the epoch (49) becomes:
		  			                                                      
                                                                                                  (68)

For example, if n = 200,  and kmin = 20, then the ACO epoch (49) 
is E = 221. If m = 30, and kr= 5, then the R&R epoch is Er = 35. 
So after Er  exploitations, all feasible arcs will be revised, and the 
rest of the segment trials can be used for exploration. Let us de-
fine the minimal number of explorations per segment as Emin=min 
(Er,0.4ϕ), and the maximal number as  Emax=max(ϕ-Er,0.8ϕ). To 
define the proportion between exploration and exploitation, let 
us consider the results of the latest Ntsolutions, where Nt is set to 
200. These solutions can be subdivided into results of exploita-
tion and exploration algorithms, i.e., Nt=Nexploration+Nexploitation. If 
there are no representative statistics, i.e.,   Nexploration<Nmin or Nex-

ploitation<Nmin, then the number of recreations or exploitations is set 
to  Emin if  Nexploitation<Nmin and to Emax if Nexploitation<Nmin, where Nmin 
is set to 20.  If there are representative statistics, two arrays Kex-

ploration, and Kexploitation of the number of paths in exploitation and 
exploration solutions are collected. The number of recreations is 

a convex combination: , where 
pw=Wilcoxon(Kexploration,Kexploitation) is the p-value of the Wilcoxon 
rank sum test about the statistical equivalence of the medians 
of Kexploration and Kexploitation arrays. The statistics collected for 186 
industrial deliveries in Moscow, Russia, for 179-837 custom-
ers show the following distribution of the winning solutions. 
A greedy solution (Algorithms 2-5) wins 13% of the solutions. 
ACO solution (Algorithms 8-12) wins 23% of the solutions. The 
greedy R&R solution is the best in 40% of the industrial tasks, 
and the R&R ACO solution is the best at 24%. Thus, the greedy 
R&R solution is the cheapest and the most effective.

Results
The schematic chart of the TDVRPTW dispatching technology 
used in Gett Delivery is shown in Figure 9 [54]. The chart re-
flects the next-day delivery technology. 

For each depot, the TDVRPTW task is solved once a day, typ-
ically between 1:00 a.m. and 5:00 a.m., for the next delivery 
date, which usually happens between 6:00 a.m. and 11:00 p.m. 
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Tel Aviv, Israel Metropolitan Area
The traffic model in the Tel Aviv, Israel, metropolitan area in-
cludes 78,275 edges with 45 different time buckets. Since de-
livery does not operate on weekends and holidays, only the 
weekday buckets are relevant. The 35-day test, conducted from 
July 29 to September 13, 2018, was selected for evaluation. The 
automatic dispatcher distributes, every day, up to 257 parcels 
(37,582 in total) between 2-155 customers (1.22 parcels per cus-
tomer on average). There were 1-3 time window slices, rounding 
to a whole hour, and each slice lasted at least 4 hours. So, time 

windows do not significantly affect the routes.
 
An example of VRP in Figure 10 is similar to the VRP of aca-
demic benchmarks, cf. Solomon (1987) [37]. Additionally, there 
are some differences in dispatching within the Tel Aviv metro-
politan area. First, the VRP is open, so the vehicle does not re-
turn to the depot but goes home after the last delivery. Second, 
there is only one objective function instead of (2) and (5). The 
functions are merged using a starting price for every tour, and 
the merged function is:

Figure 10: An example of the open VRP in the Tel Aviv metropolitan area

      
                                                                                                 (69)
where cst is a starting price. Third, the cost per kilometer cd is 
not constant but is 3.3 NIS/km for the first 13 km and 2.75 NIS/
km starting from the 14th km. The cost per hour ct is 30 NIS/
hour, and the start price cst is 29 NIS. The service time gi is 

constant for all customers and equals 10 minutes per stop point. 
The measure of the improvement is the relative price reduction 
in percent.

                                                      (70)                                                        	
	                                                                  
where P0 is the price of the traditional dispatching and Popt is the 
optimal price (69). The dependence of the average value of μP 

The information includes the depot's geographical coordinates 
(latitude and longitude), street address, and open hours (time 
window). The new customer orders, collected from the previous 
day, along with the returned parcels, are the input for the task 
creator. Each customer provides its street address, converted to 
geographical coordinates using geocoding, contact information, 
a list of parcels to be delivered, a time window with a 5-minute 
rounding, a minimum length of 30 minutes, and the service time. 
The TDVRPTW solver receives the traffic model and the created 
task. The solver is written in Go and runs on the AWS server. 
The load balancer selects an appropriate server of 4-32 cores, 
depending on the number of customers per task. The resulting 

tours are sent to the relevant couriers, who use a courier routing 
application to manage the trip. The service dashboard displays 
routes and other information for the customer and the courier 
support. The customer receives a notification about the exact 
dispatching time. During the route, the courier's coordinates 
are collected every second to update the traffic model and the 
service time. The experiments were conducted in two different 
cities: Tel Aviv, Israel, and Moscow, Russia. The challenge in 
these experiments lies in comparing the TDVRPTW dispatch-
ing method with traditional dispatching when the city is divided 
among couriers, with each courier serving a specific area only.

Figure 9: The TDVRPTW technology scheme of the dispatching system
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Figure 12:  Dependency of the average relative number of tours reduction (71) from the number of customers (a) and the number 
of the initial paths (b) in Tel Aviv, Israel

(a) (b)

from the number of customers and the initial number of paths 
are shown in  Figure 11. The average price reduction is 19.2%. 
The relatively low improvement for the considerable number of 
customers (50 or more) is explained by using some optimiza-
tion (greedy no traffic, no time windows) for these tasks in the 
traditional dispatching. Although the number of tours is not an 
objective of (69) optimization, improving the number of path 
reductions is also evaluated similarly to (70).

The measure of the number of tours reduction is

		                                                       (71)
where k0 is the number of tours of the traditional dispatching and 
kopt is the optimal number of tours resulting from the minimiza-
tion (69). The dependencies of the average value of μT from the 
number of customers and the initial number of paths are shown 
in  Figure 12. The average price reduction is 26.2%. Although 
the number of tours is not an objective of the optimization, there 
is also a significant improvement in the number of paths.

Figure 11:  Dependency of the average relative price reduction (70) from the number of customers (a) and the number of the initial 
paths (b)

(a) (b)
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The traffic model in the Moscow, Russia, metropolitan area in-
cludes 1,201,717 edges with 58 weekly time buckets. The prima-
ry objective function is (2), and the secondary is (5). A conven-
tional taxi fleet is used for delivery, with a maximum capacity of 
30 parcels and a service time of 12.5 minutes. The service time 
does not depend on the number of parcels per customer. Loading 
time is 30 minutes, and the maximum duration of a courier’s 
working shift is 8 hours. The experiment spans 102 working 
days, from October 15, 2018, to January 19, 2020, involving 
three depots and 125 VRP tasks. On these VRP tasks, 12-1,022 
parcels were distributed per task (27,414 parcels in total) be-
tween 12-837 customers (22,879 customers in total). During the 
optimization, the automatic dispatcher created 2-44 tours with 
1-15 hard-constrained time window slices (5.9 on average per 
VRP). Hard-constrained time windows and traffic constraints 
make the routes messy and far from a fine academic shape. An 
example of a tour is shown in Figure 13.

In the traditional dispatching for the same tasks, 2-57 tours were 
created; however, only 12.6% of these routes were feasible, 

meaning every customer got parcels within the time window. 
The feasibility dependency from the initial paths is shown in 
Figure 14. The feasibility decreases with the number of paths, 
dropping from 20-40% for 4-8 paths to 2% for more than 40 
paths. The plots in Figure 15 depict the effectiveness (71) of re-
ducing the number of tours vs. the number of customers 15a and 
the number of initial paths 15b. The optimization process reduc-
es the number of tours by an average of 18.5%. Due to the com-
putational load, the computation time was limited to two hours. 
For this reason, for 500 or more customers, only one epoch was 
processed. As a result, the effectiveness of reducing the number 
of paths is slightly lower for a large number of customers and 
the initial paths.

The measure of improvement for the secondary objective func-
tion is the relative reduction in total VRP duration in percentage 
as follows:

,	                                                 (72)

Moscow, Russia Metropolitan Area

Figure 13: An example of the TDVRPTW tour in the Moscow metropolitan area: hard time windows, makespan, and traffic make 
the tour messy

Figure 14: Dependency of the path feasibility of the traditional dispatching vs. the number of initial paths
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where D0 is the total VRP duration for the traditional dispatching 
and Dopt is the optimal total VRP duration. The plots in Figure 16 
depict the average relative total VRP duration reduction (72) vs. 
the number of customers 16a and the number of the initial paths 
16b. The optimization process reduces the total VRP duration 
by an average of 59.3% and is independent of the number of 

customers or the initial paths.

Although the total VRP distance is not an objective of the opti-
mization, the relative distance reduction can also be measured 
using (72) by substituting distances instead of durations. 

Figure 15: Dependency of the average relative number of tours reduction (71) vs. the number of customers (a) and the number of 
the initial paths (b) in Moscow, Russia

(a) (b)

Figure 16: Dependency of the average relative total VRP duration reduction (72) vs. the number of customers (a) and the number 
of the initial paths (b) in Moscow, Russia

(a) (b)

The plots in Figure 17 depict the average relative total VRP dis-
tance reduction vs. the number of customers 17a and the number 
of the initial paths 17b. The optimization process reduces the 

total VRP duration by an average of 69.7% and is independent 
of the number of customers or the number of initial paths.

Figure 17: Dependency of the average relative total VRP distance reduction vs. the number of customers (a) and the number of 
the initial paths (b) in Moscow, Russia

(a) (b)
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Instance Number of 
Vehicles best  

Number  of 
Vehicles found  

Vehicles differ-
ence

The sum of 
durations best

The sum of du-
rations found

Duration dif-
ference

R211 2 3 1 1964.63 2152.01 187.38
R210 3 3 0 2669.36 2391.77 -277.59
R110 3 3 0 2163.95 2384.15 220.2
R109 11 13 2 2228.45 2456.25 227.8
R101 19 22 3 3275.11 3542.18 267.07
R112 10 11 1 2093.97 2195.46 101.49
R107 10 12 2 2181.04 2406.34 225.3
R108 9 10 1 1516.5 1663.63 143.13
R103 13 15 2 2609.55 2809.9 200.35
R102 17 19 2 2346.74 2597.49 250.75
R105 14 14 0 2278.48 2468.464 189.98
R104 10 11 1 2212.9 2451.25 238.35
R201 4 4 0 3334.9 3018.46 -316.44
R202 3 4 1 2749.39 2772.6 23.21
R203 3 3 0 2626.21 2418.52 -207.69
R204 2 3 1 1989.14 2108.16 119.02
R205 3 3 0 2397.49 2355.95 -41.54
R206 3 3 0 2434.91 2304.88 -130.03
R207 2 3 1 1983.48 2169.93 186.45
R208 2 3 1 1858.36 1946.32 87.96
R209 3 3 0 2267.0 2385.41 118.41
R111 10 12 2 2189.54 2406.97 217.43
R106 12 13 1 2413.09 2524.47 111.38
C207 3 3 0 9660.4 9919.22 258.82
C206 3 4 1 9588.49 9816.83 228.34
C205 3 3 0 9588.88 9678.61 89.73
C204 3 4 1 9590.6 9691.03 100.43
C203 3 4 1 9601.72 9620.43 18.71
C202 3 4 1 9591.56 9666.33 74.77
C201 3 3 0 9591.56 9591.56 0
C208 3 3 0 9744.23 9641.11 -103.12
C108 10 10 0 9828.93 10017.51 188.58
C109 10 10 0 9828.93 10006.91 177.98

Gehring & Homberger Benchmark
Comparing the TDVRPTW algorithms is challenging due to 
the varying traffic models and diverse constraints prevalent in 
the industry. Academic benchmarks, such as Solomon’s bench-
mark or Gehring and Homberger's benchmark, comprise a set 
of 25-1000 customers, where each customer is represented as a 
2D point with a given time window and service time [36, 55]. 
The Euclidean distance between the points is equivalent to the 
trip duration between the customers, and the benchmarks do not 
involve any traffic model. The benchmarks include randomized 
problems (R), clustered problems (C), and randomized-clustered 
problems (RC), and they are generated so that 75% of the cus-

tomers, including the depot, have different time windows. 

The reported best results were associated with the soft time win-
dow constraint, allowing for waiting before delivery [56]. The 
secondary objective function is the minimal sum of VRP dis-
tances. Following Figliozzi (2012) [1], these benchmarks repre-
sent the archetypal and ubiquitous case, where the central depot 
services a set of surrounding customers. To compare with the 
proposed industrial algorithms, let us compare the sum of VRP 
durations of the best algorithms given in [56]. The results for 
Solomon’s benchmark are provided in Table 4.

Table 4: Comparative analysis with the best results on Solomon’s benchmark. The first column is the instance's name, the second 
is the number of vehicles (tours) in the best solution, and the third is the number of vehicles found. Column “Vehicles difference” 
is the difference between the found and the best numbers of vehicles [56]. Column “The sum of duration best” contains the sum of 
VRP durations of the best solution, and the next column is the same sum for the found solution. The last column is the difference 
between the found and the best sum of durations.
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C104 10 10 0 10014.6 10101.57 86.97
C105 10 10 0 9828.93 9897.3 68.37
C106 10 11 1 9828.93 10070.95 242.02
C107 10 10 0 9828.93 9845.14 16.21
C101 10 10 0 9828.93 9878.06 49.13
C102 10 10 0 9828.93 10035.53 206.6
C103 10 11 1 10063.03 10158.71 95.68

RC102 12 14 2 2671.18 2795.68 124.5
RC201 4 5 1 3358.42 3222.83 -135.59
RC202 3 4 1 2683.88 2873.57 189.69
RC203 3 4 1 2670.9 2619.99 -50.91
RC204 3 3 0 2371.1 2238.71 -132.39
RC205 4 5 1 3286.82 3023.4 -263.42
RC206 3 4 1 2444.87 2586.82 141.95
RC207 3 4 1 2417.51 2477.53 60.02
RC103 11 12 1 2416.12 2534.14 118.02
RC101 14 16 2 2956.33 3005.78 49.45
RC107 11 13 2 2346.32 2523.14 176.82
RC106 11 13 2 2466.45 2536.23 69.78
RC105 13 15 2 2829.3 3010.08 180.78
RC104 10 11 1 2259.3 2337.51 78.21
RC208 3 3 0 2040.14 2137.69 97.55
RC108 10 12 2 2247.13 2347.39 100.26

Table 4 shows that soft time window constraints reduce the num-
ber of paths by 11.2% on average and the sum of duration in 
72% of the instances, with an average reduction of 2.1%.  Some-
times, one to two additional tours are added to avoid waiting be-
fore delivery, or the tour is extended to accommodate this. Thus, 
the courier spends the time on the route instead of waiting on site 

[57]. In real life, the courier does the same when he cannot find 
parking. For the clustered problems (C), the difference is less 
significant, with only 5% more tours and the sum of durations in-
creasing by 1.1%. The results for the 200 customers for the Geh-
ring and Homberger benchmark are provided in Table 5 [58].

Table 5: Comparison with the best results on the 200-customers Gehring and Homberger benchmark. The best solutions for instanc-
es R1_2_2 and RC1_2_7 are infeasible and are not included in the table. 

Instance Number of 
Vehicles best  

Number  of 
Vehicles found  

Vehicles differ-
ence

The sum of 
durations best

The sum of du-
rations found

Duration dif-
ference

R2_2_1 4 5 1 8716.66 9208.44 491.78

R1_2_7 18 19 1 8885.08 9526.84 641.76

R2_2_10 4 4 0 7936.55 6725.57 -1210.98
R1_2_10 18 18 0 8076.92 7166.44 -910.48
R1_2_3 18 20 2 9272.66 9802.95 530.29
R1_2_1 20 22 2 10556.83 10685.47 128.64

R1_2_2 18 19 1 9153.27 8750.87 -402.4

R2_2_8 4 4 0 7557.33 5999.59 -1557.74

R1_2_6 18 20 2 9386.6 9467.73 81.13

R1_2_8 18 18 0 8530.38 7951.27 -579.11

R2_2_3 4 5 1 8162.32 8550.82 388.5

R1_2_4 18 20 2 9093.99 9715.19 621.2

R2_2_2 4 5 1 8412.9 8619.92 270.02
R2_2_4 4 4 0 8069.15 7186.26 -882.89

R2_2_9 4 5 1 8441.09 7593.83 -847.26
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R1_2_5 18 20 2 9330.58 9647.16 316.58

R2_2_5 4 4 0 8507.56 7895.2 -612.36

R2_2_6 4 4 0 8285.85 7919.07 -366.78
R2_2_7 4 4 0 7922.48 9084.5 1162.01
C1_2_5 20 20 0 20771.36 20913.27 141.91

C2_2_6 6 7 1 19944.46 21206.9 1262.44

C2_2_2 6 7 1 20586.91 21444.3 857.39

C1_2_10 18 19 1 20724.36 21562.58 838.33

C2_2_4 6 7 1 20724.45 21101.5 377.05

C1_2_9 18 19 1 20702.82 21277.21 574.39

C2_2_5 6 6 0 20035.82 20075.36 39.54

C1_2_4 18 18 0 21009.45 21988.21 978.76

C2_2_1 6 6 0 19931.44 19935.26 3.82
C2_2_10 6 6 0 20150.78 20464.18 313.4

C1_2_7 20 20 0 20708.35 20984.54 276.10

C1_2_3 18 20 2 20708.35 21361.59 653.24

C2_2_3 6 7 1 20600.67 20722.77 122.1

C2_2_7 6 7 1 19913.8 20443.32 529.52

C1_2_2 18 20 2 21188.54 22151.95 963.41
C1_2_1 20 20 0 20788.07 20953.51 165.44

C2_2_8 6 6 0 19895.06 20269.04 373.98

C2_2_9 6 7 1 19944.6 20704.45 759.85
C1_2_6 20 22 2 20820.75 21451.92 631.17

C1_2_8 19 21 2 20841.41 21408.68 567.27

RC2_2_7 4 5 1 7999.51 7083.55 -915.96
RC2_2_4 4 5 1 6503.51 7229.99 726.48
RC2_2_3 4 5 1 7005.62 7917.79 912.17

RC2_2_8 4 5 1 7793.43 6631.37 -1162.06
RC1_2_3 18 19 1 8036.41 7154.3 -882.11
RC1_2_5 18 20 2 7702.14 8384.31 682.17

RC2_2_2 5 6 1 9880.44 9223.38 -657.06
RC2_2_6 4 5 1 8378.88 6928.98 -1449.9

RC1_2_8 18 19 1 7202.46 6616.12 -586.34

RC1_2_9 18 19 1 7319.88 6581.99 -737.89
RC2_2_1 6 8 2 11610.36 8600.49 -3009.87

RC2_2_9 4 5 1 5604.53 6117.24 512.71

RC1_2_10 18 18 0 6510.07 6994.95 484.88

RC1_2_1 18 20 2 8206.83 8363.97 157.14

RC2_2_5 4 6 2 8425.86 7292.44 -1133.42
RC1_2_2 18 19 1 7970.14 8128.69 158.55
RC1_2_4 18 19 1 6691.86 6091.76 -600.1
RC1_2_6 18 19 1 7672.45 7725.75 53.3

RC2_2_10 4 4 0 7026.54 5868.85 -1157.69
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Table 6: Comparison with the best results on the 400-customers Gehring and Homberger benchmark. The best solutions for instanc-
es R2_4_4, C1_4_2, RC1_4_8, RC2_4_2, and RC1_4_10 are infeasible and are not included in the table.

Instance Number of 
Vehicles best  

Number  of 
Vehicles found  

Vehicles differ-
ence

The sum of 
durations best

The sum of du-
rations found

Duration dif-
ference

R1_4_1 40 42 2 25982.71 27388.14 1405.43
R2_4_3 8 11 3 20939.27 21030.41 91.14
R1_4_4 36 39 3 20516.4 21245.44 729.04
R2_4_6 8 9 1 20095.05 22082.67 1987.62
R2_4_10 8 8 0 19426.61 15481.86 -3944.75
R2_4_1 8 11 3 21844.88 22683.51 838.63
R1_4_5 36 39 3 23255.8 23059.48 -196.32
R1_4_10 36 37 1 20931.92 17686.39 -3245.53
R2_4_2 8 11 3 21258.2 23634.7 2376.5
R2_4_8 8 8 0 19579.65 15503.25 -4076.4
R2_4_9 8 9 1 20278.93 18199.83 -2079.1
R1_4_7 36 40 4 21987.45 22677.07 689.62
R2_4_5 8 9 1 20747.97 17308.45 -3439.52
R1_4_2 36 40 4 23942.06 25540.72 1598.66
R1_4_6 36 40 4 23136.36 25505.44 2369.08
R1_4_3 36 40 4 23331.03 26256.5 2925.47
R1_4_8 36 40 4 18063.94 20131.89 2067.95
R1_4_9 36 40 4 22159.22 19720.62 -2438.6
R2_4_7 8 9 1 19552.09 20214.92 662.83
C1_4_10 36 38 2 43119.26 45556.11 2436.85
C2_4_10 11 12 1 39927.68 42265.89 2338.21
C1_4_5 40 40 0 43562.05 43698.66 136.61
C2_4_8 11 12 1 40233.2 42076.54 1843.34
C1_4_9 36 38 2 43164.86 45555.07 2390.21
C1_4_6 40 44 4 43558.23 46679.35 3121.12
C2_4_3 11 14 3 40248.81 43170.79 2921.98
C2_4_7 12 14 2 40704.18 43027.38 2323.2
C2_4_4 11 12 1 40208.82 42719.96 2511.44
C2_4_5 12 14 2 40699.22 41807.24 1108.02
C2_4_1 12 12 0 40277.39 40262.46 -14.93
C2_4_3 36 39 3 43990.81 46038.42 2047.61
C2_4_2 12 14 2 41104.13 43551.93 2447.8
C1_4_4 36 37 1 43593.59 47712.64 4119.05
C1_4_1 40 40 0 43676.04 43748.43 72.39
C1_4_8 37 41 4 43477.78 45405.12 1927.34
C2_4_9 12 14 2 40215.73 44283.84 4068.11
C2_4_6 12 13 1 40306.53 44213.94 3907.41
C1_4_7 39 41 2 43517.3 44687.31 1170.01

RC1_4_3 36 37 1 17583.16 18647.71 1064.55
RC1_4_1 36 40 4 19727.44 20476.29 748.85

Table 5 shows that 40 out of 58 instances require one or two 
additional tours to meet the hard window constraints. The num-
ber of paths increases by 7.5% on average, varying from 6% for 
clustered problems to 9.7% for randomized-clustered problems 
[59]. Although in 38 out of 58 instances, the total duration is 
longer for the hard-windows constraints, the average duration 
decreases by 0.1%. For the randomized problems, the average 

duration decreases by 14.6%, and for the randomized-clustered 
problems, it decreases by 6.2%. However, the average duration 
increases by 2.5% for clustered problems with the maximum 
sum of the durations [60-63]. The results for the 400 custom-
ers for the Gehring and Homberger benchmark are provided in 
Table 6.
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Table 7: Comparison with the best results on the 600-customers Gehring and Homberger benchmark. The best solution for the 
RC2_6_10 instance is infeasible and not included in the table.

Instance Number of 
Vehicles best  

Number  of 
Vehicles found  

Vehicles differ-
ence

The sum of 
durations best

The sum of du-
rations found

Duration dif-
ference

R2_6_1 11 16 5 45380.01 46283.73 903.72
R1_6_4 54 60 6 43208.03 48989.42 5781.39
R2_6_10 11 13 2 42717.59 30847.98 -11869.61
R2_6_6 11 12 1 42089.66 45080.08 2990.42
R2_6_3 11 14 3 43300.34 46076.56 2776.22
R1_6_10 54 56 2 48165.64 37569.47 -10576.17
R1_6_1 59 66 7 57705.58 62896.45 5190.77
R1_6_3 54 60 6 52052.31 57609.73 5557.42
R1_6_7 54 56 2 51213.63 51281.85 68.22
R2_6_4 11 13 2 42832.2 39367.62 -3464.58
R1_6_5 54 60 6 52473.93 51494.84 -979.09
R2_6_7 11 12 1 42256.58 40389.94 -1866.64
R2_6_5 11 15 4 44269.2 36508.63 -7760.67
R1_6_8 54 56 2 41603.94 43082.44 1478.5
R1_6_9 54 60 6 50895.16 45861.53 -5033.63
R2_6_8 11 11 0 40749.71 32286.83 -8462.88
R2_6_9 11 16 5 44342.27 37364.23 -6978.04
R2_6_2 11 16 5 45192.93 50781.1 5588.17
R1_6_2 54 60 6 54161.14 57631.05 3469.91
R1_6_6 54 59 5 51268.35 54306.64 3038.29
C2_6_4 17 19 2 61740.41 67217.56 5477.15
C1_6_3 56 60 4 69679.84 75899.35 6219.51
C1_6_1 60 60 0 68508.46 69310.16 801.7

RC2_4_5 8 12 4 20179.13 20855.89 676.76
RC2_4_7 8 10 2 19946.12 19105.9 -840.22
RC2_4_10 8 8 0 16842.17 14361.54 -2480.63
RC1_4_9 36 37 1 18758.29 16391.05 -2367.24
RC2_4_1 11 15 4 26896.81 18923.56 -7973.25
RC1_4_2 36 40 4 19861.16 21457.07 1595.91
RC1_4_4 36 37 1 15729.24 16217.69 488.45
RC2_4_2 9 13 4 21834.57 17839.72 -3994.85
RC1_4_6 36 39 3 19879.74 19066.85 -812.89
RC1_4_5 36 40 4 18719.41 21676.15 2956.74
RC2_4_3 8 12 4 19786.69 21737.83 1951.14
RC2_4_8 8 9 1 18992.04 15912.39 -3079.65
RC1_4_7 36 38 2 19501.69 19089.34 -412.35
RC2_4_6 8 12 4 20137.76 16310.08 -3827.68
RC2_4_9 8 8 0 18313.96 15120.81 -3193.15

Table 6 shows that 48 out of 55 instances require from one to 
four additional tours to meet the hard window constraints. This 
fact can be explained by the growth in paths, which is twice 
the average number of 400 customers compared to 200 cus-
tomers [64]. The number of paths increases by 8.8% on aver-
age, varying from 6.7% for clustered problems to 10.5% for 
randomized-clustered problems. Although the total duration is 
longer in 37 out of 55 instances due to the constraints of the 

hard-time window, the average duration increases by only 1.2%. 
For the randomized problems, the average duration decreases by 
0.4%, and for the randomized-clustered problems, it decreases 
by 6.2%. However, the average duration increases by 4.8% for 
clustered problems with the maximum sum of the durations. The 
results for the 600 customers for the Gehring and Homberger 
benchmark are provided in Table 7 [65-68].
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C2_6_4 17 21 4 62185.0 68475.88 6290.88
C1_6_9 56 58 2 67813.96 73628.19 5814.23
C2_6_2 17 22 5 62446.42 67378.06 4931.64
C1_6_2 56 62 6 69331.56 75795.6 6464.04
C1_6_7 57 61 4 69744.4 71933.41 2189.01
C2_6_9 17 21 4 61967.03 68013.95 6046.92
C2_6_6 18 20 2 62036.68 67211.48 5174.8
C2_6_8 17 19 2 61810.35 64068.77 2258.42
C1_6_5 60 60 0 68316.27 69305.71 989.44
C2_6_1 18 18 0 62198.33 62150.72 -47.61
C1_6_4 56 57 1 69126.88 75661.97 6535.09
C1_6_8 56 63 7 68542.78 73391.35 4848.57
C2_6_10 17 18 1 61564.35 64510.53 2946.18
C1_6_10 56 58 2 67890.08 73343.03 5452.95
C2_6_5 18 18 0 61732.77 64772.78 3040.01
C2_6_7 18 21 3 62468.15 69419.11 6950.96
C1_6_6 59 61 2 69946.75 75546.33 5599.58

RC2_6_4 11 12 1 38305.06 37396.49 -908.57
RC2_6_5 11 18 7 41367.43 38477.17 -2890.26
RC2_6_8 11 17 6 40982.48 33295.63 -7686.85
RC1_6_9 55 57 2 44248.88 32809.64 -11439.24
RC2_6_3 11 17 6 43092.9 42958.69 -134.21
RC1_6_1 55 60 5 45915.06 43752.08 -2162.98
RC1_6_8 55 57 2 44355.38 35539.82 -8815.56
RC2_6_7 11 17 6 40875.78 35530.43 -5345.35
RC1_6_6 55 60 5 46203.2 43994.21 -2208.99
RC1_6_2 55 59 4 46063.41 43986.12 -2077.29
RC2_6_1 14 20 6 53169.69 42100.67 -11069.02
RC1_6_10 55 56 1 42074.31 31946.69 -10127.62
RC2_6_9 11 14 3 40185.54 31319.1 -8866.44
RC2_6_6 11 18 7 42371.52 33189.89 -9181.63
RC1_6_4 55 58 3 35892.54 35075.31 -817.23
RC2_6_2 12 15 3 46684.92 43160.04 -3524.88
RC1_6_3 55 58 3 41653.53 41197.05 -456.48
RC1_6_7 55 60 5 44894.05 41640.06 -3253.99
RC1_6_5 55 60 5 44823.87 47414.94 2591.07

Table 7 shows that 54 out of 59 instances require from one to 
seven additional tours to meet the hard window constraints [69]. 
This fact can be explained by the growth of almost twice the av-
erage number of paths for 600 customers vs. 400 customers. The 
number of paths increases by 9.1% on average, varying from 
6.3% for clustered problems to 10.9% for randomized-clustered 
problems. So, the number of paths growing is the same as for 
400 customers [70]. Although in 31 out of 59 instances, the total 

duration is longer for the hard-windows constraints, the aver-
age duration decreases by 0.7%. For the randomized problems, 
the average duration decreases by 2.2%, and for the random-
ized-clustered problems, it decreases by 12%. However, the av-
erage duration increases by 6.4% for clustered problems with 
the maximum sum of the durations. The results for the 800 cus-
tomers for the Gehring and Homberger benchmark are provided 
in Table 8 [71].

Table 8: Comparison with the best results on the 800-customers Gehring and Homberger benchmark. The best solutions for instanc-
es RC2_8_2 and RC1_8_9 are infeasible and are not included in the table.

Instance Number of 
Vehicles best  

Number  of 
Vehicles found  

Vehicles differ-
ence

The sum of 
durations best

The sum of du-
rations found

Duration dif-
ference

R2_8_3 15 17 2 79888.63 81854.45 1965.82
R2_8_6 15 18 3 82801.05 75950.72 -6850.33
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R2_8_5 15 16 1 78211.64 69133.05 -9078.59
R1_8_6 72 81 9 91144.99 95233.93 4088.94
R2_8_9 15 21 6 80973.53 61847.89 -19125.64
R1_8_4 72 78 6 78433.66 86261.93 7828.27
R2_8_4 15 15 0 77512.9 66386.3 -11126.6
R1_8_2 72 82 10 64471.29 74577.73 10106.44
R1_8_8 72 74 2 73708.7 77615.24 3906.54
R1_8_7 72 76 4 87412.16 88341.47 929.31
R1_8_5 72 76 4 92393.98 86622.93 -5771.05
R1_8_9 72 80 8 89154.23 77514.0 -11640.23
R1_8_10 72 74 2 87514.99 64163.49 -23351.5
R2_8_5 15 20 5 82816.71 62583.11 -20223.6
R2_8_2 15 23 8 82562.11 86704.2 4142.09
R2_8_8 15 16 1 73305.77 50102.25 -23203.52
R2_8_1 15 24 9 82350.64 86329.35 3978.71
R1_8_1 80 91 11 103848.6 112930.84 9082.24
R2_8_10 15 16 1 79369.34 53453.39 -25915.95
R1_8_3 72 80 8 90212.2 108122.71 17910.51
C1_8_9 72 80 8 96371.22 106294.4 9923.18
C1_8_2 72 84 12 100110.3 120746.53 20636.23
C1_8_7 77 83 6 98804.3 103245.91 4441.61
C2_8_1 24 24 0 84384.4 84192.57 -818.93
C2_8_10 23 24 1 84067.4 87817.96 3750.56
C1_8_8 73 80 7 98294.13 110581.76 12287.63
C2_8_4 22 27 5 83218.9 97278.57 14059.67
C1_8_3 72 79 7 98471.23 120228.28 21759.05
C2_8_8 23 25 2 83363.45 91260.45 7897.0
C1_8_4 72 75 3 101370.3 110136.43 8766.13
C1_8_5 80 80 0 97812.43 99136.32 1323.89
C2_8_5 24 27 3 84559.57 88817.33 4257.76
C2_8_7 23 29 6 85590.77 96411.73 10820.96
C1_8_6 79 87 8 99114.66 119793.71 20679.05
C2_8_9 23 28 5 83805.93 94630.04 10824.11
C2_8_3 23 28 5 84919.02 102493.41 17574.39
C1_8_6 23 27 4 84293.77 92074.98 7781.21
C1_8_1 80 80 0 97730.41 98959.41 1229.0
C2_8_2 23 31 8 84819.19 99309.66 14490.47
C1_8_10 72 79 7 96263.12 108166.27 11903.15
RC1_8_5 72 77 5 81800.44 82523.87 723.43
RC1_8_10 72 75 3 77365.26 55585.74 -21779.52
RC2_8_9 15 19 4 33332.79 45469.14 12136.35
RC2_8_8 15 21 6 73669.62 57588.65 -16080.97
RC2_8_1 18 29 11 90798.43 70708.25 -20090.18
RC2_8_5 15 27 12 75666.24 60079.97 -15586.27
RC2_8_6 15 25 10 74734.67 53947.32 -20787.35
RC1_8_3 72 75 3 72076.91 80087.78 8010.87
RC1_8_7 72 82 10 80751.65 79618.23 -1133.42
RC2_8_3 15 24 9 71067.1 70286.21 -780.89
RC2_8_10 15 17 2 71931.11 44297.74 -27633.37
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Table 10: The changes in the relative total duration for different types of problems and the various numbers of customers. The last 
row indicates the number of instances where the algorithm improves the state-of-the-art (SOTA). 

Problem vs. Num-
ber of customers

100 200 400 600 800

Average 2.14% -0.14% 1.27% -0.67% -0.5%
R 3.84% -14.6% -0.41% -2.2% -5.9%
C 1.07% 2.48% 4.89% 6.3% 10.05%

RC 1.9% -6.19% -6.23% -12.03% -11.47%
SOTA improve-
ment instances

7 8 4 2 2

The tables show that the randomized-clustered problems require 
the maximum addition to tours for the hard time window con-
straints and the maximum total duration reduction. In contrast, 
the clustered problems demand minimal new tours but maximal-
ly increase the total duration [77].

Conclusion, Discussion, and Future Work
This paper presented the solution to a time-dependent vehi-
cle routing problem with hard time window constraints using 
a saving ant colony approach. Recently, the problem has gar-
nered increasing attention due to the growing popularity of 
parcel dispatching in megacities, limited parking capacity, and 
traffic congestion. The approach developed here is based on a 
real-life, auto-updated static traffic model using a multi-layer 
distance-duration matrix without limitation to the FIFO proper-
ty. Various constraints and multiple objective functions, such as 
(2) and (5), are implemented using the saving ant colony optimi-
zation [78]. The fuzziness of the saving ant colony optimization 
allows for the addition of other diverse constraints, such as open 
VRP, package compatibility, and lunch break time for the cou-

rier, by minor adaptations of the proposed algorithms. Another 
advantage of saving ant colony optimization is its closeness to 
the LSTM network, which allows the use of a known technique 
to estimate the number of iterations and evaluate convergence to 
the global minimum.

Results showed that the proposed approach is feasible for re-
al-life applications with the software written in Go for a multi-
core computer. The proposed approach significantly reduces the 
number of vehicles and the total travel duration compared to the 
naïve dispatching system used in megacities such as Moscow, 
Russia, and Tel Aviv, Israel. The comparison to the Gehring 
and Homberger benchmark showed that the hard time windows 
constraint significantly affects the tours, and the real-life algo-
rithms do not always provide the best results on the existing 
benchmarks. The proposed method demonstrates its maximum 
effectiveness for medium-sized tasks with 40-450 customers, 
which are the most popular delivery tasks in last-mile delivery 
problems. Figures 12 and 16 show the maximum reduction in 
the number of vehicles for this size of task. The existing exact 

RC2_8_7 15 26 11 72575.83 60053.71 -12522.12
RC1_8_8 72 78 6 77047.52 66102.54 -10944.98
RC1_8_4 72 75 3 60126.82 67067.75 6940.93
RC2_8_4 15 18 3 66802.17 58167.45 -8634.72
RC1_8_2 72 82 10 78923.57 78337.52 -586.05
RC1_8_1 72 77 5 81519.86 75494.18 -6025.68
RC1_8_6 72 81 9 81157.38 80014.12 -1143.26

Table 8 shows that 54 out of 58 instances require 1-12 additional 
tours to meet the hard window constraints due to a 30% increase 
in the average number of path growth for 800 customers com-
pared to 600 customers [72-75]. The number of paths increases 
by 10.8% on average, varying from 9% for clustered problems to 
13.4% for randomized-clustered problems. Therefore, the num-
ber of paths increases slightly compared to the 400-600 customer 
range [76]. Although in 33 out of 58 instances, the total duration 

is longer for the hard-windows constraints, the average duration 
decreases by 0.5%. For the randomized problems, the average 
duration decreases by 5.9%, and for the randomized-clustered 
problems, it decreases by 11.5%. However, the average duration 
increases by 10% for clustered problems with the maximum sum 
of the durations. The growth in the average relative number of 
paths and changes in the average relative total duration for vari-
ous customer numbers are summarized in Tables 9 and 10.

Table 9: The growth in the relative average number of paths for different types of problems and the different numbers of customers 
Problems vs. 

Number of cus-
tomers

100 200 400 600 800

Average 11.3% 7.6% 8.6% 9.2% 10.8%
R 12.1% 7.3% 9.5% 10.4% 10.2%
C 5.0% 6.0% 6.7% 6.4% 9.0%

RC 14.5% 9.7% 10.6% 10.9% 13.4%
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solutions are well-suited for small tasks and are typically faster 
than the proposed method. For a large number of customers, the 
technique demands significant computational resources that are 
not always available in city logistics. Another limitation is the 
adaptation of makespan to industrial delivery, so the proposed 
method is not optimal for academic benchmarks. Nevertheless, 
Table 10 shows SOTA improvement for some instances, typical-
ly of 100-400 customers.   
Another future research path involves applying the developed 
approach to the pickup and delivery problem (TDPDPTW), 
the split delivery problem (TDSDVRPTW), and the VRP with 
backhauls (TDVRPBTW), among others, including those with 
time windows and traffic constraints. Moreover, using the 
time-dependent pheromone matrix should provide further per-
formance improvement. The relatively high overall complexity 

  is the most significant limitation for a large num-
ber of customers, necessitating the use of multi-core computers 
for implementation. This limitation can be partially alleviated by 
testing (56) not for all available customers in the head and tail 
interior selection but for customers with the positive pheromone 
trace only.

Finally, although the current paper is devoted to the static ap-
proach, in real-life applications, dynamic traffic changes and a 
user’s unpredicted inability to receive packages occur after the 
vehicle is on the route. In this case, a branch-and-bound algo-
rithm is applied to correct TDTSPTW after every change in the 
data, starting from the nearest stop point.

References
1.	 Figliozzi, M.A. (2012). The time-dependent vehicle rout-

ing problem with time windows: Benchmark problems, as 
efficient solution algorithm, and solution characteristics. 
Transportation Research Part E Logistics and Transporta-
tion Review, 48(3), 616–636.

2.	 Qureshi, A. G., Taniguchi, E., & Yamada, T. (2010). Exact 
solution for the vehicle routing problem with a semi-soft 
time window and its application. Procedia Social and Be-
havioral Science, 2(3), 5931-5943. 

3.	 Yıldırım, U. M., & Çatay, B. (2009). An ant colony algo-
rithm for time-dependent vehicle routing problem with 
time windows. In Fleischmann, B. et al. (Eds.), Operations 
Research Proceedings 2008, pp. 337-342. Springer, Berlin, 
Heidelberg.

4.	 Gendreau, M., Ghiani, G., & Guerriero, E. (2015). Time-de-
pendent routing problems: A review. Computers & Opera-
tions Research 64(2), 189-197.

5.	 Mancini, S. (2014). Time-dependent travel speed vehicle 
routing and scheduling on a real road network: the case 
of Torino. Transportation Research Procedia, 3, 433-441, 
DOI:10.1016/j.trpro.2014.10.024

6.	 Kritzinger, S., Doerner, K., F., Hartl, R., F., Kiechle, G., 
Stadler, H., & Manohar, S., S. (2012). Using traffic infor-
mation for time-dependent vehicle routing. Procedia - So-
cial and Behavioral Sciences, 39, 217-229, DOI:10.1016/j.
sbspro.2012.03.103

7.	 Lombard, A., Tamayo, S., & Fontane, F. (2018). Model-
ing the time-dependent VRP through open data. arXiv: 
1804.07555, April 2018, DOI:10.48550/arXiv. 1804.07555.

8.	 Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant sys-
tem: Optimization by a colony of cooperating agents. IEEE 

Transactions on Systems, Man, and Cybernetics, 26(1), pp. 
29-41.

9.	 Donati, A., Montemanni, R.,  Casagrande, N.,   Rizzoli, 
A., & Gambardella, L. M. (2008). Time-dependent vehicle 
routing problem with a multi-ant colony system. European 
Journal of Operational Research, 185(3), 1174-1191

10.	 Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles 
from a central depot to a number of delivery points. Opera-
tions Research, 12(4), 568-581.

11.	 Desrochers, M., Lenstra, J. K., Savelsbergh, M. W. P., & 
Soumis, F. (1988). Vehicle routing with time windows: Op-
timization and approximation. In Golden, B. L. and Assad, 
A. A. (Eds.), Vehicle Routing: Methods and Studies 16, pp. 
65–84. Elsevier Science Publishers B. V. (North-Holland).

12.	 Tarantilis, C. D., Ioannou, G., Kiranoudis, C. T.,  & Prasta-
cos, G. P. (2005). Solving the open vehicle routing problem 
via a single parameter metaheuristics algorithm. Journal of 
the Operational Research Society, 56(6), 588-596.

13.	 Pan, B., Zhang, Z., & Lim, A. (2021). Multi-trip time-de-
pendent vehicle routing problem with time windows. Euro-
pean Journal of Operational Research, 291(1), pp. 218-231.

14.	 Beasley, J.E. (1981). Adapting the saving algorithm for 
varying inter-customer travel times. Omega, 9(6), 658-659.

15.	 Ahn, B. H., & Shin, J. Y. (1991). Vehicle routing with time 
windows and time-varying congestion.  Journal of the Op-
erational Research Society, 42(5), 393-400.

16.	 Ichoua, S., Gendreau, M., & Potvin, J.-Y. (2003). Vehicle 
dispatching with time-dependent travel times. European 
Journal of Operational Research, 144(2), 379-396.

17.	 Malandraki, C., & Dial, R. B. (1996). A restricted dynam-
ic programming heuristic algorithm for the time-dependent 
traveling salesman problem.  European Journal of Opera-
tional Research, 90(1), 45–55.

18.	 Fleischmann, B., Gietz, M., & Gnutzmann, S. (2004) 
‘Time-varying travel times in vehicle routing. Transporta-
tion Science, 38(2), pp. 160-173.

19.	 Haghani, A., & Jung, S. (2005). A dynamic vehicle routing 
problem with time-dependent travel times. Computers and 
Operations Research, 32(11), 2959–2986.

20.	 Van Woensel, T., Kerbache, L., Peremans, H., & Vandaele, 
N. (2008). Vehicle routing with dynamic travel times: a 
queuing approach.  European Journal of Operational Re-
search, 186(3), 990–1007.   

21.	 Potvin, J.-Y., & Rousseau, J.-M. (1995). An exchange heu-
ristic for routing problems with time windows.  Journal of 
Operations Research Society, 46(2), 1433-1446.

22.	 Taillard, E., Badeau, P., Gendreau, M., Guertin, F., & Potvin, 
J.Y. (1997). A tabu search heuristic for the vehicle routing 
problem with soft time windows. Transportation Science, 
31(2),  170–186.

23.	 Maden, W., Eglese, R., & Black, D. (2010). Vehicle routing 
and scheduling with time-varying data: A case study. Jour-
nal of Operations Research Society, 61(3), 515-522.

24.	 Wen, L., & Eglese, R. (2015). Minimum cost VRP with 
time-dependent speed data and congestion charge. Comput-
ers and Operations Research, 56(C), 41-50, DOI:10.1016/j.
cor.2014.10.007.

25.	 Arigliano, A., Ghiani, G., Grieco, A., Guerriero, E., & Pla-
na, I. (2019). Time-dependent asymmetric traveling sales-
man problem with time windows: Properties and an exact 
algorithm.  Discrete Applied Mathematics,  261(3), 28-39.



 

www.mkscienceset.comPage No: 34 Nov Joun of Appl Sci Res 2025  

26.	 Duc Minh, V., Hewitt, M., Boland, N., & Savelsbergh, M. 
(2019). Dynamic discretization discovery for solving the 
time-dependent traveling salesman problem with time win-
dows. Transportation Science, 54(3), pp. 1-18.

27.	 Montero, A., Mendez-Diaz, I., & Miranda-Bront, J. J. (2017). 
An integer programming approach for the time-dependent 
traveling salesmen problem with time windows. Comput-
ers and Operational Research, 88, 280-288, DOI:10.1016/j.
cor.2017.06.026

28.	 Adamo, T., Ghiani, G., Greco, P., & Guerriero, E. (2021). 
Learned upper bounds for the time-dependent traveling 
salesman problem. arXiv: 2107.1364v1 [cs.AI] 28 Jul. 
2021, DOI:10.48550/arXiv.2107.13641

29.	 Ehmke, J. F., & Mattfeld, D. C. (2012). Vehicle routing for 
attend-home delivery in city logistics. Procedia Social and 
Behavioral Science, 39(12), 622-632.

30.	 Halpern, J. (1977). Shortest route with time-dependent 
length of edges and limited delay possibilities in nodes. 
Zeitschrift für Operations Research, 21, 117–124, DOI:  
https://doi.org/10.1007/BF01919767

31.	 Esher, M., Kriegel, H-P., Sander, J., & Xu, X. (1996). A den-
sity-based algorithm for discovering clusters in large spatial 
databases with noise. In KDD-96: Proceedings of the Sec-
ond International Conference on Knowledge Discovery and 
Data Mining, pp. 226-231. AAAI Press.

32.	 Dantzig, G., Fulkerson, R., & Johnson, S. (1954). Solution 
of a large-scale traveling salesman problem. Operations Re-
search, 2, 393–410.

33.	 Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2013). 
Heuristics for multi-attribute vehicle routing problems: a 
survey and synthesis. European Journal of Operational Re-
search, 231(1), pp. 1-21.

34.	 Bräysy, O., & Gendreau, M. (2005). Vehicle routing prob-
lem with time windows, Part I: Route construction and local 
search algorithms. Transportation Science, 39(1), 104-118.

35.	 Mladenović, N., & Hansen, P. (1997). Variable Neighbour-
hood Search. Computers and Operational Research, 24(11), 
1097-1100.   

36.	 Pisinger, D., & Ropke, S. (2007). A general heuristic for 
vehicle routing problems. Computers and Operational Re-
search, 34(8), 2403-2435.

37.	 Solomon, M. M. (1987). Algorithms for the vehicle rout-
ing and scheduling problems with time window constraints. 
Operations Research, 35, 254–265, DOI: http://dx.doi.
org/10.1287/opre.35.2.254.

38.	 Doerner, K., Gronalt, M., Hartl, R. F., Reimann, M., Strauss, 
C., & Stummer, M. (2002). Savings ants for the vehicle 
routing problem. In Cagnoni, S. et al. (Eds.), Applications 
of Evolutionary Computing. EvoWorkshops 2002. Lecture 
Notes in Computer Science, Vol. 2279, pp. 11-20. Springer, 
Berlin, Heidelberg.

39.	 Bräysy, O., & Gendreau, M. (2005a). Vehicle routing prob-
lem with time windows, Part II: Metaheuristics. Transporta-
tion Science, 39(1), 119-139.

40.	 Kilby, P., Prosser, P., & Shaw, P. (1997). Guided local search 
for the vehicle routing problems.  In MIC97: Proceedings 
of the 2nd International Conference on Metaheuristics, pp. 
1-10. Sophia-Antipolis, France, July 21-24.

41.	 Carić, T., Fosin, J., Galić, A., Gold, H., & Reinholz, A. 
(2007). Empirical analysis of two different metaheuristics 
for real-world vehicle routing problems.  In Bartz-Beiel-

stein, T. et al. (Eds.), Hybrid Metaheuristics, Lecture Notes 
in Computer Science (LNCS), Vol. 4771, pp. 31-44. Spring-
er-Verlag, Berlin/Heidelberg, DOI:10.1007/978-3-540-
75514-2_3.

42.	 Pillac, V., Gendreau, M., Guéret, C., & Medaglia, A. (2013). 
A review of dynamic vehicle routing problems. European 
Journal of Operational Research, 225(1), 1–11.

43.	 Balseiro, S.R., Loiseau, I., & Ramonet, J. (2008). An ant 
colony algorithm hybridized with insertion heuristics for 
the time-dependent vehicle routing problem with time win-
dows. Computers and Operations Research, 38(6), 954–966.

44.	 Yu, B., Yang, Z-Z., & Xie, J-X. (2011). A parallel improved 
ant colony optimization for multi-depot vehicle routing 
problem. Journal of the Operational Research Society 
62(1), 183-188.

45.	 Khoshbakht, M. Y., and Sedighpour, M. (2012). An opti-
mization algorithm for capacitated vehicle routing problem 
based on ant colony system. Australian Journal of Basic and 
Applied Science, 5(12), 2729-2737. 

46.	 Rizzoli, A. E., Oliverio, F., Montemanni, R., & Gambardel-
la, L. M. (2004). Ant Colony Optimisation for vehicle rout-
ing problems: from theory to applications. Galleria Rasseg-
na Bimestrale Di Cultura, 9(1), pp. 1-50.

47.	 Osman, I. H. (1993). Metastrategy simulated annealing and 
tabu search algorithms for the vehicle routing problem. An-
nals of Operations Research, 41(4), 421-451, DOI: https://
doi.org/10.1007/BF02023004.

48.	 Bengio, Y. (2012). Practical recommendations for gradi-
ent-based training of deep architectures. In Montavon, G. 
et al. (Eds.), Neural Networks: Tricks of the Trade (pp. 437-
478). Springer, Berlin, Heidelberg.

49.	 Hochreiter, S., & Schmidhuber, J. (1997). Long short-term 
memory. Neural Computation, 9(8), 1735-80.

50.	 Hall,  P. (1982). On estimating the endpoint of a distribu-
tion.  Annals of Statistics, 10(2), 556-568.

51.	 Christiaens, J., & Berghe, G. V. (2020). Slack induction by 
string removals for vehicle routing problems. Transporta-
tion Science, 54(2), 417-433.

52.	 Kruskal, J. B. (1956). On the shortest spanning subtree of a 
graph and the traveling salesman problem. Proceedings of 
the American Mathematical Society, 7(1), 48-50.

53.	 Ribiero, G. M., & Laporte, G. (2012). An adaptive large 
neighborhood search heuristic for the cumulative capaci-
tated vehicle routing problem. Computers and Operational 
Research,  39(3), 728-735.

54.	 Gett Delivery (2022, January, 17). https://www.gett.com/il/
delivery/.

55.	 Gehring, H., & Homberger, J. (1999). A parallel hybrid evo-
lutionary metaheuristic for the vehicle routing problem with 
time windows.  In Miettinen, K., Mäkelä, M. and Toivanen 
J. (Eds.), Proceedings of EUGOGEN99 – Short Course on 
Evolutionary Algorithms in Engineering and Computer Sci-
ence, pp. 57-64. University of Jyväskylä.

56.	 SINTEF (2008, February, 17) Benchmarks-Vehicle rout-
ing and traveling salesperson problems, SINTEF Applied 
Mathematics, Department of Optimization, Norway  https://
www.sintef.no/projectweb/top/vrptw/.

57.	 Augerat, P., Belenguer, J.M., Benavent, E., Corber, A., & 
Naddef, D. (1998). Separating capacity constraints in the 
CVRP using tabu search. European Journal of Operational 
Research, 106(2-3), 546-557.



 

www.mkscienceset.comPage No: 35 Nov Joun of Appl Sci Res 2025  

Copyright: ©2025 Uri Lipowezky. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and source are credited.

58.	 Cordeau, J., Desaulniers, G., Desrosiers, J., Solomon, M. 
M., & Soumis, F. (2001). VRP with time windows. In Toth, 
P. and Vigo, D. (Eds.), The vehicle routing problem. SIAM 
Monographs on Discrete Mathematics and Applications, pp. 
157-193. SIAM Publishing, Philadelphia, PA. 

59.	 Derigs, U., & Reuter, K. (2009). A simple and efficient tabu 
search heuristic for solving the open vehicle routing prob-
lem. Journal of the Operational Research Society, 60(12), 
1658-1669.

60.	 Eksioglu, B., Vural, A. V., & Reisman, A. (2009). The ve-
hicle routing problem: A taxonomic review. Computers and 
Industrial Engineering, 57(4), 1472–1483.

61.	 Fleszar, K., Osman, I. H., & Hindi, K. S. (2009). A vari-
able neighborhood search algorithm for open vehicle rout-
ing problem. European Journal of Operational Research, 
195(3), 803-809.

62.	 Glover, F., & Laguna, M. (1997). Tabu Search, Kluwer Ac-
ademic, Boston. 

63.	 He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep 
into rectifiers: Surpassing human-level performance on Im-
ageNet classification. in ICCV,  Proceedings  IEEE Inter-
national Conference on Computer Vision, pp. 1026-1034. 
Santiago, Chile, DOI: 10.1109/ICCV.2015.123.

64.	 Hill, A. V., & Benton, W. C. (1992). Modeling intra-city 
time-dependent travel speed for vehicle scheduling prob-
lems.  Journal of the Operational Research Society, 43(4), 
343-351.

65.	 Hill, B. M. (1975), A simple general approach to inference 
about the tail of a distribution. Annals of Statistics, 3(5), 
1163-1174.

66.	 Kok, A. L., Hans, E. W., & Schutten, J. M. J. (2012). Vehi-
cle routing under time-dependent travel times: the impact 
of congestion avoidance.   Computers and Operations Re-
search 39(5), 910–918.

67.	 Kumar, S. N., & Panneerselvam, R. (2017). Development of 
an efficient genetic algorithm for the time-dependent vehi-
cle routing problem with time windows.  American Journal 
of Operations Research, 7(1), pp. 1-25.

68.	 Malandraki, C. (1989). Time-Dependent Vehicle Routing 
Problems: Formulations, Solution Algorithms and Compu-

tational Experiments, PhD Thesis, Northwestern Universi-
ty, Evanston, Illinois. 

69.	 Malandraki, C., & Daskin, M. S. (1992). Time-dependent 
vehicle-routing problems – formulations, properties, and 
heuristic algorithms. Transportation Science, 26(3), 185–
200.

70.	 Nemhauser, G. L., Wolsey, L., A. & Fisher, M. L. (1978). 
An analysis of approximations for maximizing submodu-
lar set functions-I. Mathematical Programming, 14(1), pp. 
265-294.

71.	 Pickands, J. (1975). Statistical inference using extreme or-
der statistics. Annals of  Statistics, 3(1), pp. 119-131, DOI: 
http://dx.doi.org/10.1214/aos/1176343003.

72.	 Potvin, J.-Y., & Rousseau, J.-M. (1993). A parallel route 
building algorithm for the vehicle routing and the schedul-
ing problem with time windows. European Journal of Oper-
ational Research, 66(3), 331–340.

73.	 Schrimpf, G., Schneider, G., Stamm-Wilbrandt, H., & 
Duek, J. (2000). Record-breaking optimization results using 
the ruin and recreate principle. Journal of Computational 
Physics, 159(2), 139-171.

74.	 Shaw, P. (1998). Using constraint programming and lo-
cal search methods to solve vehicle routing problems. In 
CP’98: Proceedings of the 4th International Conference on 
Principle and Practice of Constraint Programming, pp. 417-
431. London, UK, Springer-Verlag

75.	 Teng, Y., Chen, J., Zhang, S., Wang, J., & Zhang, Z. (2024). 
Solving dynamic vehicle routing problem with time win-
dows by ant colony system with bipartite graph matching. 
Egyptian Informatics Journal,  25, 1-12, DOI:10.1016/j.
eij.2023.100421

76.	 Zhigljavsky A. (1991). Theory of global random search, 
Kluwer Acadademic Publishers, Dordrecht.

77.	 Zhigljavsky A., and Žilinskas A. (2008). Stochastic Global 
Optimization, 1st ed., Springer Berlin, Heidelberg. 

78.	 SINTEF (2008, February, 17) Benchmarks-Vehicle rout-
ing and traveling salesperson problems, SINTEF Applied 
Mathematics, Department of Optimization, Norway  https://
www.sintef.no/projectweb/top/vrptw/.


