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Abstract

Infectious diseases remain a significant global health challenge, intensified by emerging pathogens, Anti-
Microbial Resistance (AMR), and limited healthcare access in low-resource settings whereas the emergence of
Artificial Intelligence (Al) has transformed the way of infectious disease management by enhancing diagnostics,
surveillance, drug discovery, and personalized treatment strategies. Al-driven approaches like Machine Learning
(ML), Natural Language Processing (NLP) and deep learning, have facilitated early identification of disease,
optimized healthcare resource allocation, and accelerated both the vaccine and drug development. AI-powered
diagnostic tools, such as computer vision-based medical imaging models and real-time epidemiological
surveillance systems, have been instrumental in pandemic response efforts. Moreover, use of Al improved AMR
monitoring, ensuring timely intervention against drug-resistant infections. More specifically, Al is developing at
unprecedented scale which is being adopted and deployed even faster in every sphere of life globally. Despite its
beneficial potential, there are some challenges like data privacy, ethical concerns, and infrastructure limitations
causing barriers to widespread Al adoption in healthcare. Therefore, there is a requirement for collective global
efforts to establish governance and standards that uphold the shared values, and address risks and build trust.

Thus, the present review explores the current advancements, challenges, and future directions of Al in infectious

disease management, highlighting its transformative impact on global health security.
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Introduction

Infectious diseases have shaped human history, causing dev-
astating pandemics and ongoing health crisis worldwide. The
Spanish flu pandemic of 1918-1919 is one of the most lethal
outbreaks, killing between 50-100 million people due to the ab-
sence of antimicrobial agents, vaccines, and advanced critical
care [1]. Additionally, cholera, smallpox, bubonic plague, and
influenza have caused major disease outbreaks in the past [2].
Despite significant medical advancements, even today diseases
such as tuberculosis, malaria, hepatitis and Covid - 19 continue
to cause widespread morbidity and mortality as these diseases
are infectious in nature [3,4].
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Moreover, impact of Covid - 19 pandemic is evident globally
that led to both mortality and morbidity claiming over seven
million lives worldwide leaving a great impact on society, en-
vironment and economic sector, causing widespread job losses,
healthcare system collapse, learning disruptions, and economic
recessions in multiple countries [5-7]. Besides the immediate
loss of life, many infectious disease survivors suffer from long-
term health issues which affect their quality of life and imposes
heavy overload on healthcare systems [8].

More specifically, the burden of infectious illnesses increases
due to socioeconomic variables such as poverty, poor sanita-
tion, and limited access to healthcare especially in developing

J Cri Res & Eme Med 2025



nations. Despite advancements in healthcare, the emergence of
new pathogens, re-emergence of older infections, and the rise
of antimicrobial resistance continue to complicate disease con-
trol and prevention efforts [9]. To overcome all these hurdles
to combat infectious diseases, researchers and healthcare stake-

holders have been continuously trying to discover innovative
approaches to assist the medical field, particularly in identifying
the spread of infectious illnesses [10]. Among various approach-
es, Al, the talk of day in every field particularly ML and DL, has
transformed biomedical research in recent years [11, 12,]. Fig. 1.
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Figure 1: Applications of Al

By using ML algorithms and data-driven insights, Al helps de-
tect, predict, and manage epidemics more effectively, reducing
their global impact while also assisting in diagnosis, precise
treatment, threat detection, and lesion identification to minimize
medical errors and improve healthcare efficiency [13]. Al has
demonstrated impressive results in image-based diagnostics,
especially in the interpretation of pathological and radiological
images. For example, chest X-rays have been analyzed using
deep Convolutional Neural Networks (CNNs) to diagnose tu-
berculosis (TB).

In low-resource places where trained radiologists are mostly in-
accessible, CNN model might diagnose TB from chest X-rays
with diagnostic performance comparable to radiologists [14].
Similarly, AI models have been created to identify and catego-
rize pathogens in blood smears e.g. CNNs have been used to
detect malaria parasites on stained blood films. The Al system's
accuracy was above 90% in case of CNN models, greatly low-
ering the diagnostic load in endemic areas [15]. Beside these,
ML techniques have also been used to evaluate the chances of
infectious disease transmission at various geographical scales
examining enormous databases, such as social media, medical
records, and environmental data leading to early indication of
disease in epidemics and also clearly demonstrating the signifi-
cant role of Al in modern disease diagnostics and control, pav-
ing the way for more advanced and accessible healthcare solu-
tions [16,17]. The gathering in knowledge concerned with Al
for diagnosis and treatment is essential to ameliorate the current
healthcare status. Therefore, the main aim of the present review
is to describe the significance of Al in diagnosis and manage-
ment of various infectious diseases.

Infectious Diseases
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Infectious illnesses are caused by microscopic organisms such
as bacteria, viruses, parasites or fungi that are spread from per-
son to person either directly or indirectly. The direct mode of
transmission involves physical touch, vertical transmission, sex-
ual transmission or by vector bite. Besides these, SARS-CoV-2
and influenza are disseminated via aerosols or respiratory drop-
lets whereas diseases like cholera and hepatitis A spread via con-
taminated food or water [18]. These infectious diseases are par-
amount cause of mortality and morbidity worldwide, especially
for young children in developing nations [19].

Among various infectious diseases, malaria, diarrhea, and lower
respiratory infections are some of the leading causes of death
and have a great impact on health systems, economy, and society
as evident by recent occurrence of Covid-19 pandemic [20,21].
Moreover, infectious illnesses have a crucial effect on healthcare
systems by putting a demand on resources, interfering with reg-
ular services, and revealing systemic weaknesses and making
treatment more difficult due to the evolution of resistant strains.
Substantial advancements in prevention and treatment of dis-
ease have led to some sort of reduction in life threatening in-
fectious diseases. However, discovery of vaccination has played
an instrumental role in eradicating, eliminating, or significantly
reducing the burden of several infectious diseases like polio,
smallpox, measles and rubella, but still there are many other dis-
eases such as HIV, malaria are prevalent and needs much more
attention so as to avoid the sufferings of the people [22].

World Health Organization (WHO), Global Alliance for Vac-
cines and Immunization (GAVI), and the Global Fund are among
the organizations that use financing, research, and vaccination
programs to reduce the burden of infectious illnesses [23]. The
most important impact of modern surveillance networks is to
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track outbreaks and carry out prompt treatments using digital
technologies and artificial intelligence [24].

Artificial Intelligence

The term Artificial Intelligence (Al) describes the formation of
algorithms and computer systems which can carry out operations
that normally demand for human intellect and include learning,
thinking, solving problems, making decisions and comprehend-
ing natural language [25]. The Turing test, which uses binary
judgement criteria as its primary criterion, defines Al as the ca-
pacity of computers to interact with people (via electronic output
devices) without revealing that they are not humans [26]. John
McCarthy was the first to coin the term Artificial Intelligence
during the Dartmouth Summer Research Project on Al in 1956
and is regarded as the father of AI [27].

Machine learning (ML), a branch of Al, involves use of data as
an input resource. Preset mathematical functions are used for
classifying or regressing outcome that is often hard for people
to achieve. ML is a rapid and cost-effective technique which is
becoming more and more popular in a number of domains e.g.,
image recognition, autonomous vehicles, personalized medicine
and medical diagnostics [28].

Traditionally, ML is divided into three main groups:

* unsupervised learning

« supervised learning, which includes classification and regres-
sion techniques, and

* reinforcement learning [29].

ML techniques can be parametric (like logistic regression) or
nonparametric (like neural networks and non-neural network ap-
proaches like logistic regression, Naive Bayes, gradient boosting
machine/decision tree, Support Vector Machine (SVM), k-near-
est neighbour (k-NN), Random Forest (RF), and linear regres-
sion). However, selection of ML techniques depends on the type
of data that provides better decisions during epidemic process
to evaluate huge amounts of data and offer insight, and leads to
a deeper understanding of the illness to both health and public
officials [30]. Furthermore, ML and Al make it simple to pre-
vent, control, and monitor infectious diseases while for fatal and
hazardous diseases, big data applications and deep learning (a
subset of ML) can be very beneficial [31]. As Al continues to ad-
vance, further innovations are expected to enhance the efficiency
and precision of healthcare interventions.

Disease Surveillance Using Al

Disease surveillance mainly involves promptly identifying pos-
sible health risks, verifying, evaluating, and investigating them
to support public health control recommendations [32]. Numer-
ous disease monitoring initiatives have prioritized ML models
which use the internet and open health data sources to enhance
surveillance and prediction of infectious diseases including
cholera, dengue fever, and malaria [33].

The "flu tracker" (an Al tool) employs crowd sourced platforms
to report flu symptoms and enhance global influenza monitoring
was created by the U.S. Centres for Disease Control and Pre-
vention. It has become an essential tool to track the number of
influenza cases and is based on the U.S. influenza-like illness
surveillance network, which tracks the proportion of patients
who visit outpatient clinics with influenza-like illness symp-
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toms, such as fever, cough, or sore throat, over the total number
of patient visits [34].

Several research teams, including Boston Children's Hospital's
Computational Health Informatics Program (CHIP), have been
using forecasting methods in conjunction with ML to produce
more accurate estimations and predictive indications of local flu
activity. Autoregression with general online information (argon-
et) is a program that uses data from Google searches linked to
flu, Electronic Health Records (EHRs), and past flu activity in a
specific area. Argonet also uses the spatial-temporal patterns of
flu propagation in nearby places to increase its accuracy [35].
Huge amount of data from a variety of sources, such as social
media, environmental data, news articles and medical records
have been used by Al-powered systems to detect patterns that
might be signs of disease outbreaks [36].

Risk analysis firms equipped with Al-enabled the discovery of
Covid-19 virus early before the notification of WHO. Moreover,
in late December 2019, an Al epidemiologist from the Canadian
business Blue Dot has been the first to report on the COVID-19
epidemic. BlueDot expanded from places in China by analyzing
data from news headlines, airline tickets, and animal illness out-
breaks and helped in identifying locations that might be suscep-
tible to the epidemic.

San Francisco-based Metabiota is another firm utilizing Al that
provides a near-term forecasting model of disease spread and an
epidemic tracker. Al, combined with different tributaries, is con-
sidered helpful in depicting prediction of the agent responsible
for causing diseases vis-a-vis place of its origin, as Coronavirus
outbreak was predicted early by employing Metabiota in coun-
tries including Japan, Thailand, Taiwan, and South Korea [37].

Ai For Diagnostics and Disease Detection

Controlling the impact and spread of infectious illnesses re-
quires early and accurate diagnosis. Though conventional diag-
nostic techniques, such as Polymerase Chain Reaction (PCR),
culture-based approaches, and serological testing provide good
input about the diagnosis and treatment of infectious diseases
but demands frequent specialized labs, skilled workers, and a
substantial amount of time. Therefore, diagnosis of diseases has
been transformed by artificial intelligence (Al), especially ML
and deep learning (DL), that enhances accessibility, speed, and
accuracy. Many diseases are predicted and diagnosed using Al
techniques, particularly those whose diagnosis depends on im-
aging or signalling analysis [38].

Medical image analysis has been benefited greatly from ML ap-
proaches because of complex algorithms that allow for the au-
tomatic extraction of enhanced information [39]. Al is already
used to support medical professionals and enhance illness diag-
nosis; for instance, it helps gynaecologists to make judgements
on the initial course of therapy and early detection of ectopic
pregnancies [40].

The field of ML also assists in detecting the diagnosis of an ill-
ness by using prior training data [41]. Numerous researchers
have developed a variety of ML techniques that may effective-
ly identify a range of diseases such as diabetes, cardiac syn-
drome, chronic kidney disease, breast cancer, and liver cancer
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having major influence on a person's health and can be fatal if
left untreated [42, 43]. A number of classifiers and clustering
algorithms, including K-nearest, Random Forest, Support Vec-
tor Machine (SVM), Decision Tree, Naive Bayes and others can

provide a solution to this problem as a result of advancements in
ML and Al [44]. Three main types of ML algorithms are utilized
in disecase diagnostics i.e. supervised learning, unsupervised
learning and reinforcement learning as mentioned in Fig. 2.
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Figure 2: Main Types of Machine Learning

Supervised Learning

This has been significant in the development of diagnostic algo-
rithms for analyzing images in addition to various other decision
supportive tasks in healthcare [45]. One effective supervised
classifier is SVM [46]. SVMs work well for binary classification
tasks like identifying infected and non-infected individuals from
medical imaging e.g. SVMs have been used to accurately classi-
fy TB in chest X-rays [47].

Artificial Neural Networks (ANNs), another supervised algo-
rithm is primarily built on mathematical models that draw refer-
ence from biological nervous systems, including the information
found in brain networks. American neurophysiologist Warren
McCulloch initially defined ANN in 1943, which paved the way
for Walter Pitts to create neural networks with electrical circuits.
Various scientists have looked at the potential of ANN for the di-
agnosis and treatment of a range of infectious disorders, includ-
ing COVID-19, dengue, diarrhoea, tuberculosis, and childhood
blindness [48-50].

Random Forest is an ensemble learning technique which en-
hances diagnostic accuracy by combining many decision trees
and has been used to analyze test findings and patient vital signs
in order to diagnose sepsis. It uses an assembly of decision trees
to give high classification accuracy by analyzing intricate rela-
tionships between clinical parameters [51,52] employed a RF
prediction model to analyze the outcomes of COVID-19 patients
alongwith their prognoses and the control techniques to protect
these patients from SARS- CoV- 2.

Unsupervised Learning

In unsupervised ML, the model uses unlabeled data to find infor-
mation and hidden patterns that has played crucial role in diag-
nosis of infectious diseases. These are useful for classifying dis-
ease subtypes, detecting new diseases, and improving diagnostic
accuracy when analyzing genetic sequences, patient health re-
cords, and epidemiological data [53]. Commonly used unsuper-
vised learning algorithms in disease diagnosis are hierarchical
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clustering, K-means clustering, Principal Component Analysis
(PCA) and autoencoders.

Hierarchical cluster analysis pairs clusters, variables, or vari-
ables and clusters in a sequential manner to create a distinct set
of nested categories or clusters. Starting with the correlation
matrix, every cluster and unclustered variable is tested in ev-
ery pair that may be formed. The pair that produces the highest
average intercorrelation inside the trial cluster is selected as the
new cluster [54]. Hierarchical clustering builds a tree-like struc-
ture (dendrogram) to represent data relationships and is useful
in clustering patients with similar immune responses or disease
progression patterns [55, 56]. Papin et al. 2021 [57] have used
this algorithm for clinical and biological clustering of sepsis pa-
tients.

K- Means clustering is a simple type of unsupervised learning
which sorts similar data points based on their features [58]. It has
been used to classify malaria infected and non-infected RBCs
from microscopic images which improved the efficiency of au-
tomated diagnosis of malaria [59].

PCA for dimensionality reduction retains the most important
information by reducing the complexity of high- dimensional
medical datasets [60]. It has been used in simplifying complex
data of whole genome and protein sequences in Covid-19 stud-
ies [61].

Autoencoder encodes information into a condensed and mean-
ingful representation and then decodes it back in such a manner
that the reconstructed input is as close to the original as possible
[62]. Autoencoder CNNs are used to improve anomaly detection
by uncovering hidden patterns in the data for pneumonia detec-
tion in chest X-rays [63].

Reinforcement Learning
The goal of reinforcement learning (RL) is to maximize rewards
by decision-making through the use of agent-environment inter-
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action and their possibly delayed feedbacks. RL concurrently ad-
dresses sampling, evaluative, and delayed feedbacks in sequen-
tial decision-making situations. However, in infectious disease
diagnosis, RL models can optimize clinical decision-making,
diagnostic strategies, and personalized treatment plans by con-
tinuously learning from patient data. Unlike supervised learning,
which depends on labeled datasets, RL dynamically improves its
performance based on feedback, making it well-suited for com-
plex medical scenario. RL has been applied in automated med-
ical diagnosis for analyzing ultrasound, Magnetic Resonance
Imaging (MRI), Computed Tomography (CT) scan images [64].

Deep Learning

Deep learning (DL) is a subset of ML, but it makes use of a
more sophisticated technique that mimics human thought and
learning processes to allow computers to automatically extract,
analyze, and comprehend the valuable information from the raw
data [65]. It has transformed infectious disease diagnosis by en-
abling automated, high-accuracy analysis of complex medical
data. DL models, particularly CNNs, Long Short-Term Memo-
ry (LSTM) networks, Recurrent Neural Networks (RNNs) and
Transformer-based models have wide application in medical im-
aging, genomic analysis, and clinical diagnostics. These models
extract intricate patterns from radiology images, EHRs, genomic
sequences and laboratory test results, enhancing early detection
and precision medicine for infectious diseases [66].

CNNs are widely used in the automated diagnosis of infectious
diseases from medical images such as CT scans, X-rays and
Magnetic Resonance Imaging (MRIs) by extracting hierarchi-
cal image features, distinguishing between infected and healthy
tissues with high accuracy. DL technology may be applied to
create an efficient diagnosis tool for COVID-19 and viral pneu-
monia using X-ray images [67].

Hochreiter and Schmidhuber (1997) initially presented the
LSTMs structural architecture for RNNs in 1997 [68]. An
LSTM-based model was used to analyze EHRs for sepsis pre-
diction, improving early diagnosis and intervention strategies.
RNN s have been used in disease outbreak forecasting, analyzing
past infection rates to predict the spread of influenza and dengue
fever [69].

Transformer-based models like Bidirectional Encoder Represen-
tations from Transformers (BERT) and Generative Pre- training
Transformer (GPT) have revolutionized NLP tasks in medical
research. Transformers have been applied in SARS-CoV-2 ge-
nomic sequence analysis that helped in identifying mutations
and new variants with improved accuracy [70]. BioBERT, a
domain-specific NLP model, has also been used to extract key
information from scientific literature and clinical notes, aiding in
real-time analysis of infectious disease reports [71].

NLP, a component of Al enables machines to understand, inter-
pret, and analyze human language with the help of either ML or
rule-based approaches to understand the meaning and structure
of text [72]. NLP algorithms can process unstructured patient re-
cords for identifying main symptoms and risk factors related to
infectious diseases. It can also enhance diagnostic accuracy by
extracting assembled information from ML models. Ancochea
et al. 2021 [73]. employed EH read, a technology by Savana (an
international, medical company) that uses NLP, DL and ML, to
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access and analyze the free-text, unstructured data that medical
professionals enter into EHR.

Al in Point-of-Care Testing and Rapid Diagnostics

The term "Point-Of-Care" (POC) diagnostics refers to a nov-
el, innovative method for on-site, real-time, fast, and precise
detection at the patient's point of need [74]. Al enhances POC
testing by integrating real-time analysis with portable diagnostic
devices. Al-based mobile applications analyze images of Rapid
Diagnostic Test (RDT) strips (e.g., for malaria or COVID-19),
providing fast and accurate results without needing expert inter-
pretation [75]. Biosensors are bioanalytical devices that inter-
act and detect target analytes using biorecognition components.
Wearable sensors combined with Al algorithms can detect early
physiological changes, indicative of infections, such as fever,
oxygen saturation drops, or heart rate variability [76].

Al in Genomic and Molecular Diagnostics

Al speeds up pathogen diagnosis by genetic sequence analysis
and mutations identification in real time. Next Generation Se-
quencing (NGS) has the potential to produce even more signif-
icant outcomes, insights, and results with the evolution of Al
and ML. ML techniques analyze infectious agent genomic se-
quences quickly, improving pathogen identification and epidem-
ic tracking [77]. Algorithms for ML and Al have become effec-
tive weapons in the fight against AMR. Large datasets can now
be analyzed efficiently due to recent advancements in AI/ML,
which makes it possible to forecast AMR trends and treatment
outcomes with minimum human assistance. Targeted treatment
techniques can be developed by using ML algorithms to ana-
lyze genomic data and find genetic markers linked to antibiotic
resistance. Furthermore, AI/ML approaches have potential for
improving medication delivery and creating substitutes for con-
ventional antibiotics [78].

Al in Drug Discovery

Drug research and vaccine development have been transformed
by Al significantly reducing the cost and time required to iden-
tify effective treatments for infectious diseases. Al-driven meth-
ods improve vaccine development, optimize medication design,
and speed up target identification whereas traditional drug dis-
covery pipelines take 10-15 years and cost billions of dollars
[79].

Drug repurposing involves identifying existing FDA-approved
drugs for new therapeutic uses. Al algorithms use DL and NLP
to search through clinical trial data, medical literature, and mo-
lecular interactions to forecast repurposed medications. Al-driv-
en drug repurposing identifies FDA-approved drugs that have
unexpected antibacterial properties and saves years of develop-
ment time compared to new drug discovery. Hence, it reduces
clinical trial costs and expands the range of available treatments
for MDR infections. Al repurposed metformin (the diabetes
drug) for its potential antimicrobial activity against MDR tuber-
culosis [80].

During the Covid-19 pandemic, remdesivir, baricitinib and
dexamethasone have been used as potential treatment through
Al powered drug repurposing. BenevolentAl used NLP and
ML to identify baricitinib, a rheumatoid arthritis drug, as a po-
tential COVID-19 treatment [81]. To find possible therapeutic
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targets, Al systems examine enormous biological datasets, such
as proteomic, metabolomic, and genomic data while DL models
scan genomic sequences to identify essential viral and bacterial
proteins that can serve as drug targets. Al-based network phar-
macology helps uncover novel biomarkers for disease progres-
sion. AlphaFold, an Al-based protein structure prediction tool by
DeepMind, accurately predicted the structures of SARS-CoV-2
proteins, accelerating drug development efforts [82].

Al models assist in predicting drug-protein binding affinities to
identify promising compounds, optimizing molecular structures
for better efficacy, lower toxicity; and virtual screening of mil-
lions of molecules to prioritize candidates for laboratory testing.
Atomwise (a pharma company) used Al-driven virtual screening
to identify small-molecule inhibitors for Ebola virus, reducing
the time required for early-stage drug discovery, thus it is ob-
served that through computational modeling and deep learning
techniques, Al enables precise targeting of pathogens and accel-
erates the screening of potential compounds [83].

Al in Personalized Treatment

Al models analyze proteomic, genomic, and metabolomic data
to predict how an individual will respond to different treatments
by identifying the host genetic factors that influence the disease
susceptibility by optimizing both antiviral and antimicrobial
therapies to minimize drug resistance [84]. Al models predicted
patient-specific responses to HIV antiretroviral therapy, opti-
mizing drug regimens for minimized side effects and maximum
efficacy [85].

Al helps in predicting which drugs will be most effective for a
particular patient and identifying cases where pathogens develop
drug resistance. ML algorithms analyze vast clinical datasets to
predict patient-specific drug resistance patterns while Al assists
in designing alternative drug regimens for patients with multi-
drug-resistant infections. Moreover, Al models have also been
used to predict antibiotic resistance in TB patients, enabling doc-
tors to choose effective second-line drugs for resistant strains
[86].

Sepsis, a life-threatening condition caused by severe infections,
requires real-time monitoring and early intervention and Al have
played a crucial role in early detection of sepsis using predictive
algorithms on EHRs [87]. Al-powered ICU management sys-
tems have been developed to optimize antibiotic dosages to im-
prove survival rates, ventilator settings, fluid resuscitation, and
vasopressor administration [88]. Google's DeepMind developed
an Al model that predicted sepsis 48 hours in advance, reducing
mortality rates in critically ill patients [89].

By utilizing patient-specific data, Al facilitates personalized
treatment strategies that improve therapeutic outcomes and re-
duce adverse reactions. This method improves patient care by
tailoring medical interventions based on individual genetic and
physiological profiles.

Al in Novel Antibiotic Discovery

Traditional antibiotic discovery is slow and expensive, with
most compounds failing in clinical trials. Interestingly, Al accel-
erates this process by screening millions of chemical compounds
to identify potential antibiotics and can predict drug-target in-
teractions and bacterial resistance mechanisms vis-a-vis can
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design novel synthetic antibiotics with enhanced efficacy [90].
More specifically, Al discovered Halicin, a new antibiotic that is
able to kill drug-resistant bacteria, including E. coli and Acine-
tobacter baumannii, within days of computational analysis [91].

Al for AMR Prediction and Early Detection

ML models analyze bacterial genomic data, clinical records, and
patient demographics to predict which pathogens are resistant
to specific antibiotics helping clinicians to select the most effec-
tive antibiotic therapy for individual patients. ML also reduces
the unnecessary use of broad-spectrum antibiotics and helps in
identifying high-risk patients likely to develop drug-resistant in-
fections. Yang et al. 2019 developed a DL model that predicted
tuberculosis drug resistance with an accuracy of 95% based on
whole-genome sequencing data.

Traditional culture-based antibiotic susceptibility testing takes
24-72 hours, delaying critical treatment decisions but Al en-
hances rapid AMR detection through DL analysis of micro-
scopic images to identify resistant bacteria, Al-driven mass
spectrometry for detecting resistance-associated biomarkers and
integration with POC diagnostic devices for real-time resistance
profiling. Deepamr, an Al-based framework, successfully iden-
tified resistant bacterial strains from genomic data within hours,
aiding faster decision-making [92].

The application of Al in antimicrobial resistance helps in iden-
tifying resistance patterns and predicting new resistance mecha-
nisms. By analyzing vast datasets, Al aids in optimizing antibi-
otic prescriptions and developing novel antimicrobial therapies
to combat resistant infections.

Al in Patient Management and Remote Monitoring

Remote patient monitoring (RPM) using wearable devices,
mobile health apps, and Al-powered chatbots improves patient
outcomes by tracking symptoms and vitals in real-time, sending
alerts for early intervention if a patient's condition worsens and
hence ensuring treatment adherence through automated medi-
cation reminders [93]. Al-powered smartwatches detected early
symptoms of COVID-19 based on physiological data like heart
rate and oxygen levels, allowing for early isolation and treat-
ment [94].

Digital therapeutics involve using Al-powered mobile appli-
cations to guide patients through treatment protocols, provide
mental health support for infectious disease patients and offer
dietary and lifestyle recommendations to support immune func-
tion. Ma et al. 2025 [95] have also shown that Al-based chatbots
and mobile apps were used to support mental health and medi-
cation adherence in HIV patients, improving their overall health
outcomes.

Challenges

Despite the transformative potential of Al, it still faces several
challenges in the management of infectious disease due to lim-
ited availability and quality of data, lack of expertise, privacy
concerns, high costs, explainability issues, and regulatory barri-
ers as Al models require large, high-quality datasets for training,
but in many regions, patient data is incomplete, unstructured, or
inconsistent that reduces the accuracy of Al predictions along-
with bias that remains a major issue [96]. More specifically, if Al
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systems are trained on data that does not represent diverse pop-
ulations, can lead to inaccurate diagnosis and worsen healthcare
disparities, particularly in low-income regions [97].

Another significant barrier is the lack of Al expertise among
healthcare professionals. Many doctors and clinicians have lim-
ited training in Al, making it difficult to integrate Al-based tools
into clinical workflows. Without proper understanding, there
are chances of misinterpreting Al-generated predictions. Fur-
thermore, the use of Al in infectious disease management raises
ethical and privacy concerns. Al systems rely on large amounts
of patient data, and sharing this data for research and Al training
often conflicts with privacy regulations [98].

The high cost and infrastructure challenges also limit Al adop-
tion in many areas of the world. Al development and implemen-
tation require high-performance computing, reliable internet
access and advanced software, which may not be available in
low-resource settings [99]. Additionally, the lack of explain-
ability in Al models makes it difficult for doctors to trust Al-
based decisions. Finally, regulatory and legal barriers too slow
down Al deployment in healthcare [100]. Al-powered diagnostic
tools must undergo rigorous approval processes by regulatory
agencies before clinical use, and many countries lack clear le-
gal frameworks for Al in healthcare. However, addressing these
challenges will need better data management, improved Al edu-
cation for healthcare professionals, stronger privacy safeguards,
cost-effective Al solutions, and clear regulatory guidelines. By
overcoming these obstacles, Al can be more effectively integrat-
ed into infectious disease management, leading to better patient
outcomes and stronger global health systems.

Conclusion

Al has emerged as an indispensable tool in various fields of
human health i.e. diagnosis of infectious disease, surveillance,
treatment, and pandemic response. Though, Al-driven solutions
have streamlined diagnostics, accelerated drug discovery, and
enhanced epidemiological monitoring, contributing to improved
global health outcomes, however its implementation is still a
point of concern due to various challenges in low-resource set-
tings, Al-based point-of-care diagnostics and wearable health
monitoring devices have expanded healthcare accessibility and
have played a crucial role in AMR surveillance, guiding policy-
makers in antibiotic stewardship efforts.

Despite these successes, several challenges hinder the full-scale
implementation of Al in healthcare due to data privacy, lack of
standardization, algorithmic bias, and high computational re-
quirements that needs to be addressed in detail. Moreover, ethi-
cal concerns regarding Al-based medical decision-making high-
light the need for transparent and interpretable AI models.

Furthermore, collaborations between Al researchers, health-
care professionals, and policymakers are crucial for ensuring
Al-driven healthcare solutions that are scalable, affordable, and
equitable. However, with continued advancements in bioinfor-
matics, Al is approaching to revolutionize the management of
infectious diseases, reduce mortality rates, and strengthen global
health security.

Future perspectives

Page No: 07 /

www.mKkscienceset.com

The future of Al in the management of infectious disease will
rely on improving interpretability and transparency to ensure that
Al-driven decisions are reliable and trusted in clinical settings.
Developing explainable Al (XAI) models will guide healthcare
professionals in understanding how Al systems generate predic-
tions, making them more applicable in real-world scenarios. Ad-
ditionally, federated learning and privacy-preserving Al will en-
able collaboration across multiple healthcare institutions while
protecting patient data, addressing a major concern in Al-driv-
en healthcare. More specifically, Al is also expected to play a
key role in predicting emerging pathogens and tracking disease
evolution by analyzing genomic sequences and epidemiologi-
cal trends to anticipate viral mutations and potential outbreaks.
Furthermore, integrating Al with wearable devices and remote
health monitoring will allow real-time tracking of infectious
diseases, improving early detection and personalized treatment.
In drug discovery and vaccine development, Al will accelerate
drug repurposing and optimize vaccine formulation, reducing
the time needed for clinical trials and regulatory approvals. To
expand the reach of Al-driven healthcare, efforts should focus
on developing lightweight, offline-compatible Al models that
can be deployed in resource-limited settings. Finally, ensuring
ethical Al implementation by addressing issues of bias, fairness,
and regulatory compliance will be essential for its responsible
adoption. By overcoming these challenges and continuing to
advance Al-driven innovations, the future of infectious disease
management will become more effective, proactive, and global-
ly accessible.
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