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Abstract
This research aims to improve fault detection and classification in Gigabit Passive Optical Networks (GPON) by uti-
lizing machine learning, focusing on the K-Nearest Neighbors (K-NN) algorithm. The GPON network is extensively 
simulated using OptiSystem, where essential performance metrics—Optical Power (dBm), Bit Error Rate (BER), 
and Signal-to-Noise Ratio (SNR)—are analyzed under various fault and interference scenarios. The collected data 
undergoes preprocessing and normalization before classification with the K-NN algorithm implemented in MATLAB, 
using the Euclidean distance metric to measure similarity.

Classification results evaluated via confusion matrices show accuracy rates between 63.16% and 75.00% across 
different Optical Network Units (ONUs). ONU 2 and ONU 8 achieved the highest accuracies of 75.00% and 72.73%, 
respectively, while ONU 1 and ONU 7 recorded lower accuracies of 63.64% and 63.16%. Additionally, a detailed 
analysis of fiber attenuation effects on BER reveals significant signal degradation with increased attenuation. This 
effect is notably more severe in the segment between the splitter and ONUs compared to the path from the Optical 
Line Terminal (OLT) to the splitter.

These findings highlight the effectiveness of K-NN-based fault diagnosis systems in automating detection and en-
hancing GPON reliability, thus reducing downtime and operational costs. Future work may explore more advanced 
machine learning classifiers, improved feature selection, and real-time monitoring techniques to boost detection 
accuracy and network resilience.
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Introduction  
The ever-increasing demand for high-speed, reliable, and scal-
able internet access has positioned fiber-optic communication 
as a fundamental pillar of modern digital infrastructure. Optical 
systems, leveraging the properties of light for data transmission, 
have enabled transformative progress in fields such as telecom-
munications, medical imaging, industrial automation, and sci-
entific instrumentation. Among the leading fiber-based access 
technologies, Gigabit Passive Optical Networks (GPON) have 
emerged as a key solution to meet broadband needs for both res-
idential and enterprise environments.

GPON networks utilize a point-to-multipoint topology enabled 
by passive optical components, allowing a single optical fiber 
to be shared among multiple users without the need for active 
elements in the distribution segment. This design reduces opera-
tional costs while ensuring high throughput and service quality. 
Standard GPON implementations operate at downstream rates of 
2.5 Gbps and upstream rates of 1.25 Gbps, employing time-shar-
ing protocols such as TDM and TDMA for efficient bandwidth 
management. However, despite their robustness, GPON systems 
are not immune to performance degradation resulting from fiber 
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impairments, component aging, misconfiguration, and environ-
mental factors.

Traditional diagnostic techniques, such as Optical Time-Domain 
Reflectometry (OTDR), provide vital tools for fault localization. 
Yet, they often require manual interpretation, lack predictive 
capability, and may not scale effectively in large, dynamic net-
works. With the growing complexity of optical infrastructure, 
there is a critical need for intelligent monitoring and autono-
mous fault management.

Recent advances in Machine Learning (ML) offer powerful 
frameworks for enhancing the resilience of optical access net-
works. By mining data generated from performance monitoring 
systems, ML algorithms can detect patterns, classify abnormal 
behaviors, and forecast potential failures. This enables a shift 
from reactive maintenance toward proactive and even preven-
tive network operation. Techniques such as supervised classi-
fication, anomaly detection, clustering, and deep learning have 
been successfully applied to identify signal impairments, opti-
mize resource allocation, and support self-healing mechanisms 
in optical networks.

In this context, the K-Nearest Neighbors (K-NN) algorithm is 
investigated for its effectiveness in GPON fault analysis. K-NN 
is a non-parametric, instance-based learning method known for 
its simplicity and versatility. It can be employed to classify var-
ious types of optical faults, assess signal degradation, and assist 
in predictive maintenance workflows by comparing real-time 
network metrics against historical data patterns. Its ease of im-
plementation and adaptability to diverse data distributions make 
it an appealing choice for real-world deployment in optical sys-
tems.

This work proposes a methodology that integrates K-NN into 
GPON monitoring systems for fault detection and performance 
assessment. Section 2 introduces the architecture of GPON, em-
phasizing upstream and downstream transmission dynamics, 
along with a mathematical formulation of key metrics such as 
Signal-to-Noise Ratio (SNR) and Bit Error Rate (BER). Section 
3 presents the theoretical basis and application of the K-NN al-
gorithm in the context of network fault classification. Section 
4 details the experimental framework, including simulations 
conducted using MATLAB and OptiSystem platforms, and 
discusses the performance results. Section 5 concludes with an 
evaluation of the proposed method’s effectiveness and outlines 
future directions for research in intelligent optical network man-
agement.
 
System Model and Analysis
An optical network typically comprises three core components: 
the transmitter, the transmission medium, and the receiver. The 
transmitter section includes a light source—such as a laser diode 

or LED—along with a driving circuit that modulates electrical 
signals into optical ones. The transmission medium mainly con-
sists of optical fiber and may also include additional components 
like regenerators, splitters, couplers, multiplexers, and connec-
tors, which support signal propagation and enable flexible distri-
bution. At the receiving end, a photodetector—commonly a PIN 
or avalanche photodiode—converts the incoming optical signal 
back into an electrical form. This signal is then amplified and 
processed by a receiver circuit to recover the transmitted data 
accuratel 
 
Optical Transmission in GPON-Based Access Networks 
In fiber-optic access networks—particularly within the "last 
mile" segment—the infrastructure extends from the service pro-
vider’s central office to end-user locations such as residences, 
commercial buildings, and multi-dwelling units. This segment 
typically adopts a Passive Optical Network (PON) architec-
ture, which utilizes passive optical splitters to distribute signals 
through a point-to-multipoint tree topology. Such a design en-
ables efficient and cost-effective sharing of optical fiber among 
multiple subscribers.

Gigabit Passive Optical Network (GPON), standardized under 
ITU-T G.984, is among the most widely deployed PON tech-
nologies. It offers high-capacity broadband access, delivering 
downstream speeds of up to 2.5 Gbps and upstream speeds of up 
to 1.25 Gbps. These capabilities support bandwidth-demanding 
services such as high-definition video streaming, Voice over IP 
(VoIP), and high-speed internet access.

GPON uses Time Division Multiplexing (TDM) for downstream 
communication from the Optical Line Terminal (OLT) to Opti-
cal Network Units (ONUs), while upstream transmission relies 
on Time Division Multiple Access (TDMA). This arrangement 
ensures efficient and fair bandwidth allocation among users. 
Furthermore, Forward Error Correction (FEC) techniques are 
incorporated to enhance signal integrity and counteract common 
transmission impairments such as attenuation and chromatic dis-
persion.

Thanks to its scalability, reliability, and cost-effectiveness, 
GPON has become the preferred technology for modern Fiber-
to-the-Home (FTTH) and Fiber-to-the-Business (FTTB) deploy-
ments. An overview of the general architecture of a GPON sys-
tem is illustrated in Figure 1.

Signal attenuation in GPON systems can be described using the 
general optical fiber loss equation:
    Pout= Pin 10-αL/10        (1)                                                                                                          

Here, Pout denotes the output power, Pin  the input power, α the 
fiber attenuation coefficient measured in decibels per kilometer 
(dB/km), and L the fiber length in kilometers (km)
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Figure 1: The general structure of a GPON network 

Fault detection in Gigabit Passive Optical Networks (GPON)-
based Fiber-To-The-Home (FTTH) systems presents a signifi-
cant challenge due to the absence of physical-layer monitoring 
at the individual user level. GPON utilizes a point-to-multipoint 
topology, where numerous Optical Network Units (ONUs) share 
a single Optical Line Terminal (OLT) through passive splitters. 
This shared medium limits the operator's ability to isolate faults 
affecting specific users, unlike active optical networks where 
each user benefits from a dedicated fiber link and full signal vis-
ibility. Conventional diagnostic tools such as Optical Time-Do-
main Reflectometers (OTDRs) are commonly employed to lo-
cate fiber faults; however, their effectiveness diminishes in the 
shared distribution segment beyond the splitter. Additionally, 
faults caused by fiber degradation, contaminated connectors, or 
rogue ONUs inducing signal interference often require labor-in-
tensive field inspections, which escalate operational costs and 
prolong service outages.

To mitigate these limitations, machine learning offers a promis-
ing approach for intelligent, automated fault detection in GPON-
based FTTH environments. By monitoring and analyzing key 
network performance indicators—such as received optical pow-
er, bit error rate, latency, and signal-to-noise ratio—data-driven 
models can detect and classify anomalies with high precision. 
In this study, we adopt the K-Nearest Neighbors (K-NN) algo-
rithm, leveraging supervised learning techniques trained on his-
torical fault datasets (e.g., fiber cuts, signal degradation, ONU 
misbehavior). This model enables real-time pattern recognition 
by comparing live measurements against known fault signatures, 
thereby facilitating proactive fault localization. The proposed 
method significantly improves diagnostic accuracy, reduces the 
reliance on manual intervention, supports timely alerts, and con-
tributes to lower operational expenditures and enhanced network 
reliability [10]

B.K-Nearest Neighbors (K-NN) Algorithm 
The K-Nearest Neighbors (K-NN) algorithm is a widely used 
supervised machine learning technique applicable to both classi-
fication and regression tasks. As a lazy learning method, K-NN 

does not involve a separate training phase; instead, it retains the 
entire training dataset. When a new input instance is introduced, 
the algorithm identifies the K most similar samples—referred to 
as the nearest neighbors—based on a predefined distance metric, 
commonly the Euclidean distance.

For classification problems, the algorithm assigns the input to 
the most frequent class label among its K nearest neighbors. In 
regression contexts, it returns the average of the output values 
corresponding to those neighbors. K-NN’s simplicity, interpret-
ability, and effectiveness in handling non-linear decision bound-
aries make it a popular choice in various practical applications 
[4-5] 
 
Formally, given a training dataset {(x_n,y_n  )}_(n=1)^N, the 
algorithm computes the distance between the test sample and 
each training point, selects the K nearest samples, and makes a 
prediction accordingly. Since K-NN is non-parametric and in-
stance-based, its performance depends heavily on the choice of 
K and the structure of the feature space. The Euclidean distance, 
often used to measure similarity, is calculated as shown in Equa-
tion (2) : 

distance  (2) 
                                      
The query point x is classified based on the majority vote among 
its k nearest neighbors, as shown in Equation (3) :

 (3)                              
                               
Where: y_0 represents the class label, and y_i corresponds to the 
class label of the i-th nearest neighbour. The indicator function . 
δ(y=y_n ), returns a value of one if the class y_i of the neighbour 
x_i matches the class y_0 , and zero otherwise.

G-PON systems are highly recommended because of their 
straightforward design and strong performance in managing 
nonlinear data distributions
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Figure 2:The K-NN algorithm when K=1 and K=3

G-PON System Model Enhanced with K-NN for Fault Detection 
Figure 3 illustrates a practical model of a Gigabit Passive Op-
tical Network (G-PON) architecture enhanced with machine 
learning for proactive fault detection. By integrating the K-Near-
est Neighbors (K-NN) classification algorithm, the system effec-
tively identifies signal degradation and predicts potential optical 
fiber failures. This integration significantly enhances network 
reliability and optimizes maintenance operations.

The model consists of the following key components
1.	 Optical Line Terminal (OLT): Located at the leftmost part 

of the architecture, the OLT serves as the central transmis-

sion unit, distributing optical signals to multiple Optical 
Network Units (ONUs).

2.	 Power Splitter: A cascaded 1×2 splitter divides the optical 
signal into multiple branches, each directed to a separate 
ONU. While essential for signal distribution,the splitter 
inherently introduces attenuation, closely simulating re-
al-world operational conditions.

3.	 Optical Fiber Links: Each ONU connects through a ded-
icated fiber segment ranging from 0.028 km to 0.05 km. 
These variations reflect realistic deployment scenarios 
where distance-dependent losses impact signal integrity. 
Additionally, the total length between the OLT and the pow-
er splitter is fixed at 25 km, aligning with practical G-PON 
implementations

Figure 3: Illustration of the G-PON with K-NN model

The G-PON system integrated with the K-NN algorithm is ex-
amined through its classification scheme and performance out-
comes. Initially, the input parameters for K-NN, which are the 
received power values, undergo data preprocessing before ap-
plying the machine learning algorithm. The labeled output data 
(targets) consist of eight classes: ONU1, ONU2, ..., ONU8, each 
representing different attenuation conditions. Afterward, the 
K-NN algorithm is applied and evaluated using confusion matri-
ces to determine the accuracy of optical fiber distortion predic-
tion for each user condition.

Prior to applying the K-NN algorithm, data extraction and 
normalization are essential steps. Data normalization address-
es issues related to high variance and outlier detection [3]. In 
this context, two parameters are extracted from Figure 3: the 
received power for each individual ONU and the aggregate re-
ceived power across all ONUs. These parameters are normalized 
using the Z-score method.

Normalization resolves these issues by producing transformed 
values that maintain the original data distribution while scaling 
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all values consistently across the dataset. The Z-score is defined 
as follows: 

 (4)                                                                                                                                                                                                       

Where Z is the mean deviation and σ_Z is the standard deviation 
of each feature n.
 
In this study, since the dataset includes predefined classes corre-
sponding to eight known users, supervised learning techniques 
are applied. Among various machine learning classifiers, both 
the K-Nearest Neighbors (K-NN) algorithm and Support Vector 
Machine (SVM) are selected due to their proven effectiveness in 
optical communication classification tasks [5]. These classifiers 
were chosen for their simplicity, computational efficiency, and 
robustness. Furthermore, their implementation is straightfor-
ward and accessible, particularly using software platforms such 
as MATLAB

Results and Discussion 
An effective method for simulating fiber damage involves in-
creasing the attenuation coefficient at specific locations or seg-
ments of the optical fiber. This technique allows the modeling of 
both localized and distributed types of degradation. Localized 
defects are simulated by applying a sharp attenuation spike at 
a defined point along the fiber, emulating faults such as micro-
bends, cracks, or splice losses. In contrast, distributed damage is 
modeled by gradually increasing the attenuation coefficient over 
a certain length of the fiber, reflecting broader physical stress, 
bending, or environmental aging, which collectively impact a 
larger region of the fiber. These impairments lead to signal deg-
radation, reduced power levels, and a decline in the signal-to-
noise ratio (SNR). In this study, we concentrate on the analysis 
of distributed damage, aiming to assess its impact on system 
performance. The simulation results, obtained through Opti-
System—a comprehensive optical system design software—are 
presented in the first section, based on the configuration shown 
in Figure 3.

Figure 4. Effect of different optical fiber damage positions under varying attenuation coefficient values

Figure 4 illustrates the effect of fiber damage at two critical seg-
ments of the G-PON infrastructure—between the Optical Line 
Terminal (OLT) and the splitter, and between the splitter and 
the first Optical Network Unit (ONU)—on system performance 
when employing the K-Nearest Neighbors (K-NN) classification 
algorithm. The system’s Bit Error Rate (BER) is used as the pri-
mary performance metric.

The results demonstrate that acceptable BER levels can be main-
tained when the attenuation coefficient remains below 0.5 dB/
km for the fiber segment between the OLT and splitter, and be-

low 0.8 dB/km for the segment between the splitter and the first 
ONU.

Moreover, the graph reveals a clear trend: BER deteriorates with 
increasing attenuation in both segments. Notably, the fiber seg-
ment connecting the splitter to ONU 1 (represented by the red 
curve) exhibits a higher BER compared to the segment between 
the OLT and splitter (blue curve). This discrepancy is attribut-
ed to additional power losses introduced by the optical splitter 
as well as longer fiber lengths, which collectively contribute to 
greater signal degradation on the ONU side
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Figure 5: Effect of different optical fiber damage users under varying attenuation values

Figure 6: Confusion matrices of K-NN classifier for optical fiber damage prediction

Figure 5 presents comparable BER values for different ONUs 
under varying attenuation coefficients, with slight variations re-
sulting from the differing distances between the splitter and each 
ONU. This observation highlights the significant effect of atten-
uation on the Bit Error Rate (BER) within a multi-ONU optical 
communication system. As the attenuation increases, the BER 
correspondingly degrades across all ONUs, following a nearly 
identical pattern. This consistency indicates that the primary 
cause of signal degradation is attenuation rather than individual 
differences among the ONUs.

The confusion matrix further confirms the effectiveness of the 
classification model, showing accurate identification for the ma-
jority of ONUs. Misclassification errors mainly occur between 
neighboring ONUs, which can be attributed to the similarity in 
their signal features. Notably, ONU 8 achieved perfect classifi-
cation with 16 correct identifications out of 20 samples, while 
other ONUs exhibited minor classification inaccuracies. Over-
all, the model demonstrates robust performance, although there 

is potential for improvement through enhanced feature selection 
or the adoption of more sophisticated machine learning algo-
rithms to minimize misclassification.
 

  (5)                                                                  

Where:
•	 True Positives (TP): Represented by the diagonal elements 

of the confusion matrix, indicating correct classifications.
•	 Total Samples for ONU: The sum of all entries in the re-

spective row, representing the total number of classification 
attempts for that ONU.

The classification performance across the eight ONUs demon-
strates generally good accuracy, ranging from 63.16% to 
75.00%. ONU 2 achieved the highest accuracy (75.00%), fol-
lowed closely by ONU 8 (72.73%), suggesting that these ONUs 
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exhibit more distinct signal features, making them easier for 
the model to identify. In contrast, ONU 1 (63.64%) and ONU 7 
(63.16%) showed the lowest classification accuracy, indicating a 
higher rate of confusion with other ONUs. The remaining ONUs 
recorded intermediate accuracies between 66.67% and 70.00%, 
reflecting moderate classification reliability.

The confusion matrix reveals a noticeable degree of misclassifi-
cation, likely due to overlapping feature distributions or signal similar-
ities among neighboring ONUs. Despite this, the model demonstrates 
reasonable overall performance. However, further enhancements—
such as more discriminative feature extraction or the implementation 
of advanced classification algorithms—could improve accuracy, par-
ticularly for ONUs with lower classification rates 

Figure 7: Confusion matrices of K-NN classifier for ONU 1

To enhance the accuracy of the system, the classification was re-
fined to distinguish only between the desired ONU and the other 
undesired ONUs. The confusion matrix demonstrates the classi-
fication performance between ONU #1 and ONU 1, achieving 
an overall accuracy of 90.63%. The model correctly identified 
131 instances of ONU #1 and 14 instances of ONU 1, while 9 
ONU #1 samples were misclassified as ONU 1, and 6 ONU 1 
samples were misclassified as ONU #1. Although the classifier 
performs well, some misclassifications remain, particularly af-
fecting ONU 1. Improving feature extraction or optimizing the 
model could further enhance classification accuracy.

Conclusion 
This study highlights the effectiveness of using machine learn-
ing-based fault detection in Gigabit Passive Optical Networks 
(GPON) through the application of the K-Nearest Neighbors 
(K-NN) algorithm. By conducting simulations in OptiSystem 
and performing data classification in MATLAB, the system ef-
ficiently detects and classifies signal degradations across multi-
ple Optical Network Units (ONUs). Analysis of the confusion 
matrices indicates classification accuracy ranging from 63.16% 
to 75.00%, with ONU 2 and ONU 8 achieving the highest accu-
racy levels, while ONU 1 and ONU 7 are more susceptible to 
misclassification. Furthermore, the study underscores the impact 
of attenuation on the Bit Error Rate (BER), demonstrating that 
increased attenuation causes significant signal degradation, es-
pecially in the fiber segment between the splitter and the ONUs.

Overall, integrating the K-NN algorithm for fault detection in 
GPON significantly improves network reliability by automating 
fault diagnosis and minimizing downtime. Nevertheless, there 

remains room for enhancement in classification performance 
through more sophisticated feature extraction methods, hyper-
parameter optimization, and the incorporation of advanced deep 
learning techniques. Additionally, future research could investi-
gate the benefits of real-time network monitoring and adaptive 
machine learning models to dynamically optimize GPON per-
formance under varying operational conditions. These advance-
ments have the potential to further strengthen fault resilience 
and service quality in optical access network 
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