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/Abstract h

Artificial Intelligence (A1) has evolved remarkably over the past seven decades, transforming from simple rule-based
systems into complex multimodal and generative frameworks capable of reasoning, creativity, and perception. This
review traces the chronological development of Al tools, highlighting key milestones that shaped the field—from
the early symbolic programs like Logic Theorist and ELIZA to the emergence of modern large-scale models such
as GPT-4, Gemini, and Claude. The study explores the progression across distinct eras: the foundational period of
symbolic reasoning (1940s—1970s), the rise of machine learning and statistical modeling (1980s—2000s), the deep
learning revolution (2010s), and the recent explosion of generative and multimodal systems (2020-2025). Each
phase reflects a major shift in how intelligence is defined, represented, and implemented—from handcrafted logic
to data-driven learning and now to context-aware multimodal understanding. By reviewing over fifty significant Al
tools and frameworks, this paper provides a comprehensive overview of how incremental innovations in computation,
data availability, and model architecture have collectively enabled the current state of AL The work concludes with
insights on how this evolution paves the way for the next generation of agentic and real-time Al systems capable of
seamless interaction across text, image, audio, and video modalities. y

Keywords: Artificial Intelligence; Deep Learning; Generative Models; Multimodal Systems; Ai Evolution.

Introduction works, capturing how each innovation built upon the previous

Artificial Intelligence (AI) has become one of the most transfor-
mative forces of the 21st century, shaping industries, research,
and everyday life in ways that were once thought impossible.
From simple logic-based programs created in university labs
to today’s generative systems capable of producing human-like
text, images, and even videos, the journey of Al represents not
just technological progress but also humanity’s evolving under-
standing of intelligence itself. Each era of Al—from symbol-
ic reasoning and rule-based systems to neural networks, deep
learning, and now multimodal generative models—has intro-
duced new ways of learning, interacting, and problem-solving.

The purpose of this paper is to provide a comprehensive and
chronological review of the evolution of Al tools and frame-
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generation to form the foundation of modern artificial intelli-
gence. While many studies focus on specific branches of Al such
as computer vision, natural language processing, or robotics, few
have presented a complete timeline connecting the earliest sym-
bolic systems to the current multimodal and agentic era. This
review aims to fill that gap by examining over seven decades of
Al development—from early expert systems like MYCIN and
DENDRAL to advanced generative models like GPT-4, Gemini,
and Sora.

Writing this paper in 2025 holds particular significance. The
world is now witnessing a rapid convergence of text, image,
speech, and video understanding through multimodal Al mod-
els, making it essential to reflect on how we arrived at this point
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and what lessons past innovations can teach us. The pace of
Al progress often makes older technologies seem obsolete, yet
many of today’s breakthroughs are deeply rooted in the princi-
ples and experiments of earlier decades. Understanding this his-
torical evolution helps researchers, educators, and practitioners
appreciate the foundations of current Al tools and foresee the
directions future technologies might take.

Ultimately, this paper serves as both a historical reflection and
an educational guide, offering readers a unified perspective on
how Al tools have matured from isolated programs into inter-
connected, intelligent ecosystems. By mapping this evolution,
the study underscores the continuity of innovation that defines
artificial intelligence—not as a sudden revolution, but as a long,
collaborative journey of human curiosity and technological ad-
vancement.

Early Foundations (1940s—1970s)

Logic Theorist (1956)

The Logic Theorist, developed in 1956 by Allen Newell, Herbert
A. Simon, and Cliff Shaw at the RAND Corporation, is widely
recognized as the first artificial intelligence (AI) program pur-
posely designed to mimic human problem-solving and reason-
ing skills. Its primary goal was to prove mathematical theorems,
specifically those found in the seminal work Principia Mathe-
matica by Alfred North Whitehead and Bertrand Russell. The
program demonstrated that a machine could engage in automat-
ed reasoning by successfully proving 38 of the first 52 theorems
in chapter two of Principia Mathematica. Remarkably, the Logic
Theorist not only replicated human logic but also discovered
new, sometimes shorter, proofs for some theorems, exemplify-
ing the ability of Al to surpass human intellectual processes in
specific domains [1].

The development of the Logic Theorist was grounded in sym-
bolic logic and heuristic search—a method that applies rules
of thumb to explore possible solutions in a vast search space.
The program represented logical expressions symbolically and
searched through combinations of these expressions to construct
proofs. It used heuristics to efficiently navigate the tree of possi-
ble inferences, thus avoiding an exhaustive and computationally
prohibitive search through all branches. This heuristic approach
was inspired by how humans tackle complex problems, priori-
tizing promising paths based on certain criteria rather than brute-
force search [2].

Architecturally, the Logic Theorist consisted primarily of two
components: a knowledge base containing axioms and previous-
ly proven theorems, and an inference engine that applied logical
rules to generate new theorems. The proof search was conduct-
ed by generating sub-proofs for propositions through symbol-
ic manipulations. Although programming languages and com-
putational resources were very primitive at the time, the team
implemented the Logic Theorist using handwritten cards that
were distributed among collaborators and later run on computers
available at RAND [3]. This development also led to the creation
of the Information Processing Language (IPL), which facilitated
list processing and symbolic computation—precursors to pro-
gramming languages such as LISP, which became fundamental
in Al research [4].
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Mathematically, the Logic Theorist operated within proposition-
al calculus as formulated in Principia Mathematica. Its proofs
often utilized methods such as proof by contradiction, where the
algorithm would assume the negation of a theorem and derive
contradictions to verify its truth. By starting from axioms and
applying inference rules, the program mechanized the deductive
reasoning process typical of mathematical proof. The discovery
of novel proofs for certain theorems, such as theorem 2.85, high-
lighted its capability not only to replicate but to improve upon
human mathematical reasoning [5].

The impact of the Logic Theorist on Al and cognitive science
was profound. It marked the first practical demonstration that
machines could perform high-order intellectual tasks involving
symbolic reasoning. It laid foundational concepts such as heu-
ristic search, symbolic processing, and the notion that reasoning
could be mechanized, influencing subsequent Al programs and
research. Herbert Simon and Allen Newell, the principal devel-
opers, were later recognized with Turing Awards for their pi-
oneering contributions to Al and computer science. The Logic
Theorist remains a landmark in AT history, illustrating the power
of symbolic Al and heuristic-driven problem solving in the early
quest to imitate human thought through machines

Eliza (1966)

ELIZA, developed in 1966 by Joseph Weizenbaum at MIT, is one
of the earliest and most influential natural language processing
programs and is widely regarded as the first chatbot to simulate
human conversation [6]. Unlike later conversational agents built
on complex machine learning models, ELIZA operated funda-
mentally through pattern matching and substitution rules, using
scripts designed to give the illusion of understanding without
true comprehension. The most famous script, known as "DOC-
TOR," simulated a Rogerian psychotherapist by reflecting users’
statements back to them in the form of questions, encouraging
users to continue dialogue . For instance, when a user expressed
feelings of sadness or worry, ELIZA would respond with inqui-
ries prompting further reflection, employing simple yet effective
mechanisms to seem empathetic and human-like.

ELIZA’s architecture was based on symbolic processing where
user inputs were analyzed for keywords or phrases, and then
matching scripted patterns were triggered to generate predefined
responses. It did not involve semantic or contextual understand-
ing, which distinguished it from genuine human communica-
tion. Nevertheless, the program’s simplistic style led to what
became known as the "ELIZA effect," [7] where users attributed
human-like understanding and emotions to the program despite
its mechanical nature. This phenomenon highlighted important
psychological and philosophical questions about human interac-
tion with machines and the nature of intelligence. Interestingly,
Weizenbaum himself was surprised and troubled by how read-
ily some users, including his own secretary, formed emotional
connections with ELIZA, underscoring the powerful illusion of
understanding it created.

The development of ELIZA marked a significant milestone in
artificial intelligence and human- computer interaction because
it demonstrated that computers could engage users in seeming-
ly mean- ingful conversation through language-based interfac-
es. Its creation also helped lay the groundwork for research in
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natural language understanding, dialogue systems, and chatbot
development. ELIZA’s influence extended beyond technological
innovation; it sparked critical debates about machine intel- li-
gence, ethics, and the limitations of Al since the program could
simulate empathy without actual cognitive or emotional process-
ing. Weizenbaum stressed that ELIZA was a tool, not a sentient
entity, cautioning against overestimating what machines can
replicate in terms of human thought and feeling [8].

In summary, ELIZA represents a pioneering experiment in Al
programming that combined early symbolic processing tech-
niques and heuristic scripting to simulate conversation. While
mathematically it did not engage in logical deduction, it excelled
in procedural language pattern matching, which was enough to
make a lasting impact on Al, natural language processing, and
cognitive science. Its legacy continues in modern chatbots that
have since evolved with more sophisticated models, but ELIZA
remains a foundational artifact demonstrating the potentials and
boundaries of early conversational Al [9]

Shrdlu (1970)

SHRDLU, developed between 1968 and 1970 by Terry Wino-
grad at MIT as part of his PhD thesis, represents a pioneering
natural language understanding system that could interpret and
execute commands within a simplified virtual environment
known as the "blocks world." This virtual world consisted of
various geometric shapes—blocks, pyramids, and boxes of dif-
ferent colors—that SHRDLU manipulated in response to user
instructions phrased in natural English. The program could per-
form tasks such as moving objects, stacking blocks, and answer-
ing questions about the state of the environment, such as “What
is on the table?” or “Is there a pyramid on the block?”” The user
interacted with SHRDLU through a dialogue interface that al-
lowed both commands and queries, making it an early example
of an interactive Al system capable of understanding and reason-
ing about language and its referents in a controlled world [10].

From a technical standpoint, SHRDLU combined syntax pars-
ing, semantic interpretation, and a form of procedural knowledge
representation to understand instructions and generate respons-
es. It was implemented mainly in Lisp and Micro Planner on a
DEC PDP-6 computer. The system parsed English commands,
mapped them onto internal logical representations of objects and
their properties in the blocks world [11] , and then used rules to
manipulate these objects or generate language responses. This
architecture showcased an integrated approach to natural lan-
guage processing, combining syntax, semantics, and pragmatics
within a finite domain. SHRDLU’s knowledge base was dynam-
ic, maintaining an up-to-date model of the world’s state, which it
could modify as it executed actions or learned new commands.
The logical foundation often related to first-order logic, where
objects, properties, and relations were explicitly represented, en-
abling reasoning over the set of facts.

Beyond its technical achievements, SHRDLU critically demon-
strated the challenges and potential of language understanding
in Al. Winograd’s work exposed the brittleness of symbolic sys-
tems when faced with the complexity and ambiguity of natural
language outside a restricted domain. Yet, SHRDLU’s ability to
follow complex instructions and engage in clarifying dialogues
to resolve ambiguities was groundbreaking, highlighting the
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possibility of interactive Al systems that understand human lan-
guage contextually. It influenced subsequent research in compu-
tational linguistics, human- computer interaction, and Al, laying
a foundation for modern dialogue systems, virtual assistants, and
robotic control by natural language. SHRDLU’s legacy extends
into contemporary natural language processing by inspiring ap-
proaches to syntactic and semantic integration and knowledge
representation in Al, demonstrating how procedural represen-
tations can bridge language and action within a defined world
framework [12].

This comprehensive understanding of SHRDLU’s development,
architecture, functionality, and impact should serve well for your
research paper, situating it as a landmark system in natural lan-
guage understanding and Al history.

Dendral (1965-1970)

Developed between 1965 and 1970 at Stanford University by
Edward Feigenbaum, Bruce Buchanan, Joshua Lederberg, and
Carl Djerassi, DENDRAL is recognized as the first successful
expert system and a landmark in artificial intelligence history.
Designed primarily as a chemical analy- sis tool, DENDRAL
aimed to assist organic chemists in identifying unknown mo-
lecular structures by analyzing mass spectrometry data. Unlike
prior Al systems, DENDRAL encoded expert knowledge in
chemistry as heuristic rules and used this domain-specific ex-
pertise to automate the process of hypothesis generation and
evaluation—effectively emulating the decision-making process
of skilled human chemists. This enabled the system not only to
generate possible molecular structures but also to predict their
corresponding mass spectra and compare them with the experi-
mental data to select the most plausible hypotheses [13].

The architecture of DENDRAL was characterized by a clear sep-
aration between its knowledge base and inference engine, form-
ing a paradigm later foundational to expert systems. Its knowl-
edge base contained encoded chemical heuristics and domain
rules, while the inference engine orchestrated the generation and
evaluation of candidate molecular structures through a heuristic
search process. The system consisted mainly of two programs:
Heuristic Dendral, which performed structure elucidation using
domain-specific heuristics, and Meta-Dendral, which learned
new rules by analyzing patterns in chemical data, pioneer-
ing early forms of machine learning. Technically, DENDRAL
combined symbolic reasoning with heuristic search strategies
to prune the vast search space of chemical structures, applying
constraints and domain knowledge to improve computational
efficiency and accuracy [14]. Mathematically, DENDRAL re-
lied on combinatorial and graph-theoretic methods to represent
molecular structures as cyclic graphs and trees, aligning with
its etymological roots (“dendron” meaning tree in Greek). It
employed algorithms that enumerated possible configurations
constrained by chemical valence rules and mass spectral data,
effectively narrowing down the candidates through heuristic
pruning. By translating chemical knowledge into formal rules
and representing candidate molecules structurally, DENDRAL
bridged symbolic Al with practical chemical problem-solving.

The significance of DENDRAL extends beyond its applica-
tion, as it pioneered the concept and successful implementa-
tion of expert systems—computer programs that encapsulate
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expert-level knowledge and reasoning ability within a specific
domain. It demonstrated AI’s potential to enhance scientific
discovery and decision-making by explicitly codifying expert
heuristics into programmable knowledge bases. Furthermore,
DENDRAL influenced subsequent Al developments, including
MYCIN and other domain-specific expert systems, and helped
establish research paradigms in Al knowledge engineering and
human-computer interaction. Its success bolstered funding and
interest in Al during the 1970s and fundamentally shaped the
trajectory of knowledge-based systems in computer science and
expert decision support [15].

This detailed overview captures DENDRAL’s impact as a pi-
oneering expert system in chemical analysis through heuristic
symbolic reasoning, foundational to AI’s evolution in expert
knowledge representation and automated problem-solving.

Mycin (1972)

MYCIN, developed in the early 1970s at Stanford University
by Edward Shortliffe and colleagues, is a pioneering rule-based
expert system designed to assist physicians in diagnosing bacte-
rial infec- tions and recommending appropriate antibiotic treat-
ments. Originating from the Stanford Heuristic Programming
Project, MYCIN employed a knowledge base of approximate-
ly 600 production rules encoding the clinical decision-making
expertise of infectious disease specialists. The system operated
through a backward chaining inference engine that interactively
queried physicians with a series of simple yes/no or text-based
questions about the patient’s symptoms and lab results. Based
on the gathered data, MYCIN produced a ranked list of potential
causative bacteria with associated confidence levels and pro-
vided tailored antibiotic therapy suggestions, adjusting dosages
based on patient-specific factors such as body weight [16].

Technically, MY CIN’s architecture distinguished itself by clear-
ly separating its inference proce- dures from its domain-specific
knowledge, embodying a modular approach that became foun-
dational for later expert systems. The system implemented a cer-
tainty factor model to handle uncertainty in medical diagnosis,
representing the confidence in rules and conclusions, although
this model was heuristic rather than strictly Bayesian due to
computational and practical constraints. MYCIN was also nota-
ble for its explanatory capabilities, where it could justify its rec-
ommendations by tracing back through the rules and questions
that led to its conclusions, addressing concerns about transpar-
ency and trust in Al systems for medical decision-making [17].

From a mathematical and logical perspective, MYCIN relied
on production rules—if-then state- ments representing clinical
knowledge—and heuristic-driven backward chaining to effi-
ciently search the space of diagnostic possibilities. The certain-
ty factor calculus combined evidential strengths from multiple
rules to arrive at probabilistic-like confidence measures in di-
agnoses and recommenda- tions. While these certainty factors
lacked rigorous statistical foundations, they provided a practical
framework for handling medical diagnostic uncertainty.

MYCIN’s impact on Al and medicine was profound, demon-
strating that expert knowledge in specialized domains could be
formalized and leveraged by computer systems to perform tasks
at the level of human specialists. Its success inspired numerous
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subsequent expert systems and contributed significantly to the
development of knowledge engineering, rule-based reasoning,
and explanation facilities in AI. MYCIN also sparked discus-
sions on the ethical and practical implications of Al in clinical
settings, particularly regarding the role of decision support ver-
sus autonomous diagnosis. Although constrained by the com-
putational power and data availability of its time, MYCIN laid
the groundwork for modern clinical decision support systems
and remains a seminal example of early Al applied to real-world
expertise [18]. This comprehensive account captures MYCIN’s
development, architecture, operation, mathemati- cal underpin-
nings, and its lasting significance as a foundation for rule-based
Al systems, making it a critical milestone in the history of artifi-
cial intelligence and medical informatics.

Prolog (1972)

Prolog, created in 1972 by Alain Colmerauer and Philippe Rous-
sel at Aix-Marseille University in France, is a logic program-
ming language foundational to artificial intelligence and natural
language processing tasks. The name Prolog derives from the
French phrase "Programmation en Logique," meaning program-
ming in logic. Rooted in first-order predicate logic, Prolog al-
lows programmers to express knowledge declaratively, using
facts and rules rather than explicit procedural code. The lan-
guage’s execution is driven by a goal-directed search process
implementing resolution theorem proving with Horn clauses,
which it processes through a mechanism called backward chain-
ing. This enables Prolog to perform symbolic reasoning, auto-
mated theorem proving, and natural language understanding,
making it particularly suited for Al applications [19].

The language emerged from combining two efforts: Alain Col-
merauer’s focus on natural language processing and Robert
Kowalski’s theoretical work on the procedural interpretation of
logic. The original Prolog system included an interpreter written
in Algol-W and later versions influenced by David H.D. War-
ren, who developed the Warren Abstract Machine (WAM), a
standard virtual machine architecture for efficient Prolog imple-
mentation. This contributed significantly to Prolog’s widespread
adoption and the establishment of the Edinburgh syntax standard
that most Prolog implementations follow. Prolog’s logical foun-
dation centers on Horn clauses that define relations, with com-
putations being queries that the interpreter attempts to satisfy by
proving them from the known facts and rules [20].

Prolog’s computational model is distinguished by features like
unification, backtracking, and negation as failure, which togeth-
er allow it to explore the space of potential solutions effectively.
Mathematically, Prolog programs can be viewed as logic formu-
las in clausal form and the resolution proof method underpins its
operation. The declarative style facilitates expressing complex
information and constraints naturally, enabling applications in
expert systems, theorem proving, language parsing, knowledge
representation, and automated planning.

Historically, Prolog gained international prominence during the
1980s particularly with the Japanese Fifth Generation Computer
Systems project, which sought to leverage logic programming
for advanced Al on parallel computers. While Prolog faced
competition and technical challenges, its conceptual clarity and
powerful expressiveness secured its lasting place in Al program-
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ming. Today, Prolog remains a prominent symbolic program-
ming language, well-suited to tasks demanding sophisticated
pattern matching, reasoning, and rule-based logic processing,
continuing to underpin research and applications in artificial in-
telligence and computational linguistics [21].

Lisp (1958)

LISP, created in 1958 by John McCarthy at MIT, is one of the
oldest and most influential pro- gramming languages in the field
of artificial intelligence. McCarthy designed LISP with the ex-
plicit goal of providing a powerful and flexible language spe-
cifically suited for Al research, particularly symbolic manipula-
tion and processing of list structures. The language introduced
several grounds- breaking concepts, such as recursive functions,
dynamic typing, and automatic memory management through
garbage collection. Its primary data structure, the list, and its as-
sociated operations—car and cdr—allowed natural and efficient
expression of symbolic computation, which is central to AI [22].

Initially, McCarthy proposed a notation called "M-expressions"
to make LISP more readable, but it was quickly abandoned in
favor of "S-expressions," a more straightforward parenthesized
prefix notation that became the hallmark of LISP’s syntax. The
first LISP interpreter was implemented by Steve Russell on an
IBM 704, surprising McCarthy by demonstrating that the eval
function—a core evaluation procedure—could be directly com-
piled into machine code, enabling practical execution. LISP’s
design was mathematically rooted in the theory of recursive
functions and lambda calculus, which provided a formal foun-
dation for defining computable functions and reasoning about
process execution [23].

Over the decades, LISP became the dominant Al programming
language because of its unpar- alleled ability to handle symbolic
information, its extensibility through macros, and its interactive
development environment. It powered pioneering Al projects
such as SHRDLU and expert systems, and influenced other lan-
guages like Scheme and Common Lisp. LISP introduced con-
cepts critical to Al, including symbolic reasoning, code as data
(homoiconicity), and advanced macro systems, which helped
Al researchers experiment with new ideas efficiently. Common
Lisp, standardized in the 1980s and 1990s, unified various dia-
lects and remains widely used in Al, research, and industry.

LISP’s mathematical essence lies in its recursive function defi-
nitions, symbolic lists, and evalua- tion semantics, which collec-
tively enabled it to express complex Al algorithms elegantly. Its
legacy continues to permeate Al research, functional program-
ming, and symbolic computation, making it a foundational tech-
nology in the history and development of artificial intelligence
[24].

This overview encapsulates LISP’s historical context, innova-
tive design principles, mathematical underpinnings, and its crit-
ical role as the dominant Al programming language for decades.

The Rise of Machine Learning (1980s—2000s)

Soar (1983)

SOAR, developed in 1983 by John Laird, Allen Newell, and
Paul Rosenbloom at Carnegie Mellon University, is a pioneering
cognitive architecture designed to model human-like reasoning

Page No: 05 /

www.mkscienceset.com

and general intelligence. Rooted deeply in cognitive science
and artificial intelligence, SOAR aims to create fixed compu-
tational building blocks for general intelligent agents capable
of performing a wide array of tasks such as decision-making,
problem-solving, planning, and natural language understanding.
The architecture embodies a unified theory of cognition, evolv-
ing from Allen Newell’s Problem Space Hypothesis—a foun-
dational Al theory stating that all goal-directed behavior can be
framed as search within a space of possible states. SOAR opera-
tionalizes this by continuously selecting and applying operators
to change an agent’s state, analogous to how humans approach
problems step-by-step [25]. SOAR’s architecture integrates pro-
cedural memory (knowledge of how to do things) with work-
ing memory (representation of the current situation), enabling
a dynamic cognitive cycle. Proce- dural knowledge is encoded
as if-then production rules (condition-action pairs) that match
against the contents of working memory. Unlike other systems,
SOAR fires all matching rules in parallel, allowing concurrent
context-dependent retrieval of knowledge. When the system en-
counters an impasse—lacking knowledge to proceed—SOAR
automatically creates a substate that recursively applies the same
problem-solving process, leading to the generation of subgoals
and hierarchical task decomposition. This universal subgoaling
approach naturally models complex cognitive behaviors includ-
ing planning and learning. The working memory itself is struc-
tured as a symbolic graph rooted in the current state, facilitating
flexible representation of knowledge [26].

Mathematically, SOAR’s computation is grounded in state-tran-
sition systems, production rule matching, and search algorithms
navigating complex problem spaces. The production system
supports parallel rule matching while ensuring that behavior is
decomposed into primitive operator applications approximating
human reaction times (5"0ms per step). The substate recursion
forms a sophisticated mathematical structure supporting hierar-
chical problem-solving, setting SOAR apart from prior archi-
tectures. Its design reflects the interplay of symbolic Al with
psychological realism, striving to unify Al capabilities and cog-
nitive modeling [27].

Over the decades, SOAR has evolved into a comprehensive cog-
nitive architecture widely em- ployed in Al research to build in-
telligent agents and model human behavior in a range of applica-
tions—from robotics to gaming to natural language processing.
Maintained today by John Laird’s research group at the Univer-
sity of Michigan, SOAR remains a seminal reference point for
cognitive architectures, continuing to influence theories of gen-
eral intelligence by bridging formal computational models with
empirical cognitive science insights. This detailed exploration
covers SOAR’s theoretical foundations, developmental history,
architec- ture, mathematical underpinnings, and its significance
in Al and cognitive science [28].

Alvinn (1989)

ALVINN (Autonomous Land Vehicle in a Neural Network),
developed in 1989 at Carnegie Mellon University by Dean Po-
merleau, is a landmark early neural network system designed
for autonomous vehicle navigation and road following. As one
of the first practical applications of artificial neural networks to
self-driving cars, ALVINN was built around a three-layer back-
propagation network that took as input a combination of senso-
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ry data from a forward-facing camera and a laser range finder,
processing images and depth information to produce steering
commands for the vehicle. The architecture comprised roughly
1217 input units, a hidden layer with 29 units, and an output
layer with 46 units dedicated to representing a range of possible
steering angles, along with feedback units to integrate temporal
context [29].

Trained initially on simulated road images, ALVINN used super-
vised learning with backprop- agation to optimize its weights,
enabling it to predict the required steering angle to follow the
road accurately. The training leveraged data augmentation tech-
niques, generating shifted versions of images to robustly handle
diverse driving scenarios and prevent the system from failing
when deviating from the road centerline. Operationally, AL-
VINN was deployed on the NAVLAB autonomous test vehicle,
demonstrating its ability to navigate complex outdoor environ-
ments—including varied weather condi- tions—at speeds com-
petitive with traditional computer vision approaches of the time.
This success illustrated the promise of adaptive, data-driven
models in autonomous navigation, surpassing rigid rule-based
systems by learning representations tailored dynamically to sen-
sory inputs.

Mathematically [30], ALVINN employed a feedforward neural
network with supervised gradient descent optimization (back-
propagation) to minimize prediction errors between the net-
work output and actual steering commands. The network mod-
el embodied non-linear function approximation, capturing the
complex mapping from high-dimensional sensory input spaces
(images and range data) to control actions. The use of feedback
units introduced an element of temporal memory, allowing the
network to incorporate information about the recent past into its
decision-making process—related conceptually to what would
later be developed as recurrent neural architectures.

ALVINN’s introduction was a key milestone in Al and robot-
ics, illustrating how neural networks could be harnessed for
real-world control problems under uncertainty and noise. It
heralded the feasibility of end-to-end learning for vehicle con-
trol, influencing future developments in autonomous driving
technology and machine learning-driven robotics. The system
highlighted the importance of sensor fusion, adaptive learning,
and robust training strategies in autonomous navigation, and
its design principles form the basis for many modern Al-based
self-driving systems [31].

Backpropagation Algorithm (1986)

The backpropagation algorithm, popularized in 1986 by David
Rumelhart, Geoffrey Hinton, and Ronald Williams, revolution-
ized the training of artificial neural networks by providing an
efficient method to compute gradients of the loss function with
respect to weights and biases for multilayered networks. Prior to
this breakthrough, training deep networks was computationally
infeasible due to the difficulty in attributing errors to internal
layers. Backpropagation operationalizes gradient descent in a
highly scalable way, allowing error signals from the output layer
to be propagated backward through the network layers by sys-
tematically applying the chain rule of calculus [32].

The algorithm works in two main phases during each training
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iteration. In the forward pass, the network computes the output
by propagating inputs through successive layers via weighted
connections and activation functions. In the backward pass, the
algorithm calculates the gradient of the loss function relative to
each weight by propagating the error backward from the output
layer to the input layer. These gradients are then used to update
network parameters in the direction that minimizes the output
error. Mathematically, for a weight wjkl connecting neuron k in
layer 1 — 1 to neuron j in layer 1, the update step corresponds to
computing the partial derivative of the cost C with respect to that

. aC S . .
weight, g and using it in gradient descent:
aC
Wikl = Wjkp — 35—
! ! oWjy

where 1 is the learning rate. This process is repeated iteratively
over examples, applying the chain rule to efficiently allocate er-
ror contributions among all weights.

Backpropagation’s significance lies not only in its algorithmic
efficiency but also in its enabling of modern deep learning. It
permits neural networks to learn internal representations auto-
matically, making them capable of solving highly complex and
nonlinear tasks including image recognition, speech processing,
and natural language understanding. The 1986 paper by Rumel-
hart, Hinton, and Williams marked a turning point in Al because
it provided a practical and scalable learning algorithm that forms
the foundation of nearly all contemporary deep learning archi-
tectures. Since then, backpropagation has become the workhorse
of neural network training, supported by abundant optimizations,
regularization methods, and variants that have further expanded
the reach of Al solutions [33].

In essence, backpropagation combines deep mathematical con-
cepts from calculus with computa- tional strategies to effectively
optimize multilayer neural networks, ushering in the era of pow-
erful, adaptive artificial intelligence systems.

Weka (1993)

WEKA (Waikato Environment for Knowledge Analysis), de-
veloped starting in 1993 at the Uni- versity of Waikato in New
Zealand, is a comprehensive, open-source machine learning and
data mining software suite widely used for teaching, research,
and practical data analysis. Created by a team led by Professor
Ian H. Witten and colleagues, WEKA was born from a desire to
provide an accessible platform that integrates a large collection
of machine learning algorithms with tools for data preprocessing,
visualization, and evaluation, all accessible through user-friend-
ly graphical interfaces. Originally, WEKA was developed with
agricultural and horticultural data applications in mind, but it
has since evolved to support a diverse array of domains and data
types [34].

WEKA’s architecture centers around modular components that
perform key data mining tasks: classification, regression, clus-
tering, association rule mining, and feature selection. It supports
exten- sive data preprocessing options such as cleaning, nor-
malization, and attribute transformation within a flexible pipe-
line, enhancing model performance on real-world data. One of
WEKA’s hallmark features is its graphical user interface, which
includes the Explorer, Experimenter, and KnowledgeFlow,
en- abling users to design, test, and visualize machine learning
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workflows interactively without requiring deep programming
expertise. For advanced users, WEKA provides an API and
scripting capabilities to integrate its algorithms into custom ap-
plications [35].

Technically, WEKA is implemented in Java, making it highly
portable across operating systems and easy to extend with new
algorithms. It processes input in the attribute-relation file format
(ARFF) but also supports various data formats through database
connectivity and file import/export. WEKA’s comprehensive
collection of algorithms includes decision trees, support vec-
tor machines, neural networks, Bayesian classifiers, clustering
methods like k-means, and association rule algorithms, making
it a versatile toolset for empirical machine learning experimen-
tation and deployment.

Mathematically, WEKA’s algorithms collectively represent a
spectrum of machine learning meth- ods, from statistical models
and decision theory to heuristic and optimization-based tech-
niques. The suite supports comparative evaluation approaches
including cross-validation and receiver operating characteristic
(ROC) analysis, facilitating rigorous empirical assessment of
model performance—an essential pillar of machine learning re-
search methodology.

WEKA’s impact is significant as it democratized access to ma-
chine learning techniques by lowering the barrier to entry and
standardizing experimentation workflows. It remains a corner-
stone in machine learning education and research, continuously
updated by the University of Waikato community and an active
global user base. Its open-source nature has stimulated wide
adoption in academia and industry, fostering innovation, collab-
oration, and reproducibility in the machine learning field [36].

Support Vector Machines (SVM, 1995)

Support Vector Machines (SVM), a transformative method in
machine learning, were introduced in their widely recognized
form through the seminal 1995 paper by Corinna Cortes and
Vladimir Vapnik at AT&T Bell Laboratories. Building on foun-
dational work by Vapnik and Alexey Chervonenkis dating back
to the 1960s and 1970s, SVM formalized a powerful approach
to binary classification by finding the optimal separating hyper-
plane that maximizes the margin—the distance between the hy-
perplane and the nearest data points of each class, called support
vectors. This concept of maximum-margin classification pro-
vides robust generalization on unseen data, improving predic-
tive accuracy and reducing overfitting compared to many earlier
algorithms [37].

Mathematically, given training data points {(x;,y;)}, where
x; € R? and labels ¥; € {—1,+1},

SVM finds a hyperplane defined by w - x + b = 0 such that the
margin HTZH is maximized under the constraints
yi(W~Xi+b) >1, Vi

The resulting convex optimization problem can be solved effi-
ciently using quadratic programming. To handle non-linearly

separable data, Cortes and Vapnik introduced the "soft margin”
formulation, allowing some misclassification controlled by slack
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variables, balancing margin maximization and error minimiza-
tion. Furthermore, the kernel trick—developed in continuation
by Boser, Guyon, and Vapnik in 1992—enables SVMs to oper-
ate implicitly in high-dimensional feature spaces using kernel
functions like polynomial or radial basis functions, thereby ex-
tending SVMs to complex, nonlinear classification tasks.

SVM’s rigorous roots in statistical learning theory give it strong
theoretical guarantees on gen- eralization and consistency, dis-
tinguishing it from heuristic-based classification methods of its
time. Its algorithmic efficiency, versatility across domains, and
theoretical elegance made it a core machine learning tool from
the mid-1990s onward, with applications spanning image recog-
nition, bioinfor- matics, text classification, and many others. The
1995 paper by Cortes and Vapnik is regarded as a breakthrough
that not only provided a practically viable classification algo-
rithm but also solidified the importance of large-margin classifi-
ers in supervised learning.

Today, SVM remains a backbone method in classical machine
learning, often contrasted with modern deep learning approach-
es but still valued for its interpretability, mathematical clarity,
and performance on smaller datasets. Its influence continues in
enhancing kernel methods, support vector regression, and struc-
tured prediction tasks, making it a foundational pillar in the evo-
lution of Al and machine learning [38]

OpenCV (2000)

OpenCV (Open-Source Computer Vision Library) is an influen-
tial open-source library for com- puter vision and image process-
ing that originated as an Intel Research initiative in 1999 under
the leadership of Gary Bradski. Its first public release occurred
in 2000, aiming from the start to democ- ratize computer vision
by providing optimized, portable, and accessible software infra-
structure for a broad array of vision tasks. This initiative sought
to eliminate duplication of effort by offering a comprehensive
and efficient collection of algorithms for real-time image and
video analysis, benefiting researchers, developers, and commer-
cial applications alike [39].

Developed primarily in C and C++ with bindings for Python,
Java, and other languages, OpenCV has evolved into a cross-plat-
form [40] library widely used in academia and industry for its
breadth and efficiency. Its architecture includes modular compo-
nents for image processing, feature detection, object recognition,
camera calibration, machine learning, and later, integration of
deep learning modules for neural network inference. OpenCV’s
development ethos stresses performance optimization, with on-
going enhancements including multi-core processing, GPU ac-
celeration, and support for new hardware platforms to meet the
demands of modern applications such as autonomous vehicles,
augmented reality, robotics, and medical imaging.

Mathematically, OpenCV encapsulates a wide array of methods
from classical computer vision like edge detection, geometric
transformations, and stereo vision to statistical and machine
learning techniques, including clustering, support vector ma-
chines, and neural networks. It provides imple- mentation for
linear algebra, matrix operations, filtering, and advanced models
used in image analysis, facilitating both foundational research
and applied system development.
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Over the years, OpenCV’s stewardship transitioned from Intel to
Willow Garage and Itseez before returning under Intel’s portfo-
lio via acquisition, with an active community and the non- profit
OpenCV.org foundation now guiding its continual evolution. Its
broad adoption, sustained development, and extensible archi-
tecture make OpenCV a cornerstone tool that has significantly
influenced the growth and accessibility of computer vision tech-
nologies for more than two decades [41].

Matlab Ai Toolbox (2000s)

MATLAB, originally developed in the late 1970s by Cleve
Moler and commercialized through MathWorks from the mid-
1980s onwards, is a powerful numeric computing environment
and pro- gramming language widely adopted in engineering,
science, and applied mathematics. The MATLAB Al Toolbox,
introduced progressively throughout the 2000s, significantly ex-
panded MATLAB’s capa- bilities by providing a dedicated plat-
form for developing and experimenting with machine learning,
artificial intelligence, and control algorithms. These toolboxes
integrated a rich variety of functions and apps supporting clas-
sification, regression, clustering, neural networks, reinforcement
learning, and deep learning, along with tools for data prepara-
tion, visualization, algorithm tuning, and deployment [42].

Architecturally, the Al Toolbox leverages MATLAB’s ma-
trix-based language to allow users to express ML and Al al-
gorithms succinctly, combining high-level programming with
efficient built-in computational routines. The toolbox supports
both algorithmic prototyping and production-grade code gener-
ation, enabling seamless transitions from research experiments
to implementation. MAT- LAB’s interactive environment with
integrated plotting and coding facilitates fast iteration, debug-
ging, and data exploration—making it particularly favored in ac-
ademic research and industrial applica- tions focused on control
systems, autonomous vehicles, robotics, signal processing, and
biomedical engineering.

Mathematically, MATLAB AI Toolbox algorithms encompass
classical statistical models, opti- mization routines, neural net-
work training via backpropagation [43], and advanced deep
learning architectures. The platform provides robust support
for linear and nonlinear system modeling, state estimation, and
adaptive control theory, underpinned by extensive numerical
libraries for matrix decomposition, eigenvalue computation,
numerical integration, and optimization algorithms such as
gradient descent, conjugate gradient, and quasi-Newton meth-
ods. Deep learning support inte- grates seamlessly with popular
frameworks like TensorFlow and PyTorch, allowing MATLAB
users to leverage and customize cutting-edge network architec-
tures.

The MATLAB Al Toolbox has become a cornerstone in the Al
research and development ecosystem due to its comprehensive
functionality, ease of use, and powerful computational engine. It
promotes reproducibility and collaboration across disciplines by
combining rich algorithmic libraries with user- friendly interac-
tive features. Continuously enhanced by MathWorks, the tool-
box plays a critical role in advancing Al technologies, enabling
engineers and scientists to develop new Al methods and apply
them to complex real-world problems efficiently [44] .
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Scikit-Learn (2007-2010)

Scikit-learn (also known as sklearn), developed between 2007
and 2010, is a widely acclaimed open-source machine learning
library for the Python programming language designed to pro-
vide accessible and efficient tools for data mining and data anal-
ysis. The project began as a Google Summer of Code initiative
by French data scientist David Cournapeau in 2007, originally
intended as a scientific toolkit extension to the SciPy ecosys-
tem. In 2010, key contributors from the French Institute for Re-
search in Computer Science and Automation (INRIA)—Fabian
Pedregosa, Gaél Varoquaux, Alexandre Gramfort, and Vincent
Michel—took over the development, leading to the release of
the first public version on February 1, 2010.

Scikit-learn’s architecture is built around a consistent, us-
er-friendly API that integrates a broad selection of supervised
and unsupervised learning algorithms, including classification,
regression, clustering, dimensionality reduction, and model
selection. It builds on the foundational scientific com- puting
libraries in Python, notably NumPy and SciPy, enabling effi-
cient numerical computation and making it a natural choice for
researchers and data scientists. The library also provides com-
prehensive documentation, concrete examples, and seamless in-
teroperability with other Python data tools such as pandas and
Matplotlib.

Mathematically, scikit-learn encompasses a diverse range of
algorithms spanning linear models (like linear and logistic re-
gression), support vector machines, ensemble methods (random
forests, gradient boosting), clustering methods (k-means, DB-
SCAN), and manifold learning, among others. It supports pa-
rameter tuning, model validation through cross-validation, and
evaluation metrics, facilitating rigorous experimental workflows
in machine learning research and industry applications. Scikit-
learn’s impact has been significant in democratizing machine
learning, making state-of-the-art algorithms easy to experiment
with and deploy while fostering a large active community that
continuously contributes improvements. Its design philosophy
emphasizes simplicity, efficiency, and versatility, contributing to
its widespread adoption across academic and commercial sec-
tors, advancing both education and practical Al solutions world-
wide.

Deep Learning & Neural Network Revolution (2010s)
Theano (2010)

Theano is an open-source Python library developed at the Mon-
treal Institute for Learning Al- gorithms (MILA) at the Univer-
sité de Montréal, first released publicly in 2007. It was designed
as a powerful numerical computation framework that specializes
in defining, optimizing, and efficiently evaluating mathematical
expressions, particularly those involving multi-dimensional ar-
rays, which are common in machine learning and deep learning
models. Its core innovation lay in symbolic computation, where
users define computational graphs symbolically, allowing The-
ano to apply so- phisticated optimizations and compile efficient
code targeted for CPU or GPU hardware, crucially enabling
GPU-accelerated training of complex neural networks [45].

Developed under the leadership of renowned Al researcher
Yoshua Bengio and his team, Theano introduced automated
differentiation capabilities, simplifying the process of comput-
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ing gradients necessary for training deep learning models using
backpropagation. By abstracting the mathematical details and
transparently leveraging hardware acceleration, Theano helped
researchers explore and implement novel neural architectures
and advanced learning algorithms with greater ease and speed
than was previously possible.

Mathematically, Theano’s strength comes from representing
computations as directed acyclic graphs with nodes representing
mathematical operations and edges representing data dependen-
cies, facilitating efficient symbolic differentiation through the
chain rule and optimization of the com- putation graph before
execution. This design allowed it to seamlessly integrate with
the NumPy ecosystem while offering dynamic C code genera-
tion and extensive unit testing for numerical stability and reli-
ability.

Though major development ceased in 2017 due to emerging
competitors like TensorFlow and PyTorch, Theano’s influence
endures—it served as the computational backend for popular
deep learning libraries such as Keras and Lasagne, and its pi-
oneering work in symbolic graph optimizations and automat-
ic differentiation continue to underpin modern deep learning
frameworks. The open-source community and projects like
PyTensor (a fork and continuation) have maintained its legacy,
ensuring its foundational ideas persist in advancing Al research
and applications.

Overall, Theano was pivotal in accelerating the adoption and re-
search of deep learning by combining mathematical rigor, com-
putational efficiency, and GPU acceleration, marking a critical
milestone in the evolution of Al tools

Caffe (2013)

Caffe, short for Convolutional Architecture for Fast Feature Em-
bedding, is an open-source deep learning framework developed
at the Berkeley Vision and Learning Center (BVLC) by Yangg-
ing Jia in 2013 during his PhD at UC Berkeley. Designed with
expressiveness, speed, and modularity as primary goals, Caffe
quickly became a popular choice for researchers and practi-
tioners working on convolutional neural networks (CNNs) and
other deep learning models, especially in computer vision. The
framework allows users to define, train, and deploy deep net-
works using configuration files without hard-coding, which en-
courages easy experimentation and innovation [46].

Caffe’s architecture is built in C++ with a Python interface, pro-
viding flexibility and performance, including seamless switching
between CPU and GPU computations by setting a single flag. It
supports a wide range of neural network components such as
convolutional, fully connected, and recurrent layers, and inte-
grates NVIDIA’s cuDNN library for GPU acceleration, enabling
it to process over 60 million images per day on a single NVIDIA
K40 GPU. Caffe was among the fastest convolutional network
implementations available, making it highly suitable for both ac-
ademic research experiments and industrial-scale deployments
in vision, speech, and multimedia.

Mathematically, Caffe supports typical building blocks of deep
learning: convolutions, pooling, activation functions, normaliza-
tion, dropout, and backpropagation for gradient-based optimiza-
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tion. It leverages an efficient computation graph with layer-wise
modularity, allowing various networks to be constructed by
composing simple, reusable components. Its efficiency allowed
state-of-the- art architectures like AlexNet and GoogleNet to be
implemented and evaluated easily, accelerating breakthroughs in
image classification and other domains [47].

The development of Caffe marked a significant milestone in
deep learning research by emphasiz- ing performance, modular-
ity, and ease of use, fostering an extensive community of con-
tributors and users. Although its direct development waned after
2018 with the advent of newer frameworks like TensorFlow and
PyTorch, Caffe’s core ideas and implementations live on, influ-
encing modern deep learning tools. It remains important histori-
cally for accelerating the adoption and advancement of CNNs in
computer vision and Al research [48]

Tensor Flow (2015)

TensorFlow is an open-source deep learning framework devel-
oped and released by the Google Brain team in 2015 [49]. It
emerged as the successor to Google’s earlier proprietary system,
DistBelief, and was designed to provide a flexible, scalable, and
efficient platform for implementing machine learning and deep
learning models. TensorFlow adopts a dataflow programming
model where computations are expressed as stateful dataflow
graphs consisting of nodes representing operations and edges
representing multidimensional data arrays called tensors, from
which the framework derives its name. Its architecture supports
distributed computing and seamless deployment across CPUs,
GPUs, and Google’s custom Tensor Processing Units (TPUs),
enabling training and execution of complex neural networks on
diverse hardware from desktops to large server clusters and mo-
bile devices.

Initially released under the Apache 2.0 open-source license, Ten-
sorFlow aimed to accelerate Al research and democratize access
to powerful machine learning tools. Since its launch, Tensor-
Flow has become the most popular and widely adopted deep
learning framework globally, thanks to its combination of com-
putational efficiency, comprehensive ecosystem, and extensive
community support. It includes modules for a range of Al tasks
such as model training, evaluation, prediction, visualization, and
deployment. TensorFlow’s Keras API integration, introduced
from version 2.0 onwards, further simplified neural network
programming by offering a high-level, user-friendly interface.

Mathematically, TensorFlow enables the construction of flexi-
ble computational graphs that repre- sent complex tensor oper-
ations. These graphs support automatic differentiation, a critical
component for efficient backpropagation used in training deep
neural networks. The system’s parallel and dis- tributed design
leverages optimization techniques and low-level integration
with hardware drivers to maximize throughput and reduce train-
ing time. Its layered architecture abstracts details of hard- ware
acceleration and memory management, allowing researchers
and developers to focus on model innovation rather than imple-
mentation complexity.

TensorFlow’s impact extends beyond academia and research
labs into industry, powering applica- tions from image recogni-
tion to natural language processing and autonomous systems. Its

Wor Jour of Appl Math and Sta 2025



continuous development by Google and an active open-source
community ensures it remains a cornerstone of Al advancement
and deep learning innovation worldwide [50].

Keras (2015)

Keras, introduced in 2015 by Frangois Chollet, a Google engi-
neer, is an open-source, high-level neural network API designed
to simplify the development and experimentation with deep
learning models. Developed as part of the ONEIROS research
project (Open-ended Neuro-Electronic Intelligent Robot Oper-
ating System), Keras was motivated by the desire to make deep
learning more accessible, modular, and user-friendly, targeting
rapid prototyping and easy experimentation in neural network
design [51]. Unlike low-level frameworks that require detailed
knowledge of tensor operations and computational graphs,
Keras offers a clean, intuitive API centered around building
models layer-by- layer, which greatly reduces the cognitive load
on developers.

Initially, Keras was independent, capable of running on multiple
backend engines including TensorFlow, Theano, and Microsoft
Cognitive Toolkit (CNTK). Starting from version 2.4, it was in-
tegrated into TensorFlow as its official high-level API through
the tf.keras module, leveraging TensorFlow’s computational ef-
ficiency while maintaining its signature simplicity. The modular
design of Keras allows users to build complex neural network
architectures from simple building blocks like layers, activation
functions, optimizers, and loss functions, all customizable and
extensible. Its design philosophy prioritizes ease of use without
sacrificing flexibility, making it popular among researchers, stu-
dents, and industry practitioners [52].

Mathematically, Keras encapsulates standard deep learning
components such as dense layers (fully connected), convolution-
al layers, recurrent neural networks (LSTM, GRU), and allows
automatic differentiation and backpropagation via its backend. It
supports a range of optimization algorithms like stochastic gra-
dient descent and Adam, and facilitates integration of custom
loss functions or metrics. Keras’s abstraction thus enables seam-
less experimentation with complex architectures while handling
the underlying tensor operations and graph optimizations.

Keras’s influence is profound as it lowered barriers to entry
into deep learning research and development, accelerated ex-
perimentation cycles, and facilitated widespread adoption of
neural networks. Its integration into TensorFlow and continued
development positions Keras as a cornerstone tool in modern Al
pipelines, beloved for balancing simplicity and power. Frangois
Chollet’s original vision to democratize deep learning technolo-
gy continues to resonate as Keras scales to support new frame-
works and hardware.

Py Torch (2016)

PyTorch is a dynamic, open-source deep learning framework de-
veloped by Facebook Al Research (FAIR) and first released in
2016. Created as a successor to the Lua-based Torch framework,
PyTorch was designed to provide researchers and developers
with a more intuitive, Pythonic environment for building neural
networks. By adopting a dynamic computational graph archi-
tecture—often described as define-by-run—PyTorch enabled
program execution to be flexible and adaptable, allowing models
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to be modified on the fly during training or inference, which sig-
nificantly simplified experimentation and debugging compared
to static graph frameworks like TensorFlow [53].

The development team at FAIR, led by Soumith Chintala among
others, focused on usability and seamless integration with the
Python data science ecosystem. PyTorch supports accelerated
tensor computation on CPUs and GPUs, automatic differenti-
ation via the autograd system, and a rich set of predefined neu-
ral network components. In 2018, PyTorch 1.0 was released,
merging the research- oriented PyTorch with production-ready
Caffe2, unifying flexibility and scalability to streamline deploy-
ment from prototype to industrial applications.

Mathematically, PyTorch enables efficient representation and
optimization of neural networks through dynamic construction
and traversal of computation graphs. It supports standard deep
learning operations, including convolutions, recurrent layers,
and various activation and loss functions, combined with opti-
mization algorithms like stochastic gradient descent and Adam.
The autograd engine automates gradient computation via re-
verse-mode differentiation, integral to backpropagation training.

PyTorch’s flexible interface, broad community support, and
comprehensive tools have made it the framework of choice in Al
research laboratories, academic settings, and increasingly in pro-
duction environments. Its ecosystem now encompasses libraries
for vision (TorchVision), natural language processing (Torch-
Text), reinforcement learning, and more, while its adoption by
major tech companies highlights its critical role in advancing Al
innovation. The establishment of the PyTorch Foundation under
the Linux Foundation in 2022 formalized its open governance,
ensuring ongoing development guided by an industry consor-
tium representing leading technology enterprises [54].

PyTorch’s prominence stems from blending the agility needed
for research with the demands of production, making it a flag-
ship deep learning platform that continues to evolve at the fore-
front of Al development.

Cntk (2016)

Microsoft Cognitive Toolkit (CNTK), originally unveiled in
2016, is an open-source deep learning framework developed by
Microsoft primarily for scalable machine learning across mul-
tiple GPUs and distributed systems. The roots of CNTK trace
to internal Microsoft research needs, especially for accelerating
speech and language processing projects—including models be-
hind the Cortana virtual assistant and Bing web ranking. CNTK
was created with a focus on performance, efficiency, and flex-
ibility, aiming to democratize robust Al tools by making them
available to researchers and practitioners through open-source
licensing. Initially released with a proprietary scripting language
known as BrainScript, CNTK quickly evolved to offer high-lev-
el APIs for Python, C++, and later C#, broadening its accessi-
bility [55].

The framework models neural networks as computational
graphs, allowing for intuitive rep- resentation and manipula-
tion of feed-forward, convolutional, and recurrent architectures.
CNTK supports automatic differentiation (backpropagation) and
includes optimized readers for efficient handling of sparse and
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dense data in machine learning tasks. Its design enables par-
allelization and distributed learning—even over thousands of
GPUs—utilizing innovations such as 1-bit stochastic gradient
descent for highly efficient cross-node communication. Math-
ematically, CNTK enables state-of-the-art model training with
rigorous implementation of deep learning constructs, from ma-
trix and tensor operations to symbolic recurrent loops and multi-
server parallelization. In addition to standard optimization algo-
rithms, it supports advanced gradient propagation and memory
sharing to maximize hardware utilization. A hallmark of CNTK
is its seamless scalability, facilitating practical training of large
neural models for image, speech, text, and time-series data.

CNTK found widespread use within Microsoft and externally,
distinguishing itself by pioneering large-scale, efficient model
training and offering strong integration with Windows and Li-
nux environ- ments. Although its prominence has declined in
favor of frameworks like TensorFlow and PyTorch, CNTK’s
technical innovations remain influential in large-scale machine
learning infrastructure. Its last major release, version 2.7, sup-
ports ONNX interoperability and legacy Al projects, with many
concepts and optimization strategies contributing to modern Al
software engineering [56].

Mx Net (2015)

MXNet, officially known as Apache MXNet, is a scalable,
open-source deep learning framework that was first released
in 2015 and widely adopted by Amazon Web Services (AWS)
as its preferred deep learning library. MXNet originated as a
joint research effort between the University of Washington and
Carnegie Mellon University, with key contributions from Car-
los Guestrin and collaborators. The framework quickly gained
traction in the industry for its unique combination of flexibility,
efficiency, and distributed computing capabilities, making it ide-
al for both academic research and enterprise-scale production
environments [57].

MXNet’s architecture is distinguished by its hybrid program-
ming model, seamlessly integrating both symbolic (static,
declarative) and imperative (dynamic, Pythonic) approaches.
Users can describe complex neural networks as computation
graphs—benefiting from graph-level optimizations for memory
and performance—or operate directly with tensor computations
for maximum flexibility and debugging ease. A core innovation
is the dynamic dependency scheduler that automatically paral-
lelizes computation over CPUs and GPUs, and efficiently scales
across multiple devices and nodes using a distributed parameter
server for fast synchronization and data exchange.

Mathematically, MXNet supports building deep neural networks
for supervised and unsuper- vised learning, including convo-
lutional neural networks (CNNs), recurrent models (LSTMs,
GRU), and advanced architectures. Its symbolic execution ab-
stractions facilitate automatic differentiation and graph optimi-
zation for backpropagation, while imperative APIs offer intuitive
manipulation of NDArray tensors. MXNet’s scalability allows
near-linear compute performance increases as GPU and CPU re-
sources are added, which has been a decisive factor in handling
large datasets and sophisticated models in production-scale ap-
plications.
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MXNet’s extensive language support—including Python, R,
Scala, Julia, and more—and com- patibility with major cloud
platforms like AWS, Microsoft Azure, and edge devices, fur-
ther fueled its adoption. In 2017, MXNet became an Apache
Top-Level Project, recognized for its robust governance and
active community contributions. Despite its declining devel-
opment activity due to industry shifts toward frameworks like
PyTorch and TensorFlow, MXNet’s legacy persists through its
innovations in multi-language support, scalability, and cloud-na-
tive design [58].

Today, MXNet serves as an important case study in deep learn-
ing framework design, underpin- ning many of Amazon’s Al
services and continuing to influence large-scale neural network
research and deployment strategies.

Deep Mind Alpha Go (2016)

DeepMind AlphaGo, developed by DeepMind (a subsidiary of
Alphabet/Google), made history in 2016 as the first artificial in-
telligence system to defeat a reigning world champion in the an-
cient board game of Go—a feat long considered out of reach for
machines due to Go’s astronomical complexity and intuitive na-
ture. Go presents a vast search space—estimated at 1017010170
possible board states—rendering brute-force search or tradition-
al rule-based Al approaches inadequate. AlphaGo’s innovation
lay in integrating deep neural networks with advanced reinforce-
ment learning and search techniques, bridging the gap between
human-like intuition and rigorous calculation [59].

The ATI’s core architecture combined two deep neural networks:
the policy network, trained using both supervised learning on
millions of human expert moves and subsequently refined with
reinforcement learning through self-play, proposes promising
moves; and the value network, trained to predict the winner from
a given board position, guides the evaluation of Go states. These
networks underpin a massively parallelized Monte Carlo Tree
Search (MCTS) algorithm, which simulates future play sequenc-
es and strategically explores the most relevant lines of play, pri-
oritizing actions the policy network deems most probable and
evaluating states through the value network. The networks them-
selves are convolutional neural systems with millions of param-
eters, capable of automatic feature extraction from raw board
representations.

AlphaGo’s training began by imitating human play from a large
corpus of expert games, followed by intensive reinforcement
learning wherein the system played countless games against ver-
sions of itself, refining its strategy far beyond human knowledge.
The reinforcement learning step applies the policy-gradient ap-
proach, adjusting network weights to maximize board position
values, guided by rewards based on game outcomes. Through
this, AlphaGo developed powerful “intuition” for high-level
play, even surprising expert players by inventing novel, creative
moves.

AlphaGo’s triumph over Lee Sedol in 2016 inspired the Al
world, marking a paradigm shift in what reinforcement learning
and neural networks could achieve, especially when combined
with powerful computational resources and innovative training
protocols. Its legacy extends beyond Go: the architecture and
algorithms pioneered by AlphaGo have influenced domains as
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diverse as robotics, protein folding (AlphaFold), and resource
optimization, demonstrating the transformative potential of deep
reinforcement learning in solving problems of enormous com-
plexity and strategic depth [60].

Open AI Gym (2016)

OpenAl Gym, introduced by OpenAl in April 2016, is a pivotal
open-source toolkit specifically designed to advance the field of
reinforcement learning (RL) by providing a standardized, ex-
tensible collection of simulation environments and benchmarks.
The toolkit was developed to address two fundamental challeng-
es in RL research: the lack of standardized environments for al-
gorithm compari- son and the need for reproducible benchmarks
to objectively evaluate and refine RL algorithms. By unifying
how environments are structured and interacted with, OpenAl
Gym accelerated the pace and rigor of RL research, enabling
rapid prototyping, fair benchmarking, and cross-comparison of
algorithms in both academia and industry [61].

Technically, Gym offers a Python API and a modular design,
making it easy to create, wrap, or extend environments rang-
ing from classic control systems (e.g., CartPole, MountainCar)
to Atari 2600 games, physics-based robotics simulations (using
MuJoCo, Box2D, or PyBullet), and custom, user-built tasks.
Each environment adheres to a simple agent-environment inter-
face: an agent observes a state, takes an action, receives a reward
and a new state, and determines when an episode ends. This ab-
straction standardizes reinforcement learning experimentation,
while the expanding collection of built-in environments accom-
modates both discrete and continuous action spaces, stochastic
dynamics, and varying levels of task complexity. Gym’s archi-
tecture supports seamless integration with popular deep learning
frameworks like TensorFlow and PyTorch, allowing RL agents
to leverage powerful neural networks for function approxima-
tion, policy learning, and value estimation.

OpenAl Gym also played a critical role in fostering an ecosystem
around open RL research, inspiring the development of exten-
sions like Gymnasium (its current community-maintained incar-
nation) and libraries for multi-agent RL, robotics, and bench-
marking. Leading RL algorithms—from traditional Q-learning
and SARSA to modern advancements in deep reinforcement
learning—have been evaluated and reproduced using Gym’s en-
vironments, which contributed to the field’s rapid progress and
reproducibility. Its influence extends to educational initiatives,
practical applications in robotics, gaming, and Al modeling for
complex sequential-decision problems [62].

In sum, OpenAl Gym’s innovation lies in its standardization,
extensibility, and community-driven design, which together un-
derpin the contemporary landscape of reinforcement learning
research, education, and application development

H20.ai (2015)

H20.ai, founded in 2012, is an open-source artificial intelligence
and machine learning company with a vision of democratizing
Al for individuals and businesses. Its most recognized platform,
H20, and subsequent AutoML offerings emerged as early lead-
ers in delivering powerful, accessible machine learning solu-
tions suitable for practitioners with varying technical expertise.
The core H20 platform, commonly called H20-3, was devel-
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oped to provide scalable, distributed machine learning—capable
of handling massive datasets in memory and natively integrating
with Big Data frameworks like Hadoop and Apache Spark. This
foundation made H20 widely used in both academic research
and industry, thanks to its extensibility and high computational
performance [63].

The introduction of H20 AutoML first released in 2017—pro-
pelled the H20 platform into the era of automation. AutoML
lowers the barrier to entry for building machine learning models
by automat- ing processes such as data preprocessing, feature
engineering, model selection, hyperparameter tuning, and gen-
eration of stacked ensemble models. Users can build and deploy
high-quality predictive models with minimal coding using intu-
itive APIs in R, Python, Java, and Scala, or the point-and-click
H20 Flow web GUI. Under the hood, H20 AutoML efficiently
conducts randomized model searches and ensemble learning to
create a ranked leaderboard of models, balancing predictive ac-
curacy with computational efficiency. Its distributed "H20 Clus-
ter" architecture allows scaling across multi-node, multi-core
environments, suitable for both on-premise and cloud deploy-
ments [64].

H20.ai distinguishes itself through robust community partici-
pation and open-source ethos, along with features emphasizing
interpretability, transparency, and regulatory compliance—a
cornerstone for finance, healthcare, and high-stakes domains.
Its Driverless Al product takes automation further, leveraging
advanced techniques to build, optimize, and explain models
automatically, making state-of- the-art Al more accessible and
reliable.

With its blend of automation, scalability, and interpretability,
H20.ai has solidified its influence in the Al and data science
landscape, empowering organizations of all types to leverage
AutoML for fast, efficient, and explainable model building and
deployment.

Generative & Pretrained Model Era (2017-2020)
Transformer Architecture (2017)

The Transformer architecture, introduced by Vaswani et al. in
the landmark 2017 Google paper “Attention Is All You Need,”
revolutionized the field of natural language processing, sequence
mod- eling, and—ultimately—became the foundation for mod-
ern large language models (LLMs). Prior to Transformers, neural
sequence modeling was dominated by recurrent neural networks
(RNNs) and long short-term memory (LSTM) architectures,
which processed input data in order, making parallelization dif-
ficult and struggling with long-range dependencies [65].

The breakthrough of Transformers was their reliance solely on
attention mechanisms—specifically, self-attention—to process
inputs in parallel and capture context dependencies across entire
sequences, regardless of their position. The model consists of
an encoder and a decoder built from stacks of identical layers,
each featuring multi-head self-attention and feedforward neural
networks. Self- attention computes attention scores for each el-
ement, allowing the model to dynamically focus on the most
relevant parts of input sequences when deriving contextual rep-
resentations. Multi-head attention enables the model to consider
multiple representation subspaces simultaneously, dramatically
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enhancing its capacity to encode nuanced relationships within
data [66].

Mathematically, for a sequence of input vectors X, self-atten-
tion computes output vectors by weighting the importance of
every other element using attention scores derived from scaled
dot products. This mechanism is expressed as:

QK’
Attention (Q, K, V) = soft'max( N > 1

where Q, K, and V are the query, key, and value matrices de-
rived from X, and dk denotes the dimensionality of the keys.
This structure enables both efficient parallel computation and
clear mathematical optimization, in contrast to the iterative na-
ture of RNNS.

The impact of Transformer architecture has been enormous. It
forms the backbone of all subse- quent foundational models
in NLP and beyond, such as Google’s BERT, OpenAl’s GPT
series, and many others [67]. These models deliver unprece-
dented performance in understanding and generating human
language, powering everything from search engines to chatbots,
content summarizers, and coding assistants. The ability to scale
Transformers—by increasing their depth, width, and training
datasets—Iled directly to the explosion of LLMs, with models
reaching billions of parameters and previously unattainable ca-
pabilities. Research since 2017 has extended these principles to
computer vision, speech, and multimodal Al, confirming Trans-
formers as the defining innovation of the current era of machine
learning and artificial intelligence.

Bert (2018)

BERT (Bidirectional Encoder Representations from Transform-
ers), released by Google in 2018, marked a major leap in contex-
tual language understanding and has become the cornerstone for
many modern natural language processing (NLP) applications.
Developed by Jacob Devlin and colleagues, BERT introduced
the idea of deep, bidirectional pre-training that considers both
the left and right context of every word in a sentence at every
layer—unlike previous models (such as word2vec, GloVe, or
even unidirectional Transformer-based models like GPT) that
process language in a single direction or with only shallow bidi-
rectionality [68].

Built on the encoder segment of the Transformer architecture,
BERT leverages self-attention to create contextual embeddings,
enabling it to capture subtle meanings of words based on the
entire sentence. The original BERT model was released in two
standard sizes: BERT BASE (12 layers, 12 attention heads,
110M parameters) and BERT LARGE (24 layers, 16 attention
heads, 340M parameters). Its bidirectional context modeling
allows BERT to resolve ambiguous words with high accuracy,
making it significantly more powerful for tasks like question an-
swering, sentiment analysis, and coreference resolution.

BERT’s training involves two novel self-supervised objectives:

e Masked Language Modeling (MLM): Randomly masks
words in a sentence and trains the model to predict them
using the surrounding context, fostering deep bidirectional
understanding [69].

*  Next Sentence Prediction (NSP): Trains the model to pre-
dict whether a given sentence logically follows another,
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enhancing its ability to grasp sentence relationships and dis-
course structure.

After pre-training on massive corpora, BERT can be fine-tuned
with just an additional output layer for virtually any NLP task,
and achieves state-of-the-art results across a broad spectrum of
benchmarks. Its open-source release sparked a surge of innova-
tion, spawning a family of models (e.g., RoOBERTa, ALBERT,
DistilBERT) and fundamentally changing the standard paradigm
for NLP: from training task-specific models from scratch to le-
veraging large, pre-trained “foundation” language models and
adapting them for downstream tasks.

BERT’s adoption by Google Search in 2019 brought its impact
to billions of users worldwide, dramatically improving search
query understanding for over 70 languages. BERT’s introduc-
tion established the pre-train-then-fine-tune model as the domi-
nant approach to language understanding and catalyzed the de-
velopment of ever-larger and more powerful language models,
ushering in the post-BERT era in AI [70].

GPT-2 (2019)

GPT-2 (Generative Pre-trained Transformer 2), released by Ope-
nAl in February 2019, was a landmark breakthrough in gener-
ative language modeling. Building directly on its predecessor
GPT-1, GPT-2 featured a dramatic leap in scale—with up to 1.5
billion parameters—and showcased the power of unsupervised
learning on massive datasets. Trained on the WebText corpus
(8 million web pages, 4°0GB), GPT-2 demonstrated the ability
to produce multi-paragraph, coherent, and contextually relevant
text with only a simple prompt, making it suitable for tasks such
as story generation, translation, question answering, summariza-
tion, and even composing poetry [71].

Its architecture is a decoder-only Transformer—a stack of multi-
head self-attention and feedfor- ward layers—operating au-
toregressively (predicting the next word given preceding text).
GPT-2’s design allows it to model long-range dependencies and
generate fluid, adaptive prose. The model’s “chameleon-like”
flexibility enabled strong zero-shot and few-shot learning: GPT-
2 could perform a variety of tasks without any task-specific
training data, simply by interpreting instructions given in natural
language [72].

OpenAl opted for a staged release, initially limiting public ac-
cess to smaller models before fully releasing the largest 1.5-bil-
lion-parameter version in November 2019. This cautious ap-
proach was due to concerns over misuse, such as generating
convincing fake news, spam, or impersonation content—GPT-
2 was one of the first Al models to raise broad public debate
over the ethical risks of advanced text generation technology.
Despite these concerns, GPT-2 rapidly became a research base-
line, demonstrating that scaling up Transformers led to dramatic
improvements in text generation quality and general-purpose
language understanding [73].

GPT-2’s impact is immense: it inspired a wave of larger, more
capable models (GPT-3, GPT-4), catalyzed the development of
conversational Al, creative writing tools, and powerful text-
based assistants, and underscored the paradigm of language
model pre-training followed by task-specific adaptation. Its code
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and checkpoints remain widely used in research and industry,
and its success marked the beginning of the large language mod-
el (LLM) revolution [74].

Style GAN (2019)

StyleGAN, introduced by Nvidia researchers and made
source-available in February 2019, is a groundbreaking gen-
erative adversarial network (GAN) architecture that set a new
benchmark in ultra- realistic image synthesis—most notably for
generating convincing portraits of non-existent human faces.
Building upon previous GAN advancements, especially Nvid-
ia’s Progressive GAN (ProGAN, 2017), StyleGAN’s innovation
lies in its ability to provide fine-grained control over visual at-
tributes (“styles”) at different levels of image abstraction, from
the coarse (face shape, pose) to the fine (hair texture, freckles,
wrinkles).

The core of StyleGAN architecture uses a mapping network that
transforms a random latent vector into a set of “style” vectors
[75]. These style vectors are injected at multiple layers of the
generator, allowing for highly controllable synthesis of image
features. This “adaptive instance normalization” based mecha-
nism means users can smoothly interpolate features—mixing,
blending, and manipulating aspects of generated faces with re-
markable realism. Standard GAN training is retained, where a
generator learns to create images and a discriminator learns to
distinguish real from fake, iteratively improving the realism of
outputs. [76]

StyleGAN’s technological leap became widely recognized
through the viral website “This Person Does Not Exist,” which
showcased the ability to generate endless, lifelike human faces
with each refresh. Its impact reverberated through both creative
and scientific domains: StyleGAN is used in art, game graphics,
synthetic data generation, and education about media authentic-
ity. Following the original release, Nvidia improved the meth-
od with StyleGAN2 (2020), which removed visual artifacts and
enhanced image quality, and StyleGAN3 (2021), which solved
“texture sticking” and delivered more alias-free generation—
further refining the consistency of generated details.

Mathematically, StyleGAN’s generator employs convolutional
neural layers where style vectors modulate normalization pa-
rameters. This enables controlled variation in features and “style
mix- ing”’—a capability earlier GANs lacked. The resultant im-
ages regularly surpass previous models in realism as measured
by metrics such as the Fréchet Inception Distance (FID).

In summary, StyleGAN’s introduction opened new possibilities
in visual synthesis, enabling ultra-realistic image generation,
fine feature manipulation, and creative exploration. Its releases
and iterative improvements remain critical milestones in the his-
tory of Al-generated imagery and machine creativity [77].

T5 (2019)

T5 (Text-to-Text Transfer Transformer), introduced by Google
Research in 2019, is a transformative language model that uni-
fied how natural language processing (NLP) tasks are framed
and solved. Unlike earlier models that treated tasks such as
translation, summarization, and question answering with custom
architectures or approaches, T5 proposed a “text-to-text” frame-
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work: every problem is cast as converting an input text string
into an output text string, regardless of the underlying NLP task
[78].

Built on the full encoder-decoder Transformer architecture, T5
processes input text using the encoder and generates output text
with the decoder, leveraging the power of attention mechanisms
throughout. The unifying principle is to prepend tasks with spe-
cial instruction-like text prefixes (e.g., “translate English to Ger-
man: That is good”) and train the model [79]end-to-end on a
diverse range of tasks using the same architecture and loss func-
tion. This provides a consistent interface and allows multitask
learning, where the same model can be fine-tuned or prompted
for a wide array of downstream applications—including trans-
lation, summarization, classification, question answering, and
more [80].

For pre-training, TS uses a large, high-quality dataset called
the Colossal Clean Crawled Corpus (C4), containing hundreds
of gigabytes of web-scraped English text. The self-supervised
learning objective is “span corruption,” where random spans of
text are replaced with sentinel tokens and the model learns to
reconstruct the missing content, enabling deep contextual and
compositional language understanding. T5’s vocabulary is built
using SentencePiece tokenization, allowing coverage of multi-
ple languages and efficient handling of rare or out-of-vocabulary
words [81].

By recasting every NLP task as a text transformation, TS not
only simplified the training and deployment process but also
delivered state-of-the-art performance across a diverse array of
language benchmarks. Its influence is seen in subsequent devel-
opments in “instruction tuning” and general- purpose, instruc-
tion-following LLMs, which still trace their roots to T5’s unified
approach [82].

TS5 represents a major evolution in NLP thinking, demonstrating
the power of casting all language problems into a single, flexible
text-to-text mold while leveraging large-scale transfer learning
[83].

Fast AI (2018)

FastAl, launched in 2018 by Jeremy Howard and Sylvain Gug-
ger, is an open-source deep learning library built atop PyTorch
that is designed to make state-of-the-art machine learning acces-
sible to beginners and experts alike. FastAl abstracts and auto-
mates many of the complexities of deep learning, enabling rapid
experimentation, intuitive workflows, and best practices by de-
fault, while still allowing for full access to underlying PyTorch
capabilities [84].

The library introduces a layered API:

e High-level: Functions for common deep learning tasks (vi-
sion, text, tabular, time series, collabo- rative filtering) that
minimize code and domain-specific knowledge require-
ments.

*  Mid-level/Low-level: Modular building blocks that let ad-
vanced users customize model architec- tures, training strat-
egies, and data preprocessing pipelines.

e Core FastAl concepts include:

e Data Block/Data Loaders: Cleanly structured tools for scal-
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able, flexible data preprocessing and loading.

*  Learner: Encapsulates a complete model training pipeline—
bringing together data, network architecture, training/evalu-
ation logic, and reporting.

*  Built-in Best Practices: Automated data augmentation,
mixed precision training, transfer learning integration, and
state-of-the-art optimizers simplify robust model develop-
ment.

Mathematically, FastAl leverages PyTorch for tensor opera-

tions, differentiation, and GPU accel- eration. Its API extends

PyTorch’s flexibility with powerful abstractions that enable re-

searchers to prototype, train, and deploy models with less boil-

erplate and more focus on innovation.

FastAI’s vibrant ecosystem is complemented by comprehensive
courses, documentation, and a large community, which has con-
tributed to making cutting-edge Al techniques approachable for
practitioners, educators, and researchers across the world. It has
been instrumental in democratizing deep learning education and
practice, accelerating the adoption of PyTorch and modern deep
learning best practices in both industry and academia [85].

Allen NLP (2018)

Allen NLP, launched in 2018 by the Allen Institute for Artificial
Intelligence (AI2), is an open- source research library built on
top of Py Torch that is dedicated to advancing natural language
processing (NLP) research and applications. Allen NLP address-
es the common challenges faced by NLP researchers—such as
reproducibility, extensibility, and ease of experimentation—by
providing reusable building blocks, modular data pipelines, and
configuration-driven experiment management [86].

Key architectural features of Allen NLP include:

* Py Torch Foundation: Leveraging Py Torch’s dynamic com-
putation graphs, enabling flexible model design and intui-
tive debugging.

*  Modular Components: Reusable modules for tokenization,
data reading, embedding, encoding, and pre/post-process-
ing, which allow rapid prototyping and efficient pipeline
construction.

*  Declarative Configurations: JSON or Python-based exper-
iment configurations, making it easy to define, reproduce,
and share experimental workflows, models, and hyperpa-
rameters.

*  Reference Implementations: High-quality models for a va-
riety of NLP tasks, such as semantic role labeling, textual
entailment, question answering, and named entity recog-
nition, help users benchmark and extend cutting-edge re-
search methods.

*  Flexible Data API: A “Field” and “Instance” abstraction al-
lows unified and efficient handling of

» diverse NLP data structures, such as sequences, spans, and
trees, with automatic sorting, batching, and padding.

Allen NLP is especially valued in the NLP research community
for streamlining new model development and fostering repro-
ducibility. It also comes with tools for visualization, evaluation,
and integration of pre-trained models. Its APIs and pipelines
have made it a popular choice for both academic research and
real-world NLP productization [87].
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Applications range from text classification, semantic pars-
ing, and coreference resolution to infor- mation extraction and
knowledge graph construction. Allen NLP continues to be ac-
tively developed and widely adopted, facilitating rapid advances
in NLP research and supporting open science through a thriving
community and extensive documentation.

Hugging Face Transformers (2019)

Hugging Face Transformers, launched in 2019, rapidly became
the most influential open-source platform and library for ac-
cessing, sharing, and deploying pre-trained models in modern
natural language processing (NLP). Initially, Hugging Face was
focused on chatbot development, but its founders soon recog-
nized the profound potential—and the community’s need—for
a unified hub that would make cutting-edge transformer models
(beginning with BERT, GPT-2, and others) easily accessible to
all practitioners and researchers[88] . The result was the Trans-
formers library—a consistent API and repository that supports
Py Torch and TensorFlow, and enables seamless downloading,
fine- tuning, and deployment of models for tasks such as text
classification, question answering, translation, summarization,
and more[89].

This platform’s breakthrough was to “democratize” access to
the most powerful models [90] resulting from the “transformer
revolution,” which had previously been confined to specialized
labs or required significant engineering expertise to reproduce.
In the Hugging Face ecosystem, anyone can load a model with a
line of code, experiment interactively, and share improvements
or new models via the hosted Model Hub. It soon evolved from
supporting a handful of models to hosting thousands—including
nearly all major transformer-based architectures like ROBERTa,
TS5, DistilBERT, XLNet, and later GPT-3, BLOOM [91] , and
large multimodal models. Alongside the core library, Hugging
Face released companion tools for tokenization, dataset man-
agement, and evaluation, making it not only a toolkit for infer-
ence but a full-stack environment for research, production, and
benchmarking. The impact on NLP can hardly be overstated.
By radically lowering barriers to entry, Hug- ging Face enabled
rapid experimentation, broad collaboration, and the sharing of
reproducible re- sults—accelerating progress on major bench-
marks, downstream applications, and even in languages and
domains with less well-funded research. Its open-source ethos
cultivated a global community of contributors and users ranging
from machine learning engineers and academic labs to major
tech companies and startups. As a result, Transformer-based
methods became standard practice for a huge swath of industry
and academia [92].

Moreover, Hugging Face Transformers now plays a critical role
in shaping the landscape of generative Al, powering conversa-
tional agents, language generators, document classifiers, and bio-
in- formatics solutions. It bridges research and production, pro-
viding high-level interfaces suitable for non-experts and deeply
customizable options for advanced users. Its effective blend of
technical excel- lence, user experience, and community-driven
development has solidified its status as the “GitHub for machine
learning models”—a foundational resource in today’s Al eco-
system, and a major force in the continuing evolution of large
language models and intelligent systems [93].
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Multimodal & Generative AI Explosion (2020-2023)

GPT-3 (2020)

GPT-3 (Generative Pre-trained Transformer 3), released by Ope-
nAl in 2020 [94]. marked a major milestone in the evolution of
generative Al. With a staggering 175 billion parameters, GPT-3
dwarfed all previous language models—being over a hundred
times larger than GPT-2—and signaled a new era of artificial
intelligence powered by scale and transfer learning. Like its pre-
decessors, GPT-3 is a decoder-only Transformer model, built on
deep neural network layers that leverage self-attention to ana-
lyze and synthesize input text. It was trained on a vast corpus—
over 45 terabytes of diverse text from Common Crawl, Wiki-
pedia, books, and scientific articles—allowing it to attain fluid,
humanlike language abilities.

The most remarkable advance with GPT-3 is its zero-shot and
few-shot learning capabilities. With just minimal or no task-spe-
cific fine-tuning, GPT-3 can generate text, answer questions,
trans- late languages, summarize, solve arithmetic problems,
write computer code, and adapt to complex prompts—all by in-
terpreting context and examples given at inference time. This
“prompt engineering” approach allows users to unlock new be-
haviors from a single model without retraining, a radical leap
compared to previous generation systems. The model’s context
window of 2048 tokens enable understanding and retention of
lengthy passages, contributing to coherent multi-paragraph out-
put [95].

GPT-3’s emergence resulted in widespread impact across indus-
tries. It powers chatbots, creative writing assistants, educational
tools, content automation systems, and is the core technology
behind OpenAl’s later product ChatGPT (initially based on
GPT-3.5, later upgraded to GPT-4). Its performance on standard-
ized NLP benchmarks set new records, and its general-purpose
text generation was so convincing that many human evaluators
struggled to distinguish its writing from authentic human prose
[96]. The scale of GPT-3 also raised concerns about ethical risks,
misinformation, and the social responsibility of deploying pow-
erful language models, prompting debates that continue as mod-
els grow even larger and more capable.

Licensing and API access to GPT-3 reflected both excitement
and caution; Microsoft secured exclusive rights to the underly-
ing model, while others access it via OpenAl’s cloud API. In
the wake of GPT-3, the field experienced a surge of competitive
innovation—spurring subsequent large models from Google,
Meta, and open initiatives like EleutherAl [97].

CLIP (2021)

CLIP (Contrastive Language—Image Pretraining), introduced
by OpenAl in 2021, represents a key milestone in multimodal
Al by fundamentally bridging the world of images and natural
language. Unlike classical computer vision models, which re-
quire extensive supervised training for each specific task, CLIP
learns to associate images and text in a unified representation
space through a process called contrastive learning. The model
was trained on an unprecedented scale—400 million image—text
pairs sourced from the internet—allowing it to develop a broad
and general understanding of visual concepts as expressed in
natural language [98].
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The technical architecture of CLIP consists of two separate neu-
ral networks: a vision encoder (typically a Vision Transformer
or ResNet) and a text encoder (usually based on a Transform-
er). Both encoders map their respective inputs—an image and a
piece of text—to high-dimensional embeddings in a shared fea-
ture space. During training, CLIP maximizes the cosine similar-
ity between embeddings for matching image—caption pairs and
minimizes it for mismatched pairs. The outcome is a model that
can, given an image and a set of candidate text descriptions (or
vice versa), identify which text best matches the image—even
for objects or situations it has never seen before [99].

What makes CLIP extraordinary is its "zero-shot" capability:
without any further task-specific training, it can classify imag-
es, retrieve relevant images given text queries, generate image
captions, and more, simply by leveraging the rich relationships
embedded in its multimodal representation. For instance, CLIP
can instantly label previously unseen images by choosing from
a list of natural language prompts, far surpassing the flexibility
of models reliant on tightly controlled class labels or datasets.
Its approach to generalization also inspired the architecture of
numerous Al systems powering text-to-image synthesis, content
moderation, and robust semantic search [100].

CLIP’s release was also transformative at the ecosystem level.
It became an essential building block for more advanced multi-
modal models, including guidance systems for generative mod-
els like DALL-E and Stable Diffusion. In industry and research,
CLIP powers applications ranging from search engines and rec-
ommendation systems to digital art, content filtering, and the
investigation of neural network interpretability (such as "mul-
timodal neurons"). Its public release has enabled wide experi-
mentation and rapid progress in building truly general-purpose,
flexible Al capable of connecting language and vision [101].

DALL-E (2021)

DALL-E, unveiled by OpenAl in January 2021, is a pioneering
deep learning model designed to generate novel images from
text prompts—a capability that captured the world’s attention
and redefined the potential of generative Al. Building on the suc-
cess of large language models like GPT-3, DALL-E employs a
Transformer-based architecture and leverages concepts from au-
toregressive models and variational autoencoders (VAEs). It was
trained on hundreds of millions of images—text pairings collect-
ed from the internet, allowing the model to synthesize striking-
ly creative and highly coherent visuals based solely on detailed
natural language descriptions [102].

The technical breakthrough of DALL-E lies in representing both
text and images as discrete tokens. During training, a discrete
VAE compresses each image into a lower-dimensional grid of
tokens, while the Transformer learns to model the joint distribu-
tion of text and image tokens as a single sequence [103]. When
given a prompt, DALL-E generates the sequence of image to-
kens that, when decoded by the VAE, produces an image match-
ing the semantic content of the text. This means a prompt like
“an armchair in the shape of an avocado” will yield an entirely
new image, blending previously unseen concepts and styles in
photorealistic or artistic ways.

One of DALL-E’s most significant impacts is its seemingly lim-
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itless generative creativity and compositional reasoning. The
model can merge disparate ideas, invent objects, adapt styles, or
transform concepts much like an imaginative artist responding
to verbal instructions. DALL-E’s “zero- shot” ability—gener-
ating meaningful imagery for prompts it was never explicitly
trained on—quickly found applications in art, design, education,
and synthetic data generation [104].

Following the original DALL-E, OpenAl released DALL-E 2,
which improved image quality and capability using advances in
diffusion models guided by CLIP, OpenAl’s multimodal text—
image embedding network. These innovations established a new
paradigm for generative models: text- to-image (and now text-
to-video and text-to-3D) synthesis that democratizes visual cre-
ativity and speeds up workflows in media, design, and scientific
visualization. Both the original DALL-E and its successors have
become benchmarks, inspiring further development in open-
source generative models and autonomous creative systems
worldwide [105].

Stable Diffusion (2022)

Stable Diffusion, released in August 2022 by Stability Al in part-
nership with Comp Vis and Runway ML, transformed the gen-
erative Al landscape by making photorealistic image synthesis
open-source and accessible to everyone—even those without en-
terprise-level hardware or budgets. Unlike previous proprietary
models like DALL-E or Midjourney, Stable Diffusion’s source
code and model weights were openly licensed, allowing anyone
to download, run, and modify the system for personal, academic,
or creative use. This choice democratized Al-based image gen-
eration, fueling an explosion of community-driven innovation
and applications across art, media, research, and industry [106].

Technically, Stable Diffusion is a latent text-to-image diffusion
model. It works by first compress- ing images into a lower-di-
mensional latent space using an autoencoder, then employing
a neural network to iteratively reverse random noise back into
a coherent picture, guided by a textual prompt. The choice of
working in latent space—as opposed to the full pixel space—
allows for faster image generation and reduces computational
requirements, enabling high-quality results even on consumer
GPUs. For understanding prompts, Stable Diffusion incorpo-
rates OpenAl’s CLIP text encoder, which maps natural language
instructions to vector representations closely aligned with the
visual domain, ensuring that generated images faithfully reflect
the user’s input [107].

Open-source accessibility led to massive adoption and rapid
evolution. Creators and developers built custom interfaces, ex-
tensions, and plug-ins, while artists and designers gained pow-
erful new tools for ideation, prototyping, and artistic expression.
The flexibility to modify and fine-tune models spawned count-
less niche variants and tailored solutions, expanding the possi-
bilities for commercial, educational, and creative uses. Stable
Diffusion also prompted important conversations around ethics,
copyright, and the future of creative work, particularly as human
artists contended with new forms of digital art generation and
content authenticity [108].

Culturally and technologically, Stable Diffusion is credited with
“removing the doors from their hinges”—ushering in a new era
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where Al image generation became a grassroots phenomenon
rather than a privilege for major tech companies. With billions of
images created and a vibrant community fueling continued im-
provement, Stable Diffusion remains a backbone of generative
art, synthetic media, and open research, pressuring proprietary
competitors to open up and spurring advances throughout the
Al field [109].

Midjourney (2022)

Midjourney, launched in early 2022, quickly established itself
as one of the leading platforms for Al-driven art generation,
harnessing the power of text-to-image synthesis to empower
creators of all kinds. Founded by David Holz (also known for
Leap Motion), Midjourney is an independent research lab whose
eponymous software enables users to craft striking, imaginative
visuals from simple text prompts. Unlike previous art generators
focused primarily on photorealism or technical demonstration,
Midjourney is distinguished by its painterly aesthetics, creative-
ly blending real-world styles, artistic influences, and fantastic
elements. Its model excels in fantasy scenes, stylized environ-
ments, and expressive character portraits a favorite among con-
cept artists, designers, illustrators, and hobbyists [110].

Access to Midjourney is innovative: the platform operates pri-
marily as a bot on Discord, where users type prompts and re-
ceive images instantly, sparking communal sharing, feedback,
and collab- orative exploration. This workflow makes Al art cre-
ation interactive and social, driving the rapid growth of a global
user base that has surpassed 16 million by late 2023. Midjourney
offers continual updates—releasing improved algorithms every
few months, each lifting artistic quality, coherence, prompt ac-
curacy, and stylistic variety. By 2024, its web interface expand-
ed accessibility, bringing Al visual generation beyond Discord’s
audience [111]. Under the hood, while Midjourney is speculated
to use principles similar to latent diffusion models (as in Stable
Diffusion), its proprietary technology and blend of artistic tuning
set it apart. The system leverages high-quality image—text pair-
ing, learning complex associations between language and visual
style, and allowing highly customized creations based on user
instructions. The result is a new form of visual ideation, letting
professionals and enthusiasts prototype commercial art, create
book illustrations, design product concepts, or simply explore
creative possibilities, often in minutes [112].

Midjourney’s impact stretches far beyond its technical achieve-
ments. Its accessible, community- centered approach to Al-gen-
erated art has helped disrupt traditional stock photography, low-
ered creative barriers, and brought sophisticated art generation
to the masses. The platform has powered magazine covers, chil-
dren’s books, concept art, and even winning entries in digital art
competitions. Users praise its ability to speed up brainstorming,
explore unfamiliar styles, and develop visual narratives with un-
precedented ease [113].

Whisper (2022)

Whisper, released by OpenAl in September 2022, is an open-
source automatic speech recogni- tion (ASR) model that set a
new standard for transcribing and translating audio across a di-
verse range of languages, accents, and audio environments. Its
development was motivated by the need for robust, accurate, and
scalable speech-to-text systems not just for English but for over
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100 lan- guages worldwide—addressing limitations of earlier
models that struggled with non-standard accents, domain-spe-
cific jargon, and noisy backgrounds [114].

At the heart of Whisper’s approach is a weakly-supervised
training pipeline and a sequence- to-sequence encoder-decoder
Transformer architecture. The model takes as input a log-Mel
spectro- gram—a time-frequency representation—of audio split
into 30-second chunks, transforming it into a sequence of latent
vectors that capture temporal, spectral [115], and semantic in-
formation. The decoder then generates transcriptions token by
token, with the same model capable of language identification,
transcription in the original language, translation into English,
and phrase-level timestamps. This multifunctional design was
achieved by training on an exceptionally large and diverse data-
set of 680,000 hours of supervised audio-text pairs sourced from
the web, which enabled the model to learn a wide variety of
accents, recording conditions, and technical vocabularies.

Whisper’s release as open source offered unprecedented bene-
fits for developers, researchers, and practitioners. It provided not
only high-accuracy English transcription but also robust multi-
lingual transcription and speech-to-English translation without
any extra fine-tuning. The model’s versatility and ease of use
sparked rapid adoption, enabling better accessibility solutions,
improved voice interfaces, podcast and video transcription, lan-
guage study tools, and facilitating research into more complex
audio and speech applications [116]. Whisper’s ability to gen-
eralize across languages, accents, and environments has made
it a founda- tional technology in the global push for inclusive,
Al-powered speech and language tools. Moreover, its transpar-
ent release set a benchmark for openness in Al development,
supporting further innovation in speech recognition technology
and its integration into both commercial and open-source proj-
ects [117].

ChatGPT (2022)

ChatGPT, released by OpenAl in November 2022, represents
one of the most remarkable leaps forward for conversational ar-
tificial intelligence. Built initially on GPT-3.5 and later enhanced
by GPT-4, ChatGPT marked the first time a large language mod-
el was fine-tuned and deployed specifically for natural dialogue
with broad, everyday usability. Its launch was a watershed mo-
ment: millions adopted ChatGPT within days, integrating it
into personal and professional routines for Q&A, drafting con-
tent, brainstorming, tutoring, technical assistance, and creative
writing. The system’s ability to provide coherent, contextually
relevant, and human-like responses—often with nuanced un-
derstanding and personality—demonstrated the practical vi-
ability of large-scale conversational Al for general use [118].
ChatGPT’s core advances derive from two pivotal techniques.
First, the conversational interface was built to handle multi-
turn interactions, enabling users to clarify, elaborate, and cor-
rect threads of dialogue in natural language. Second, the model
was fine-tuned via reinforcement learning from human feedback
(RLHF), aligning responses with human preferences, improving
safety, and min- imizing bias and harmful outputs. This combi-
nation made ChatGPT surprisingly capable at not just answering
questions, but engaging in back-and-forth exchanges, reasoning
through ambiguity, admitting mistakes, and playfully challeng-
ing incorrect premises [119].
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ChatGPT’s underlying models evolved rapidly: starting with
GPT-3.5, which offered strong general-domain language abili-
ties, then moving to GPT-4 in March 2023, whose larger scale,
im- proved alignment, and multimodal capabilities pushed com-
prehension and creativity even further. By 2024—2025, versions
with even broader context windows, enhanced reasoning, and
tool integration were released, enabling the system to use web
search, interpret images, code, and analyze user data. Through-
out, model architecture remained based on the Transformer par-
adigm, with progressive improvements in alignment, factuality,
steerability, and reasoning depth [120].

The impact of ChatGPT is profound and ongoing. It has been
widely adopted in customer service, education, content creation,
programming, healthcare, entertainment, and more—changing
workflows and user expectations about interacting with com-
puters. Its ease of use—running in browsers, apps, and APIs—
helped it reach billions and inspire a new wave of competition
among tech companies [121].

Perhaps even more importantly, ChatGPT popularized prompt
engineering and conversational design as skills, enabled re-
searchers to probe both the powers and limitations of LLMs,
and raised important ethical, legal, and social questions about
synthetic dialogue, misinformation, and Al-assisted work [122].

Bloom (2022)

BLOOM (BigScience Large Open-science Open-access Multi-
lingual Language Model), released in July 2022, is a landmark
achievement in the movement toward open, collaborative, and
transparent Al research. Developed over a year-long workshop
by the BigScience collaboration—a vast consortium coordinat-
ed by Hugging Face and comprising more than a thousand re-
searchers from around the world—BLOOM is one of the largest
large language models ever made publicly accessible. With 176
billion parameters, BLOOM stands alongside proprietary mod-
els like GPT-3 and PaLM but distinguishes itself by distributing
both its model weights and training data under permissive open
licenses, allowing for unrestricted research, adaptation, and
scrutiny worldwide [123].

The architecture of BLOOM is a transformer-based autoregres-
sive language model, trained to generate text and code across 46
natural languages and 13 programming languages. Its multilin-
gual proficiency was a crucial focus, making it the most widely
inclusive open-source LLM of its time and a powerful tool for
countering the English-centric bias seen in earlier AI models.
To achieve this, BLOOM was trained on the diverse, transpar-
ent ROOTS corpus, containing nearly 1.6TB of text carefully
sourced, documented, and cleaned to reflect not just the web but
also underrepresented communities and linguistic groups [124].

Transparency extended far beyond the code and weights—the
whole process, including engineer- ing decisions, training logs,
and ethical deliberations, was carried out in public view on the
Jean Zay supercomputer in France. This pioneering approach al-
lowed researchers everywhere to follow, audit, and contribute
at every step, setting a new gold standard for open science and
reproducibility in the Al field [125].

BLOOM’s contributions extend beyond its technical prowess.
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By making such a model openly available, it democratized
large-scale Al, enabling communities, universities, and small-
er innova- tors—especially those from developing regions—to
participate in frontier machine learning research without the
heavy restrictions or costs associated with proprietary models.
This has fostered not only novel applications and research but
also greater global dialogue around bias, governance, multilin-
gual access, and responsible Al development [126].

LLa MA (2023)

LLaMA (Large Language Model Meta Al), released by Meta
(formerly Facebook) in early 2023, represents a major advance-
ment in accessible large language model research. Developed
as a suite of transformer-based models with parameter sizes
ranging from 7 billion to 65 billion for the first generation (and
up to 70 billion in subsequent versions), LLaMA was designed
to rival performance benchmarks set by proprietary LLMs like
GPT-3 and PalLM, but with a focus on efficiency, transparency,
and open availability to the global research community [127].

The initial L La MA models were provided under a research li-
cense, and while they were intended for non-commercial use and
distribution to approved academic applicants, their weights were
rapidly disseminated online, catalyzing a burst of experimenta-
tion and fine-tuning by independent researchers worldwide. This
“leak” incident, while controversial, contributed to the immedi-
ate formation of an active ecosystem: academics and developers
built instruction-following variants like Alpaca (Stanford), Vicu-
na (LMSYS), and Koala, showing that state-of-the-art conver-
sational Al could be achieved for relatively low cost and infra-
structure by fine-tuning L La MA foundations [128].

Meta’s follow-up, L La MA 2 (July 2023), further revolutionized
access to advanced LLMs. L La MA 2 models—released in 7B,
13B, and 70B parameter sizes—offered not just foundational
model weights but also chat-optimized, instruction-following
variants with enhanced safety fine-tuning. Notably, L La MA 2’s
more permissive license enabled commercial use under certain
conditions and included wide platform integration with partners
like Microsoft and Hugging Face, dramatically expanding its
adoption in industry and research. The release of Code L La MA,
specialized for code generation and programming, further deep-
ened its impact on technical and developer communities [129].

Technically, L La MA’s success is often attributed to highly ef-
ficient model design, extensive multilingual and public dataset
pretraining, and rigorous evaluation on diverse benchmarks. Its
training datasets were constructed to optimize both language
understanding and generation while making models compact
enough for fine-tuning and inference on standard hardware, de-
mocratizing LLM research and customization worldwide.

L La MA’s open availability has catalyzed a global movement of
“open foundation” model devel- opment. Researchers and orga-
nizations now routinely create specialized, localized, and safe-
ty-aligned derivatives, pushing the boundaries of large language
models while encouraging transparency, repro- ducibility, and
broader participation in generative Al. At the same time, the L
La MA family has raised important questions about responsible
model sharing and open science, as the ease of adaptation brings
both societal benefits and risks [130].
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Gemini (Bard) (2023)

Gemini, unveiled by Google DeepMind in December 2023, is
Google’s most advanced multimodal Al model to date—pur-
pose-built to natively understand, generate, and reason across
text, images, audio, video, and code. Gemini was designed from
the ground up as a multimodal system, meaning that, unlike pre-
vious models which often combined separately trained modules,
Gemini’s architecture was jointly trained on diverse data types.
This unified approach enables the model to seamlessly process
complex, interleaved sequences of language and visuals, handle
elaborate reasoning tasks, and provide highly contextual, accu-
rate responses to a broad array of queries involving multiple mo-
dalities [131].

The Gemini family offers several model sizes—Ultra, Pro, and
Nano—optimized for different use cases, from high-perfor-
mance research to on-device Al for smartphones. Notably, Gem-
ini Ultra has set new records on over 30 major academic and
industry benchmarks, including being the first model to surpass
human expert performance on the Massive Multitask Language
Understanding (MMLU) exam. Gemini excels at a wide range
of tasks, such as reading and interpreting complex diagrams, in-
fographics, and scientific documents; analyzing natural images
and video; audio transcription and understanding; sophisticated
mathematical and logical reasoning; and robust code generation
spanning multiple programming languages [132]. Gemini’s mul-
timodal strength offers unique advantages in solving challenging
questions that blend visual, linguistic, and logical information,
making it highly effective for scientific discovery, education,
content creation, and enterprise analytics. The system’s archi-
tecture directly supports the ingestion of text, images, audio
waveforms, and video frames, allowing for nuanced analysis
and synthesis that bridges gaps between previously siloed data
formats [133].

Gemini also powers Google’s Bard chatbot (now rebranded as
Gemini across many Google services), bringing enhanced gen-
erative Al to Search, Assistant, Android devices, and develop-
er platforms like Google AI Studio and Vertex Al Its natively
multimodal reasoning, broad multilingual support, and ability
to extract insights from massive datasets are driving innovation
across consumer and enterprise applications [134].

Critically, Gemini isn’t just a technical achievement—it marks
the culmination of Google’s efforts to bring together DeepMind
and Google Brain, leveraging global collaboration and resourc-
es to set new standards for open, scalable, and responsible Al
development. As Gemini continues to evolve—with version up-
dates such as Gemini 1.5 and on-device deployment via Pixel
phones—it is poised to define the next wave of general-purpose,
highly capable, and accessible artificial intelligence [135].

Claude (2023)

Claude, released by Anthropic in March 2023, is a family of large
language models engineered to push the state of conversational
Al with a strong emphasis on safety, ethical alignment, and user
control. Developed by a team of former OpenAl researchers,
Claude’s defining innovation is its use of “Constitutional AI”—a
training approach that combines Reinforcement Learning from
Human Feedback (RLHF) with a set of guiding principles or
"constitution." This constitution, drawn in part from documents
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like the UN Universal Declaration of Human Rights, directs the
model to behave harmlessly and helpfully, relying not only on
human feedback but on its own self-critiques and revisions. In
practice, this method allows Claude to generate, review, and
improve its own outputs while aligning with clear ethical stan-
dards, minimizing risks of bias, misinformation, and harmful
responses [136].

Anthropic continually expanded Claude’s capabilities, releasing
successive versions that increased the maximum context win-
dow—up to 200,000 tokens, or roughly 500 pages of material.
This enabled users to upload and process lengthy documents,
and perform advanced summarization, document analysis,
and text-based research tasks well beyond prior systems. With
Claude 2 and beyond, the models could read, interpret, and assist
with tasks using a diverse range of inputs, including PDFs and
complex workflows.

Safety and reliability are central to Claude’s design. The model
demonstrates lower rates of hallucination and harmful output,
and in recent updates, incorporates mechanisms capable of end-
ing conversations in extreme cases of persistently abusive user
interactions—reflecting Anthropic’s com- mitment to both mod-
el and user “welfare.” These capabilities, along with steerable
tone, persona, and user feedback responsiveness, make Claude a
uniquely user-friendly system for business, education, program-
ming, creative writing, and data analysis [137].

Anthropic’s approach has spurred significant debate on the bal-
ance between ethical safeguards and usability, as some critics
claim the model’s refusal to answer certain benign requests
constitutes an “alignment tax.” Nonetheless, the importance of
transparency, privacy, and verifiable ethical alignment places
Claude at the leading edge of responsible and trustworthy Al
development [138].

The Current Multimodal & Agentic Era (2024-2025)

GPT-4 / GPT-40 (2024)

GPT-4 and its successor GPT-40 (the "o" stands for "omni"),
released by OpenAl in 2024, are state-of-the-art, natively mul-
timodal large language models that mark a major leap in Al’s
ability to understand and generate not just text, but images and
audio as well. Unlike earlier models that relied on separate sub-
systems stitched together for different input types, GPT-4o is
built as a unified neural network. This design allows it to process
text, images, and audio in any combination as both input and
output—enabling highly fluid, human-like interactions that span
language, vision, and sound [139].

The capabilities of GPT-4 and especially GPT-40 go far beyond
traditional chatbot functionality. For example, GPT-40 can read
and describe photographs, interpret graphs or handwritten notes,
answer questions about images, and even process live video
feeds or screen recordings. In voice mode, it engages in real-time,
multi-turn voice conversations at natural speeds, outperforming
many previous models in speech recognition, translation, tone,
and sentiment understanding. The system can not only recognize
and transcribe audio, but respond with synthesized speech, even
singing or mimicking emotional cues. This deep, native multi-
modality is a breakthrough for building interactive Al assistants
that can see, listen, speak, and even analyze the real world as
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fluidly as a human [140]. GPT-40’s performance extends further.
It demonstrates state-of-the-art results on vision, audio, and mul-
tilingual benchmarks, outpacing major competitors on a range
of tasks. OpenAl rolled out the model initially with support for
text and vision and progressively expanded to enable complex
audio and video generation. The model is highly efficient com-
pared to its predecessors, enabling faster and cheaper deploy-
ment for both developers and consumers. Variants like GPT-40
mini—smaller and leaner, but outperforming previous flagship
models—make advanced multimodal Al accessible for a broad
range of devices and applications, from cloud APIs to mobile
phones [141].

In practice, GPT-40 opens up new use cases—math tutoring
with spoken explanations and hand- drawn diagrams, real-time
translation in voice calls, multimodal creative work (combining
writing, image creation, and music), and seamless accessibility
tools for visually or hearing-impaired users. Its development is a
foundational shift toward Al systems that can meaningfully and
naturally interact across the full spectrum of human communi-
cation channels [142].

OpenAl’s releases have catalyzed innovation throughout the
industry, inspiring rapid advances and new research in gener-
al-purpose, multimodal, and interactive artificial intelligence. As
multimodal systems like GPT-40 become integrated into every-
day life, they are transforming not only how we interact with
technology, but how we understand and bridge the boundaries
between text, images, sound, and human expression [143].

Sora (2024)

Sora, launched by OpenAl in February 2024, is a breakthrough
text-to-video generative Al model that enables users to create
realistic, detailed videos simply by describing them in natural
language. Building on the advances of prior text-to-image mod-
els like DALL-E, Sora harnesses advanced diffusion and trans-
former architectures to generate up to one minute of high-quality
video per prompt. Its release marked a pivotal moment in gener-
ative media, allowing artists, filmmakers, educators, marketers,
and everyday users to produce animated content from imagina-
tion alone—whether that’s simulating natural landscapes, craft-
ing surreal animation, or rendering cinematic scenes [144].

Technically, Sora innovates by combining the strengths of diffu-
sion models (for rich, low-level visual texture generation) with
transformers (for global compositional layout and logical rea-
soning across video frames). It processes videos as sequences of
"patches," akin to how tokens represent words in language mod-
els, maintaining object constancy and smooth motion over time.
Sora also integrates automatic recaptioning: before generating,
GPT reinterprets and expands the user’s prompt to add neces-
sary detail, boosting fidelity and capturing intended nuance. The
model was trained on an internet-scale dataset of image and vid-
eo pairs, enabling broad generalization to a wide variety of sub-
jects, genres, and visual storytelling styles [145].

Safety and copyright features are integral to Sora’s design. All
videos generated are watermarked to distinguish Al-created me-
dia from authentic footage, helping counter potential misuse—
such as the creation of fake historical clips or misleading visual
content. OpenAl introduced Sora in a phased manner, starting
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with “red teams” and creative professionals for adversarial test-
ing and feedback, then expanding availability through ChatGPT
Plus and Pro subscriptions, and rolling out integration for plat-
forms and mobile devices [146]. Sora’s impact on the creative
industry is profound. It opens new avenues for prototyping,
ideation, rapid storyboarding, educational content creation, and
democratizes access to high-end video generation for audiences
that could never afford large animation teams or expensive CGI.
As 0f 2025, Sora has spawned a wave of third-party tools, plugin
extensions, and ongoing open research into enhanced motion co-
herence, unbiased video synthesis, and broader support for di-
verse visual styles. With continued innovation—including the
unveiling of Sora 2 and further accessibility features—OpenAl’s
video generation has set a new standard for multimodal Al cre-
ativity in the digital age [147].

Gemini 1.5 (2024)

Gemini 1.5, introduced by Google DeepMind in early 2024, is
a next-generation multimodal Al model renowned for its un-
precedented ability to process and reason over extremely long
con- texts—including millions of tokens of text, images, audio,
video, and code. Building on the success of the original Gemini
and its predecessors, Gemini 1.5 sets a new benchmark by en-
abling users to upload, analyze, and interact with entire books,
codebases, multi-hour podcasts, movies, and massive multi-doc-
ument datasets in a single prompt—unlocking capabilities well
beyond previous large language models [148].

The model is natively multimodal, meaning it was trained to
handle a mix of modalities from the outset. This allows it to
traverse, summarize, and derive insights from content such as
scanned documents, annotated screenshots, medical imaging,
video clips, and audio records—sometimes even answering de-
tailed questions about specific scenes or extracting information
from hand-drawn sketches. In qualitative demonstrations, Gem-
ini 1.5 is able to locate specific portions of sprawling novels,
translate new languages from grammar references alone, and
pinpoint crucial code segments for debugging across large re-
positories [149].

Gemini 1.5 comes in several variants, including Gemini 1.5 Pro
and Gemini 1.5 Flash—ecach tailored for different speed and
quality trade-offs. With a context window scaling up to 1 million
tokens (and experimental support for even longer sequences),
Gemini 1.5 dramatically expands the practical limits of Al-pow-
ered analytics, making it possible for individuals and organiza-
tions to query and reason over data sources previously deemed
too large or complex [150].

Real-world applications are changing rapidly as a result. Enter-
prise users leverage Gemini 1.5 for deep analysis of regulato-
ry filings, legal contracts, patient medical histories, and thou-
sands of hours of sensor data. Developers use it to search large
codebases and even repair them automatically. Educators and
scientists deploy long-context input for curriculum analysis, lin-
guistic research, and multimedia content creation, while creative
professionals blend images, transcripts, and video to produce
meaningful, data-driven stories.

The ability of Gemini 1.5 to seamlessly integrate and retain
massive multisource inputs—combined with state-of-the-art
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recall and reasoning—represents a leap forward not only for
multimodal under- standing, but also for building more person-
al, insightful, and comprehensive Al applications across indus-
tries. Google’s iterative releases and open documentation further
enable rapid exploration of new use cases, setting the pace for
industry adoption and innovation in long-context artificial intel-
ligence [151].

Mistral & Mixtral (2024)

Mistral and Mixtral, released in 2024 by Paris-based Mistral Al,
represent a major advance in open-source large language models
(LLMs) by offering impressive performance, compact size, and
highly efficient outputs that compete directly with Meta’s LLa-
MA family and sometimes even closed models like OpenAl’s
GPT-3.5. Mistral 7B is a 7.3-billion-parameter model optimized
for speed, resource efficiency, and strong benchmark results. It
stands out for outperforming LLaMA 2 13B on most tasks—es-
pecially English-language and code-related benchmarks—while
running on standard hardware, making it a popular choice for
both research and practical deployments. Key features such as
Grouped-query attention (GQA) and Sliding Window Attention
(SWA) enable fast inference and extended context handling,
with all weights released under a permissive Apache 2.0 license
for easy local or cloud use [152].

Mixtral is Mistral Al’s series of Sparse Mixture of Experts
(SMoE) models, such as Mixtral 8x7B and 8x22B. These mod-
els introduce a clever architecture where inference uses only a
subset of available parameters per input token—enabling large
aggregate model sizes (up to 141B parameters) with actual run-
time speed and resource usage closer to smaller models. Mixtral
models offer wider context windows (up to 64,000 tokens or
more), very fast throughput, and robust multilingual capabili-
ties, supporting languages like English, French, German, Italian,
Spanish, and more. Performance-wise, Mixtral outstrips LLaMA
2 70B and shows competitive results against GPT-3.5 in com-
mon benchmarks, particularly excelling in code generation and
complex instruction following. The open weights, high cost effi-
ciency, and ease of fine-tuning have driven widespread adoption
among developers looking for scalable, customizable, and safe
Al solutions without commercial licensing barriers [153].

Mistral Al has also released proprietary variants for business use,
but it’s the open models that have democratized powerful LLM
deployment and experimentation, making high-quality large lan-
guage models feasible for SMEs, academic labs, and grassroots
communities. Their transparent release strategy, multilingual fo-
cus, and strong handling of long sequences make Mistral and
Mixtral key drivers in the open-source Al ecosystem, frequently
leading the leaderboard for best open LLM performance.

In summary, Mistral and Mixtral are lightweight, high-perform-
ing open models that continue to set standards for efficiency and
accessibility, empowering broad communities to harness ad-
vanced Al for language, coding, and reasoning at scale—with
a commitment to both open science and practical application
[154].

Claude 3 (2024)
Claude 3, released by Anthropic in March 2024, is a flagship
family of large language models that set new standards in en-

Wor Jour of Appl Math and Sta 2025



hanced reasoning, multimodal understanding, and user-centric
control. The Claude 3 lineup includes three models—Haiku
(optimized for speed and cost), Sonnet (balancing capabili-
ty and efficiency), and Opus (pushing boundaries for complex
reasoning and creativity). Building on Anthropic’s earlier com-
mitment to Constitutional Al and reinforcement learning from
human feedback (RLHF), Claude 3 models showcase dramatic
improvements in following complex instructions, analyzing and
summarizing massive documents, interpreting images and dia-
grams, and solving intricate math, coding, and logic tasks [155].

For the first time, Claude gained native multimodal abilities, able
to process both text and images within the same prompt, making
it effective for visual analysis—such as extracting information
from charts or understanding meaning in technical diagrams.
The Opus model in particular came with an industry-leading
context window of 200,000 tokens (over 500 pages of text), and
experimental features expanding that window up to 1 million to-
kens for select use cases. This allowed users to work with entire
novels, extensive legal contracts, and large codebases in a single
session—enabling deep, integrated research and analysis [156].

Claude 3 quickly gained attention for outperforming major ri-
vals—including OpenAl’s GPT- 4—on key benchmarks in
graduate-level reasoning, factual accuracy, coding, and knowl-
edge-intensive workflows. Later in 2024, the Claude 3.5 Sonnet
variant further strengthened its lead in code generation, chart
interpretation, multistep workflow comprehension, and image-
to-text extraction, and introduced the Artifacts feature, enabling
real-time code testing and SVG/web rendering within the chat
interface [157].

Beyond accuracy, one of Claude 3’s most distinctive advances is
its hybrid dual-mode reasoning, realized in versions like Claude
3.7 Sonnet. This allows users to choose between rapid responses
for simple questions and deep, step-by-step reasoning for more
complex problems, making the model highly flexible for both
quick searches and detailed analyses. Anthropic’s iterative up-
grades, including the ability for Claude to control desktop envi-
ronments and automate multi-application workflows, point to a
future where large language models serve as fully agentic digital
coworkers. Claude 3’s release marked a turning point for safe,
reliable, and powerful Al applications in business, education, re-
search, and creative industries—offering users control, transpar-
ency, and the ability to work fluidly across long, complex, and
multimodal information streams [158].

Deep Seek (2025)

DeepSeek, introduced in early 2025 by a Hangzhou-based Chi-
nese tech company, is a series of open-source, multimodal Al
models engineered to deliver high-quality generative reasoning
at a fraction of the computational cost and financial overhead
typical of competitive LLMs like OpenAl’s GPT-40 or Meta’s
LLaMA 3.1. The release of DeepSeek’s R1 model sent shock-
waves through the industry, earning it a reputation as an “Al
revolution” or “Sputnik moment” for its ability to rival or exceed
the outputs of established leaders while slashing training costs
(with estimates for DeepSeek V3 at just 6million, compared-
toaround100 million for GPT-4) [159].

Technologically, DeepSeek’s models leverage a combination of
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Mixture of Experts (MoE) archi- tectures, reinforcement learn-
ing (RL), and clever engineering optimizations that drive down
both hardware and energy requirements. These advances make
DeepSeck models smaller, more efficient, and remarkably prag-
matic for developers and organizations looking to deploy robust
multimodal Al—handling text, images, and, in some cases, audio
with high fluency. The models are designed with open weights
(freely available under an MIT license), transparent technical
documentation, and increased accessibility for research and
downstream customization, even in the face of restricted access
to advanced Western GPUs [160].

In late January 2025, DeepSeek-R1 made headlines for achiev-
ing performance near that of closed models like OpenAl’s
GPT-01 while remaining entirely open for academic and com-
mercial examination. Researchers have praised DeepSeek’s
combination of efficiency, versatility, and openness—helping
foster a true global “Al price war” as major Chinese tech giants
followed suit, cutting the costs of access to their own models and
accelerating Al affordability worldwide.

DeepSeck’s further developments, such as DeepSeek-GRM
(Generative Reward Modeling) and self-principled critique
tuning, have enhanced the model’s ability to perform advanced
reasoning and self-evaluation, further narrowing the gap with
leading proprietary systems. The company’s openness also ex-
tends to collaborations, as with Tsinghua University, showcas-
ing a commitment to transparent progress and continual release
of updated, efficient, and high-performing models for theorem
proving, math, and general reasoning tasks [161].

In sum, DeepSeek represents a breakthrough in democratizing
advanced Al: fast, low-cost, efficacious, and openly accessible,
rapidly reshaping global competition and setting new bench-
marks for efficient multimodal and generative Al research and
applications.

Runway Gen-2 (2024-2025)

Runway Gen-2, unveiled in mid-2023 and refined through 2024—
2025, is a revolutionary video synthesis model empowering
Al-driven image-to-video and text-to-video generation for cre-
ators, marketers, educators, and filmmakers. Developed by Run-
way Al, Gen-2 builds on the foundation laid by Gen-1, which
introduced video-to-video transformations, but moves further by
enabling users to craft entirely new videos from scratch using
simple text prompts or static images—no cameras or traditional
filming required [162].

The technology behind Gen-2 employs multimodal latent diffu-

sion, enabling the model to in- terpolate between visual frames

for temporal coherence, maintain stylistic consistency, and gen-

erate motion that harmonizes with the input image or narrative

described in text. The model supports a variety of modes:

e Text-to-Video: Generate original videos using descriptive
natural language.

*  Image-to-Video: Animate a given image, bringing static
scenes and objects to motion.

e Text + Image-to-Video: Combine textual instructions and
images for nuanced, controllable video output.

*  Stylization and Render: Transfer the style of a provided im-
age or prompt to video frames, or turn untextured renders
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into realistic scenes.
*  Storyboard: Convert a sequence of mockups into fully ani-
mated video narratives.

Gen-2’s capabilities also allow for targeted visual control—
masking, customizing character tra- jectories, and applying con-
sistent rendering styles across all frames. This makes Gen-2 a
valuable tool for rapid prototyping, commercial ad production,
educational content creation, and social media engagement. Its
user-friendly web platform, alongside API integration, has de-
mocratized advanced video creation, letting non-experts achieve
professional results without expensive CGI or editing teams
[163].

In terms of industry and cultural impact, Gen-2 has helped drive
the Al video market’s exponential growth, reducing produc-
tion time and costs by as much as 75-90% and giving creative
professionals new power to iterate, test, and engage audiences
through personalized, innovative video content. As a growing
ecosystem, Runway continues to evolve its generative video
models—Ilaunching Gen-3 and Gen-4 for longer, higher fidelity,
and more stylistically coherent video output, and collaborating
with entertainment companies for bespoke production work-
flows [164].

Altogether, Runway Gen-2 marks a new era in Al-assisted mul-
timedia, providing the foundation for accessible, efficient, and
expressive visual storytelling powered entirely by generative
intelligence.

Perplexity Al (2025)

Perplexity Al, by 2025, has evolved into a leading search and
reasoning assistant, redefining how individuals and teams ac-
cess knowledge, perform research, and make critical decisions.
Unlike traditional search engines that simply return lists of
web links, Perplexity integrates state-of-the-art large language
models (such as GPT-4.1, Claude 4 Sonnet, and others) with
real-time web retrieval and a transparent citation system. This
fusion—often described as “generative retrieval’—means users
receive direct, conversational answers grounded in up-to-date
sources, with every statement linked to authoritative references
for fact-checking, academic integrity, and professional reliabil-
ity [165].

At its core, Perplexity uses a hybrid pipeline combining natural
language processing (to interpret user queries and context), se-
mantic search (to retrieve the most relevant documents from the
live web and academic indices), and retrieval-augmented gener-
ation (RAG) to synthesize responses from multiple sources. For
complex or research-heavy queries, its “Deep Research” feature
performs multi-hop reasoning—evaluating, cross-verifying, and
weaving together information from dozens (or hundreds) of doc-
uments automatically. This allows Perplexity to generate struc-
tured meta-analyses, literature reviews, or in-depth business/
comparative reports within minutes, all fully citation-backed
and with clear transparency into source credibility [166].

Key innovations include:

»  Direct citations and clickable sources on every answer, sup-
porting instant verification.

e Multi-model switching, so users can refine queries with dif-
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ferent LLMs for varied perspectives.

e Contextual memory for follow-up Q&A within a single con-
versational session.

e Advanced filtering and custom search parameters (especial-
ly via API) for enterprise, research, or developer integra-
tions.

e Rapid trend analysis, market insight, academic meta-re-
views, and technical troubleshooting—all in natural lan-
guage.

Perplexity’s impact has been profound: it has empowered mil-
lions of researchers, students, knowledge workers, and business
analysts with fast, reliable access to both broad and deep knowl-
edge. Its transparent approach has also spurred a wave of “an-
swer engine” innovation among major tech firms. The platform
is widely used as a co-pilot for research, coding, policy, and de-
cision-making workflows—lowering the bar for expertise and
transforming everyday search into a dynamic, dialogue- based
process that supports critical thinking, productivity, and accu-
racy.
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