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Abstract
Artificial Intelligence (AI) has evolved remarkably over the past seven decades, transforming from simple rule-based 
systems into complex multimodal and generative frameworks capable of reasoning, creativity, and perception. This 
review traces the chronological development of AI tools, highlighting key milestones that shaped the field—from 
the early symbolic programs like Logic Theorist and ELIZA to the emergence of modern large-scale models such 
as GPT-4, Gemini, and Claude. The study explores the progression across distinct eras: the foundational period of 
symbolic reasoning (1940s–1970s), the rise of machine learning and statistical modeling (1980s–2000s), the deep 
learning revolution (2010s), and the recent explosion of generative and multimodal systems (2020–2025). Each 
phase reflects a major shift in how intelligence is defined, represented, and implemented—from handcrafted logic 
to data-driven learning and now to context-aware multimodal understanding. By reviewing over fifty significant AI 
tools and frameworks, this paper provides a comprehensive overview of how incremental innovations in computation, 
data availability, and model architecture have collectively enabled the current state of AI. The work concludes with 
insights on how this evolution paves the way for the next generation of agentic and real-time AI systems capable of 
seamless interaction across text, image, audio, and video modalities.

ISSN: 3067-8307

https://doi.org/10.63620/MKWJAMS.2025.1023

Keywords: Artificial Intelligence; Deep Learning; Generative Models; Multimodal Systems; Ai Evolution.

Introduction
Artificial Intelligence (AI) has become one of the most transfor-
mative forces of the 21st century, shaping industries, research, 
and everyday life in ways that were once thought impossible. 
From simple logic-based programs created in university labs 
to today’s generative systems capable of producing human-like 
text, images, and even videos, the journey of AI represents not 
just technological progress but also humanity’s evolving under-
standing of intelligence itself. Each era of AI—from symbol-
ic reasoning and rule-based systems to neural networks, deep 
learning, and now multimodal generative models—has intro-
duced new ways of learning, interacting, and problem-solving.

The purpose of this paper is to provide a comprehensive and 
chronological review of the evolution of AI tools and frame-

works, capturing how each innovation built upon the previous 
generation to form the foundation of modern artificial intelli-
gence. While many studies focus on specific branches of AI such 
as computer vision, natural language processing, or robotics, few 
have presented a complete timeline connecting the earliest sym-
bolic systems to the current multimodal and agentic era. This 
review aims to fill that gap by examining over seven decades of 
AI development—from early expert systems like MYCIN and 
DENDRAL to advanced generative models like GPT-4, Gemini, 
and Sora.

Writing this paper in 2025 holds particular significance. The 
world is now witnessing a rapid convergence of text, image, 
speech, and video understanding through multimodal AI mod-
els, making it essential to reflect on how we arrived at this point 
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and what lessons past innovations can teach us. The pace of 
AI progress often makes older technologies seem obsolete, yet 
many of today’s breakthroughs are deeply rooted in the princi-
ples and experiments of earlier decades. Understanding this his-
torical evolution helps researchers, educators, and practitioners 
appreciate the foundations of current AI tools and foresee the 
directions future technologies might take.

Ultimately, this paper serves as both a historical reflection and 
an educational guide, offering readers a unified perspective on 
how AI tools have matured from isolated programs into inter-
connected, intelligent ecosystems. By mapping this evolution, 
the study underscores the continuity of innovation that defines 
artificial intelligence—not as a sudden revolution, but as a long, 
collaborative journey of human curiosity and technological ad-
vancement.

Early Foundations (1940s–1970s)
Logic Theorist (1956)
The Logic Theorist, developed in 1956 by Allen Newell, Herbert 
A. Simon, and Cliff Shaw at the RAND Corporation, is widely 
recognized as the first artificial intelligence (AI) program pur-
posely designed to mimic human problem-solving and reason-
ing skills. Its primary goal was to prove mathematical theorems, 
specifically those found in the seminal work Principia Mathe-
matica by Alfred North Whitehead and Bertrand Russell. The 
program demonstrated that a machine could engage in automat-
ed reasoning by successfully proving 38 of the first 52 theorems 
in chapter two of Principia Mathematica. Remarkably, the Logic 
Theorist not only replicated human logic but also discovered 
new, sometimes shorter, proofs for some theorems, exemplify-
ing the ability of AI to surpass human intellectual processes in 
specific domains [1].

The development of the Logic Theorist was grounded in sym-
bolic logic and heuristic search—a method that applies rules 
of thumb to explore possible solutions in a vast search space. 
The program represented logical expressions symbolically and 
searched through combinations of these expressions to construct 
proofs. It used heuristics to efficiently navigate the tree of possi-
ble inferences, thus avoiding an exhaustive and computationally 
prohibitive search through all branches. This heuristic approach 
was inspired by how humans tackle complex problems, priori-
tizing promising paths based on certain criteria rather than brute-
force search [2].

Architecturally, the Logic Theorist consisted primarily of two 
components: a knowledge base containing axioms and previous-
ly proven theorems, and an inference engine that applied logical 
rules to generate new theorems. The proof search was conduct-
ed by generating sub-proofs for propositions through symbol-
ic manipulations. Although programming languages and com-
putational resources were very primitive at the time, the team 
implemented the Logic Theorist using handwritten cards that 
were distributed among collaborators and later run on computers 
available at RAND [3]. This development also led to the creation 
of the Information Processing Language (IPL), which facilitated 
list processing and symbolic computation—precursors to pro-
gramming languages such as LISP, which became fundamental 
in AI research [4].

Mathematically, the Logic Theorist operated within proposition-
al calculus as formulated in Principia Mathematica. Its proofs 
often utilized methods such as proof by contradiction, where the 
algorithm would assume the negation of a theorem and derive 
contradictions to verify its truth. By starting from axioms and 
applying inference rules, the program mechanized the deductive 
reasoning process typical of mathematical proof. The discovery 
of novel proofs for certain theorems, such as theorem 2.85, high-
lighted its capability not only to replicate but to improve upon 
human mathematical reasoning [5].

The impact of the Logic Theorist on AI and cognitive science 
was profound. It marked the first practical demonstration that 
machines could perform high-order intellectual tasks involving 
symbolic reasoning. It laid foundational concepts such as heu-
ristic search, symbolic processing, and the notion that reasoning 
could be mechanized, influencing subsequent AI programs and 
research. Herbert Simon and Allen Newell, the principal devel-
opers, were later recognized with Turing Awards for their pi-
oneering contributions to AI and computer science. The Logic 
Theorist remains a landmark in AI history, illustrating the power 
of symbolic AI and heuristic-driven problem solving in the early 
quest to imitate human thought through machines

Eliza (1966)
ELIZA, developed in 1966 by Joseph Weizenbaum at MIT, is one 
of the earliest and most influential natural language processing 
programs and is widely regarded as the first chatbot to simulate 
human conversation [6]. Unlike later conversational agents built 
on complex machine learning models, ELIZA operated funda-
mentally through pattern matching and substitution rules, using 
scripts designed to give the illusion of understanding without 
true comprehension. The most famous script, known as "DOC-
TOR," simulated a Rogerian psychotherapist by reflecting users’ 
statements back to them in the form of questions, encouraging 
users to continue dialogue . For instance, when a user expressed 
feelings of sadness or worry, ELIZA would respond with inqui-
ries prompting further reflection, employing simple yet effective 
mechanisms to seem empathetic and human-like.

ELIZA’s architecture was based on symbolic processing where 
user inputs were analyzed for keywords or phrases, and then 
matching scripted patterns were triggered to generate predefined 
responses. It did not involve semantic or contextual understand-
ing, which distinguished it from genuine human communica-
tion. Nevertheless, the program’s simplistic style led to what 
became known as the "ELIZA effect," [7] where users attributed 
human-like understanding and emotions to the program despite 
its mechanical nature. This phenomenon highlighted important 
psychological and philosophical questions about human interac-
tion with machines and the nature of intelligence. Interestingly, 
Weizenbaum himself was surprised and troubled by how read-
ily some users, including his own secretary, formed emotional 
connections with ELIZA, underscoring the powerful illusion of 
understanding it created.

The development of ELIZA marked a significant milestone in 
artificial intelligence and human- computer interaction because 
it demonstrated that computers could engage users in seeming-
ly mean- ingful conversation through language-based interfac-
es. Its creation also helped lay the groundwork for research in 
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natural language understanding, dialogue systems, and chatbot 
development. ELIZA’s influence extended beyond technological 
innovation; it sparked critical debates about machine intel- li-
gence, ethics, and the limitations of AI, since the program could 
simulate empathy without actual cognitive or emotional process-
ing. Weizenbaum stressed that ELIZA was a tool, not a sentient 
entity, cautioning against overestimating what machines can 
replicate in terms of human thought and feeling [8].

In summary, ELIZA represents a pioneering experiment in AI 
programming that combined early symbolic processing tech-
niques and heuristic scripting to simulate conversation. While 
mathematically it did not engage in logical deduction, it excelled 
in procedural language pattern matching, which was enough to 
make a lasting impact on AI, natural language processing, and 
cognitive science. Its legacy continues in modern chatbots that 
have since evolved with more sophisticated models, but ELIZA 
remains a foundational artifact demonstrating the potentials and 
boundaries of early conversational AI [9]

Shrdlu (1970)
SHRDLU, developed between 1968 and 1970 by Terry Wino-
grad at MIT as part of his PhD thesis, represents a pioneering 
natural language understanding system that could interpret and 
execute commands within a simplified virtual environment 
known as the "blocks world." This virtual world consisted of 
various geometric shapes—blocks, pyramids, and boxes of dif-
ferent colors—that SHRDLU manipulated in response to user 
instructions phrased in natural English. The program could per-
form tasks such as moving objects, stacking blocks, and answer-
ing questions about the state of the environment, such as “What 
is on the table?” or “Is there a pyramid on the block?” The user 
interacted with SHRDLU through a dialogue interface that al-
lowed both commands and queries, making it an early example 
of an interactive AI system capable of understanding and reason-
ing about language and its referents in a controlled world [10].

From a technical standpoint, SHRDLU combined syntax pars-
ing, semantic interpretation, and a form of procedural knowledge 
representation to understand instructions and generate respons-
es. It was implemented mainly in Lisp and Micro Planner on a 
DEC PDP-6 computer. The system parsed English commands, 
mapped them onto internal logical representations of objects and 
their properties in the blocks world [11] , and then used rules to 
manipulate these objects or generate language responses.  This 
architecture showcased an integrated approach to natural lan-
guage processing, combining syntax, semantics, and pragmatics 
within a finite domain. SHRDLU’s knowledge base was dynam-
ic, maintaining an up-to-date model of the world’s state, which it 
could modify as it executed actions or learned new commands. 
The logical foundation often related to first-order logic, where 
objects, properties, and relations were explicitly represented, en-
abling reasoning over the set of facts.

Beyond its technical achievements, SHRDLU critically demon-
strated the challenges and potential of language understanding 
in AI. Winograd’s work exposed the brittleness of symbolic sys-
tems when faced with the complexity and ambiguity of natural 
language outside a restricted domain. Yet, SHRDLU’s ability to 
follow complex instructions and engage in clarifying dialogues 
to resolve ambiguities was groundbreaking, highlighting the 

possibility of interactive AI systems that understand human lan-
guage contextually. It influenced subsequent research in compu-
tational linguistics, human- computer interaction, and AI, laying 
a foundation for modern dialogue systems, virtual assistants, and 
robotic control by natural language. SHRDLU’s legacy extends 
into contemporary natural language processing by inspiring ap-
proaches to syntactic and semantic integration and knowledge 
representation in AI, demonstrating how procedural represen-
tations can bridge language and action within a defined world 
framework [12].

This comprehensive understanding of SHRDLU’s development, 
architecture, functionality, and impact should serve well for your 
research paper, situating it as a landmark system in natural lan-
guage understanding and AI history.

Dendral (1965–1970)
Developed between 1965 and 1970 at Stanford University by 
Edward Feigenbaum, Bruce Buchanan, Joshua Lederberg, and 
Carl Djerassi, DENDRAL is recognized as the first successful 
expert system and a landmark in artificial intelligence history. 
Designed primarily as a chemical analy- sis tool, DENDRAL 
aimed to assist organic chemists in identifying unknown mo-
lecular structures by analyzing mass spectrometry data. Unlike 
prior AI systems, DENDRAL encoded expert knowledge in 
chemistry as heuristic rules and used this domain-specific ex-
pertise to automate the process of hypothesis generation and 
evaluation—effectively emulating the decision-making process 
of skilled human chemists. This enabled the system not only to 
generate possible molecular structures but also to predict their 
corresponding mass spectra and compare them with the experi-
mental data to select the most plausible hypotheses [13].

The architecture of DENDRAL was characterized by a clear sep-
aration between its knowledge base and inference engine, form-
ing a paradigm later foundational to expert systems. Its knowl-
edge base contained encoded chemical heuristics and domain 
rules, while the inference engine orchestrated the generation and 
evaluation of candidate molecular structures through a heuristic 
search process. The system consisted mainly of two programs: 
Heuristic Dendral, which performed structure elucidation using 
domain-specific heuristics, and Meta-Dendral, which learned 
new rules by analyzing patterns in chemical data, pioneer-
ing early forms of machine learning. Technically, DENDRAL 
combined symbolic reasoning with heuristic search strategies 
to prune the vast search space of chemical structures, applying 
constraints and domain knowledge to improve computational 
efficiency and accuracy [14]. Mathematically, DENDRAL re-
lied on combinatorial and graph-theoretic methods to represent 
molecular structures as cyclic graphs and trees, aligning with 
its etymological roots (“dendron” meaning tree in Greek). It 
employed algorithms that enumerated possible configurations 
constrained by chemical valence rules and mass spectral data, 
effectively narrowing down the candidates through heuristic 
pruning. By translating chemical knowledge into formal rules 
and representing candidate molecules structurally, DENDRAL 
bridged symbolic AI with practical chemical problem-solving.

The significance of DENDRAL extends beyond its applica-
tion, as it pioneered the concept and successful implementa-
tion of expert systems—computer programs that encapsulate 
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expert-level knowledge and reasoning ability within a specific 
domain. It demonstrated AI’s potential to enhance scientific 
discovery and decision-making by explicitly codifying expert 
heuristics into programmable knowledge bases. Furthermore, 
DENDRAL influenced subsequent AI developments, including 
MYCIN and other domain-specific expert systems, and helped 
establish research paradigms in AI knowledge engineering and 
human-computer interaction. Its success bolstered funding and 
interest in AI during the 1970s and fundamentally shaped the 
trajectory of knowledge-based systems in computer science and 
expert decision support [15].

This detailed overview captures DENDRAL’s impact as a pi-
oneering expert system in chemical analysis through heuristic 
symbolic reasoning, foundational to AI’s evolution in expert 
knowledge representation and automated problem-solving.

Mycin (1972)
MYCIN, developed in the early 1970s at Stanford University 
by Edward Shortliffe and colleagues, is a pioneering rule-based 
expert system designed to assist physicians in diagnosing bacte-
rial infec- tions and recommending appropriate antibiotic treat-
ments. Originating from the Stanford Heuristic Programming 
Project, MYCIN employed a knowledge base of approximate-
ly 600 production rules encoding the clinical decision-making 
expertise of infectious disease specialists. The system operated 
through a backward chaining inference engine that interactively 
queried physicians with a series of simple yes/no or text-based 
questions about the patient’s symptoms and lab results. Based 
on the gathered data, MYCIN produced a ranked list of potential 
causative bacteria with associated confidence levels and pro-
vided tailored antibiotic therapy suggestions, adjusting dosages 
based on patient-specific factors such as body weight [16].

Technically, MYCIN’s architecture distinguished itself by clear-
ly separating its inference proce- dures from its domain-specific 
knowledge, embodying a modular approach that became foun-
dational for later expert systems. The system implemented a cer-
tainty factor model to handle uncertainty in medical diagnosis, 
representing the confidence in rules and conclusions, although 
this model was heuristic rather than strictly Bayesian due to 
computational and practical constraints. MYCIN was also nota-
ble for its explanatory capabilities, where it could justify its rec-
ommendations by tracing back through the rules and questions 
that led to its conclusions, addressing concerns about transpar-
ency and trust in AI systems for medical decision-making [17].

From a mathematical and logical perspective, MYCIN relied 
on production rules—if-then state- ments representing clinical 
knowledge—and heuristic-driven backward chaining to effi-
ciently search the space of diagnostic possibilities. The certain-
ty factor calculus combined evidential strengths from multiple 
rules to arrive at probabilistic-like confidence measures in di-
agnoses and recommenda- tions. While these certainty factors 
lacked rigorous statistical foundations, they provided a practical 
framework for handling medical diagnostic uncertainty.

MYCIN’s impact on AI and medicine was profound, demon-
strating that expert knowledge in specialized domains could be 
formalized and leveraged by computer systems to perform tasks 
at the level of human specialists. Its success inspired numerous 

subsequent expert systems and contributed significantly to the 
development of knowledge engineering, rule-based reasoning, 
and explanation facilities in AI. MYCIN also sparked discus-
sions on the ethical and practical implications of AI in clinical 
settings, particularly regarding the role of decision support ver-
sus autonomous diagnosis. Although constrained by the com-
putational power and data availability of its time, MYCIN laid 
the groundwork for modern clinical decision support systems 
and remains a seminal example of early AI applied to real-world 
expertise [18]. This comprehensive account captures MYCIN’s 
development, architecture, operation, mathemati- cal underpin-
nings, and its lasting significance as a foundation for rule-based 
AI systems, making it a critical milestone in the history of artifi-
cial intelligence and medical informatics.

Prolog (1972)
Prolog, created in 1972 by Alain Colmerauer and Philippe Rous-
sel at Aix-Marseille University in France, is a logic program-
ming language foundational to artificial intelligence and natural 
language processing tasks. The name Prolog derives from the 
French phrase "Programmation en Logique," meaning program-
ming in logic. Rooted in first-order predicate logic, Prolog al-
lows programmers to express knowledge declaratively, using 
facts and rules rather than explicit procedural code. The lan-
guage’s execution is driven by a goal-directed search process 
implementing resolution theorem proving with Horn clauses, 
which it processes through a mechanism called backward chain-
ing. This enables Prolog to perform symbolic reasoning, auto-
mated theorem proving, and natural language understanding, 
making it particularly suited for AI applications [19].

The language emerged from combining two efforts: Alain Col-
merauer’s focus on natural language processing and Robert 
Kowalski’s theoretical work on the procedural interpretation of 
logic. The original Prolog system included an interpreter written 
in Algol-W and later versions influenced by David H.D. War-
ren, who developed the Warren Abstract Machine (WAM), a 
standard virtual machine architecture for efficient Prolog imple-
mentation. This contributed significantly to Prolog’s widespread 
adoption and the establishment of the Edinburgh syntax standard 
that most Prolog implementations follow. Prolog’s logical foun-
dation centers on Horn clauses that define relations, with com-
putations being queries that the interpreter attempts to satisfy by 
proving them from the known facts and rules [20].

Prolog’s computational model is distinguished by features like 
unification, backtracking, and negation as failure, which togeth-
er allow it to explore the space of potential solutions effectively. 
Mathematically, Prolog programs can be viewed as logic formu-
las in clausal form and the resolution proof method underpins its 
operation. The declarative style facilitates expressing complex 
information and constraints naturally, enabling applications in 
expert systems, theorem proving, language parsing, knowledge 
representation, and automated planning.

Historically, Prolog gained international prominence during the 
1980s particularly with the Japanese Fifth Generation Computer 
Systems project, which sought to leverage logic programming 
for advanced AI on parallel computers. While Prolog faced 
competition and technical challenges, its conceptual clarity and 
powerful expressiveness secured its lasting place in AI program-
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ming. Today, Prolog remains a prominent symbolic program-
ming language, well-suited to tasks demanding sophisticated 
pattern matching, reasoning, and rule-based logic processing, 
continuing to underpin research and applications in artificial in-
telligence and computational linguistics [21].

Lisp (1958)
LISP, created in 1958 by John McCarthy at MIT, is one of the 
oldest and most influential pro- gramming languages in the field 
of artificial intelligence. McCarthy designed LISP with the ex-
plicit goal of providing a powerful and flexible language spe-
cifically suited for AI research, particularly symbolic manipula-
tion and processing of list structures. The language introduced 
several grounds- breaking concepts, such as recursive functions, 
dynamic typing, and automatic memory management through 
garbage collection. Its primary data structure, the list, and its as-
sociated operations—car and cdr—allowed natural and efficient 
expression of symbolic computation, which is central to AI [22].

Initially, McCarthy proposed a notation called "M-expressions" 
to make LISP more readable, but it was quickly abandoned in 
favor of "S-expressions," a more straightforward parenthesized 
prefix notation that became the hallmark of LISP’s syntax. The 
first LISP interpreter was implemented by Steve Russell on an 
IBM 704, surprising McCarthy by demonstrating that the eval 
function—a core evaluation procedure—could be directly com-
piled into machine code, enabling practical execution. LISP’s 
design was mathematically rooted in the theory of recursive 
functions and lambda calculus, which provided a formal foun-
dation for defining computable functions and reasoning about 
process execution [23].

Over the decades, LISP became the dominant AI programming 
language because of its unpar- alleled ability to handle symbolic 
information, its extensibility through macros, and its interactive 
development environment. It powered pioneering AI projects 
such as SHRDLU and expert systems, and influenced other lan-
guages like Scheme and Common Lisp. LISP introduced con-
cepts critical to AI, including symbolic reasoning, code as data 
(homoiconicity), and advanced macro systems, which helped 
AI researchers experiment with new ideas efficiently. Common 
Lisp, standardized in the 1980s and 1990s, unified various dia-
lects and remains widely used in AI, research, and industry.

LISP’s mathematical essence lies in its recursive function defi-
nitions, symbolic lists, and evalua- tion semantics, which collec-
tively enabled it to express complex AI algorithms elegantly. Its 
legacy continues to permeate AI research, functional program-
ming, and symbolic computation, making it a foundational tech-
nology in the history and development of artificial intelligence 
[24].

This overview encapsulates LISP’s historical context, innova-
tive design principles, mathematical underpinnings, and its crit-
ical role as the dominant AI programming language for decades.

The Rise of Machine Learning (1980s–2000s)
Soar (1983)
SOAR, developed in 1983 by John Laird, Allen Newell, and 
Paul Rosenbloom at Carnegie Mellon University, is a pioneering 
cognitive architecture designed to model human-like reasoning 

and general intelligence. Rooted deeply in cognitive science 
and artificial intelligence, SOAR aims to create fixed compu-
tational building blocks for general intelligent agents capable 
of performing a wide array of tasks such as decision-making, 
problem-solving, planning, and natural language understanding. 
The architecture embodies a unified theory of cognition, evolv-
ing from Allen Newell’s Problem Space Hypothesis—a foun-
dational AI theory stating that all goal-directed behavior can be 
framed as search within a space of possible states. SOAR opera-
tionalizes this by continuously selecting and applying operators 
to change an agent’s state, analogous to how humans approach 
problems step-by-step [25]. SOAR’s architecture integrates pro-
cedural memory (knowledge of how to do things) with work-
ing memory (representation of the current situation), enabling 
a dynamic cognitive cycle. Proce- dural knowledge is encoded 
as if-then production rules (condition-action pairs) that match 
against the contents of working memory. Unlike other systems, 
SOAR fires all matching rules in parallel, allowing concurrent 
context-dependent retrieval of knowledge. When the system en-
counters an impasse—lacking knowledge to proceed—SOAR 
automatically creates a substate that recursively applies the same 
problem-solving process, leading to the generation of subgoals 
and hierarchical task decomposition. This universal subgoaling 
approach naturally models complex cognitive behaviors includ-
ing planning and learning. The working memory itself is struc-
tured as a symbolic graph rooted in the current state, facilitating 
flexible representation of knowledge [26].

Mathematically, SOAR’s computation is grounded in state-tran-
sition systems, production rule matching, and search algorithms 
navigating complex problem spaces. The production system 
supports parallel rule matching while ensuring that behavior is 
decomposed into primitive operator applications approximating 
human reaction times (5˜0ms per step). The substate recursion 
forms a sophisticated mathematical structure supporting hierar-
chical problem-solving, setting SOAR apart from prior archi-
tectures. Its design reflects the interplay of symbolic AI with 
psychological realism, striving to unify AI capabilities and cog-
nitive modeling [27].

Over the decades, SOAR has evolved into a comprehensive cog-
nitive architecture widely em- ployed in AI research to build in-
telligent agents and model human behavior in a range of applica- 
tions—from robotics to gaming to natural language processing. 
Maintained today by John Laird’s research group at the Univer-
sity of Michigan, SOAR remains a seminal reference point for 
cognitive architectures, continuing to influence theories of gen-
eral intelligence by bridging formal computational models with 
empirical cognitive science insights. This detailed exploration 
covers SOAR’s theoretical foundations, developmental history, 
architec- ture, mathematical underpinnings, and its significance 
in AI and cognitive science [28].

Alvinn (1989)
ALVINN (Autonomous Land Vehicle in a Neural Network), 
developed in 1989 at Carnegie Mellon University by Dean Po-
merleau, is a landmark early neural network system designed 
for autonomous vehicle navigation and road following. As one 
of the first practical applications of artificial neural networks to 
self-driving cars, ALVINN was built around a three-layer back-
propagation network that took as input a combination of senso-
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ry data from a forward-facing camera and a laser range finder, 
processing images and depth information to produce steering 
commands for the vehicle. The architecture comprised roughly 
1217 input units, a hidden layer with 29 units, and an output 
layer with 46 units dedicated to representing a range of possible 
steering angles, along with feedback units to integrate temporal 
context [29].

Trained initially on simulated road images, ALVINN used super-
vised learning with backprop- agation to optimize its weights, 
enabling it to predict the required steering angle to follow the 
road accurately. The training leveraged data augmentation tech-
niques, generating shifted versions of images to robustly handle 
diverse driving scenarios and prevent the system from failing 
when deviating from the road centerline. Operationally, AL-
VINN was deployed on the NAVLAB autonomous test vehicle, 
demonstrating its ability to navigate complex outdoor environ-
ments—including varied weather condi- tions—at speeds com-
petitive with traditional computer vision approaches of the time. 
This success illustrated the promise of adaptive, data-driven 
models in autonomous navigation, surpassing rigid rule-based 
systems by learning representations tailored dynamically to sen-
sory inputs.

Mathematically [30], ALVINN employed a feedforward neural 
network with supervised gradient descent optimization (back-
propagation) to minimize prediction errors between the net-
work output and actual steering commands. The network mod-
el embodied non-linear function approximation, capturing the 
complex mapping from high-dimensional sensory input spaces 
(images and range data) to control actions. The use of feedback 
units introduced an element of temporal memory, allowing the 
network to incorporate information about the recent past into its 
decision-making process—related conceptually to what would 
later be developed as recurrent neural architectures.

ALVINN’s introduction was a key milestone in AI and robot-
ics, illustrating how neural networks could be harnessed for 
real-world control problems under uncertainty and noise. It 
heralded the feasibility of end-to-end learning for vehicle con-
trol, influencing future developments in autonomous driving 
technology and machine learning-driven robotics. The system 
highlighted the importance of sensor fusion, adaptive learning, 
and robust training strategies in autonomous navigation, and 
its design principles form the basis for many modern AI-based 
self-driving systems [31].

Backpropagation Algorithm (1986)
The backpropagation algorithm, popularized in 1986 by David 
Rumelhart, Geoffrey Hinton, and Ronald Williams, revolution-
ized the training of artificial neural networks by providing an 
efficient method to compute gradients of the loss function with 
respect to weights and biases for multilayered networks. Prior to 
this breakthrough, training deep networks was computationally 
infeasible due to the difficulty in attributing errors to internal 
layers. Backpropagation operationalizes gradient descent in a 
highly scalable way, allowing error signals from the output layer 
to be propagated backward through the network layers by sys-
tematically applying the chain rule of calculus [32].

The algorithm works in two main phases during each training 

iteration. In the forward pass, the network computes the output 
by propagating inputs through successive layers via weighted 
connections and activation functions. In the backward pass, the 
algorithm calculates the gradient of the loss function relative to 
each weight by propagating the error backward from the output 
layer to the input layer. These gradients are then used to update 
network parameters in the direction that minimizes the output 
error. Mathematically, for a weight wjkl connecting neuron k in 
layer l − 1 to neuron j in layer l, the update step corresponds to 
computing the partial derivative of the cost C with respect to that 
weight, , and using it in gradient descent:

 
where η is the learning rate. This process is repeated iteratively 
over examples, applying the chain rule to efficiently allocate er-
ror contributions among all weights.

Backpropagation’s significance lies not only in its algorithmic 
efficiency but also in its enabling of modern deep learning. It 
permits neural networks to learn internal representations auto-
matically, making them capable of solving highly complex and 
nonlinear tasks including image recognition, speech processing, 
and natural language understanding. The 1986 paper by Rumel-
hart, Hinton, and Williams marked a turning point in AI because 
it provided a practical and scalable learning algorithm that forms 
the foundation of nearly all contemporary deep learning archi-
tectures. Since then, backpropagation has become the workhorse 
of neural network training, supported by abundant optimizations, 
regularization methods, and variants that have further expanded 
the reach of AI solutions [33].

In essence, backpropagation combines deep mathematical con-
cepts from calculus with computa- tional strategies to effectively 
optimize multilayer neural networks, ushering in the era of pow-
erful, adaptive artificial intelligence systems.

Weka (1993)
WEKA (Waikato Environment for Knowledge Analysis), de-
veloped starting in 1993 at the Uni- versity of Waikato in New 
Zealand, is a comprehensive, open-source machine learning and 
data mining software suite widely used for teaching, research, 
and practical data analysis. Created by a team led by Professor 
Ian H. Witten and colleagues, WEKA was born from a desire to 
provide an accessible platform that integrates a large collection 
of machine learning algorithms with tools for data preprocessing, 
visualization, and evaluation, all accessible through user-friend-
ly graphical interfaces. Originally, WEKA was developed with 
agricultural and horticultural data applications in mind, but it 
has since evolved to support a diverse array of domains and data 
types [34].

WEKA’s architecture centers around modular components that 
perform key data mining tasks: classification, regression, clus-
tering, association rule mining, and feature selection. It supports 
exten- sive data preprocessing options such as cleaning, nor-
malization, and attribute transformation within a flexible pipe-
line, enhancing model performance on real-world data. One of 
WEKA’s hallmark features is its graphical user interface, which 
includes the Explorer, Experimenter, and KnowledgeFlow, 
en- abling users to design, test, and visualize machine learning 
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workflows interactively without requiring deep programming 
expertise. For advanced users, WEKA provides an API and 
scripting capabilities to integrate its algorithms into custom ap-
plications [35].

Technically, WEKA is implemented in Java, making it highly 
portable across operating systems and easy to extend with new 
algorithms. It processes input in the attribute-relation file format 
(ARFF) but also supports various data formats through database 
connectivity and file import/export. WEKA’s comprehensive 
collection of algorithms includes decision trees, support vec-
tor machines, neural networks, Bayesian classifiers, clustering 
methods like k-means, and association rule algorithms, making 
it a versatile toolset for empirical machine learning experimen-
tation and deployment.

Mathematically, WEKA’s algorithms collectively represent a 
spectrum of machine learning meth- ods, from statistical models 
and decision theory to heuristic and optimization-based tech-
niques. The suite supports comparative evaluation approaches 
including cross-validation and receiver operating characteristic 
(ROC) analysis, facilitating rigorous empirical assessment of 
model performance—an essential pillar of machine learning re-
search methodology.

WEKA’s impact is significant as it democratized access to ma-
chine learning techniques by lowering the barrier to entry and 
standardizing experimentation workflows. It remains a corner-
stone in machine learning education and research, continuously 
updated by the University of Waikato community and an active 
global user base. Its open-source nature has stimulated wide 
adoption in academia and industry, fostering innovation, collab-
oration, and reproducibility in the machine learning field [36].

Support Vector Machines (SVM, 1995)
Support Vector Machines (SVM), a transformative method in 
machine learning, were introduced in their widely recognized 
form through the seminal 1995 paper by Corinna Cortes and 
Vladimir Vapnik at AT&T Bell Laboratories. Building on foun-
dational work by Vapnik and Alexey Chervonenkis dating back 
to the 1960s and 1970s, SVM formalized a powerful approach 
to binary classification by finding the optimal separating hyper-
plane that maximizes the margin—the distance between the hy-
perplane and the nearest data points of each class, called support 
vectors. This concept of maximum-margin classification pro-
vides robust generalization on unseen data, improving predic-
tive accuracy and reducing overfitting compared to many earlier 
algorithms [37].

Mathematically, given training data points 	 w h e r e 
 and labels ,

SVM finds a hyperplane defined by w · x + b = 0 such that the 
margin  is maximized under the constraints
 

 
The resulting convex optimization problem can be solved effi-
ciently using quadratic programming. To handle non-linearly 
separable data, Cortes and Vapnik introduced the "soft margin" 
formulation, allowing some misclassification controlled by slack 

variables, balancing margin maximization and error minimiza-
tion. Furthermore, the kernel trick—developed in continuation 
by Boser, Guyon, and Vapnik in 1992—enables SVMs to oper-
ate implicitly in high-dimensional feature spaces using kernel 
functions like polynomial or radial basis functions, thereby ex-
tending SVMs to complex, nonlinear classification tasks.

SVM’s rigorous roots in statistical learning theory give it strong 
theoretical guarantees on gen- eralization and consistency, dis-
tinguishing it from heuristic-based classification methods of its 
time. Its algorithmic efficiency, versatility across domains, and 
theoretical elegance made it a core machine learning tool from 
the mid-1990s onward, with applications spanning image recog-
nition, bioinfor- matics, text classification, and many others. The 
1995 paper by Cortes and Vapnik is regarded as a breakthrough 
that not only provided a practically viable classification algo-
rithm but also solidified the importance of large-margin classifi-
ers in supervised learning.

Today, SVM remains a backbone method in classical machine 
learning, often contrasted with modern deep learning approach-
es but still valued for its interpretability, mathematical clarity, 
and performance on smaller datasets. Its influence continues in 
enhancing kernel methods, support vector regression, and struc-
tured prediction tasks, making it a foundational pillar in the evo-
lution of AI and machine learning [38]

OpenCV (2000)
OpenCV (Open-Source Computer Vision Library) is an influen-
tial open-source library for com- puter vision and image process-
ing that originated as an Intel Research initiative in 1999 under 
the leadership of Gary Bradski. Its first public release occurred 
in 2000, aiming from the start to democ- ratize computer vision 
by providing optimized, portable, and accessible software infra-
structure for a broad array of vision tasks. This initiative sought 
to eliminate duplication of effort by offering a comprehensive 
and efficient collection of algorithms for real-time image and 
video analysis, benefiting researchers, developers, and commer-
cial applications alike [39].

Developed primarily in C and C++ with bindings for Python, 
Java, and other languages, OpenCV has evolved into a cross-plat-
form [40] library widely used in academia and industry for its 
breadth and efficiency. Its architecture includes modular compo-
nents for image processing, feature detection, object recognition, 
camera calibration, machine learning, and later, integration of 
deep learning modules for neural network inference. OpenCV’s 
development ethos stresses performance optimization, with on-
going enhancements including multi-core processing, GPU ac-
celeration, and support for new hardware platforms to meet the 
demands of modern applications such as autonomous vehicles, 
augmented reality, robotics, and medical imaging.

Mathematically, OpenCV encapsulates a wide array of methods 
from classical computer vision like edge detection, geometric 
transformations, and stereo vision to statistical and machine 
learning techniques, including clustering, support vector ma-
chines, and neural networks. It provides imple- mentation for 
linear algebra, matrix operations, filtering, and advanced models 
used in image analysis, facilitating both foundational research 
and applied system development.
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Over the years, OpenCV’s stewardship transitioned from Intel to 
Willow Garage and Itseez before returning under Intel’s portfo-
lio via acquisition, with an active community and the non- profit 
OpenCV.org foundation now guiding its continual evolution. Its 
broad adoption, sustained development, and extensible archi-
tecture make OpenCV a cornerstone tool that has significantly 
influenced the growth and accessibility of computer vision tech-
nologies for more than two decades [41].

Matlab Ai Toolbox (2000s)
MATLAB, originally developed in the late 1970s by Cleve 
Moler and commercialized through MathWorks from the mid-
1980s onwards, is a powerful numeric computing environment 
and pro- gramming language widely adopted in engineering, 
science, and applied mathematics. The MATLAB AI Toolbox, 
introduced progressively throughout the 2000s, significantly ex-
panded MATLAB’s capa- bilities by providing a dedicated plat-
form for developing and experimenting with machine learning, 
artificial intelligence, and control algorithms. These toolboxes 
integrated a rich variety of functions and apps supporting clas-
sification, regression, clustering, neural networks, reinforcement 
learning, and deep learning, along with tools for data prepara-
tion, visualization, algorithm tuning, and deployment [42].

Architecturally, the AI Toolbox leverages MATLAB’s ma-
trix-based language to allow users to express ML and AI al-
gorithms succinctly, combining high-level programming with 
efficient built-in computational routines. The toolbox supports 
both algorithmic prototyping and production-grade code gener-
ation, enabling seamless transitions from research experiments 
to implementation. MAT- LAB’s interactive environment with 
integrated plotting and coding facilitates fast iteration, debug-
ging, and data exploration—making it particularly favored in ac-
ademic research and industrial applica- tions focused on control 
systems, autonomous vehicles, robotics, signal processing, and 
biomedical engineering.

Mathematically, MATLAB AI Toolbox algorithms encompass 
classical statistical models, opti- mization routines, neural net-
work training via backpropagation [43], and advanced deep 
learning architectures. The platform provides robust support 
for linear and nonlinear system modeling, state estimation, and 
adaptive control theory, underpinned by extensive numerical 
libraries for matrix decomposition, eigenvalue computation, 
numerical integration, and optimization algorithms such as 
gradient descent, conjugate gradient, and quasi-Newton meth-
ods. Deep learning support inte- grates seamlessly with popular 
frameworks like TensorFlow and PyTorch, allowing MATLAB 
users to leverage and customize cutting-edge network architec-
tures.

The MATLAB AI Toolbox has become a cornerstone in the AI 
research and development ecosystem due to its comprehensive 
functionality, ease of use, and powerful computational engine. It 
promotes reproducibility and collaboration across disciplines by 
combining rich algorithmic libraries with user- friendly interac-
tive features. Continuously enhanced by MathWorks, the tool-
box plays a critical role in advancing AI technologies, enabling 
engineers and scientists to develop new AI methods and apply 
them to complex real-world problems efficiently [44] .

Scikit-Learn (2007–2010)
Scikit-learn (also known as sklearn), developed between 2007 
and 2010, is a widely acclaimed open-source machine learning 
library for the Python programming language designed to pro-
vide accessible and efficient tools for data mining and data anal-
ysis. The project began as a Google Summer of Code initiative 
by French data scientist David Cournapeau in 2007, originally 
intended as a scientific toolkit extension to the SciPy ecosys-
tem. In 2010, key contributors from the French Institute for Re-
search in Computer Science and Automation (INRIA)—Fabian 
Pedregosa, Gaël Varoquaux, Alexandre Gramfort, and Vincent 
Michel—took over the development, leading to the release of 
the first public version on February 1, 2010.

Scikit-learn’s architecture is built around a consistent, us-
er-friendly API that integrates a broad selection of supervised 
and unsupervised learning algorithms, including classification, 
regression, clustering, dimensionality reduction, and model 
selection. It builds on the foundational scientific com- puting 
libraries in Python, notably NumPy and SciPy, enabling effi-
cient numerical computation and making it a natural choice for 
researchers and data scientists. The library also provides com-
prehensive documentation, concrete examples, and seamless in-
teroperability with other Python data tools such as pandas and 
Matplotlib.

Mathematically, scikit-learn encompasses a diverse range of 
algorithms spanning linear models (like linear and logistic re-
gression), support vector machines, ensemble methods (random 
forests, gradient boosting), clustering methods (k-means, DB-
SCAN), and manifold learning, among others. It supports pa-
rameter tuning, model validation through cross-validation, and 
evaluation metrics, facilitating rigorous experimental workflows 
in machine learning research and industry applications. Scikit-
learn’s impact has been significant in democratizing machine 
learning, making state-of-the-art algorithms easy to experiment 
with and deploy while fostering a large active community that 
continuously contributes improvements. Its design philosophy 
emphasizes simplicity, efficiency, and versatility, contributing to 
its widespread adoption across academic and commercial sec-
tors, advancing both education and practical AI solutions world-
wide.

Deep Learning & Neural Network Revolution (2010s)
Theano (2010)
Theano is an open-source Python library developed at the Mon-
treal Institute for Learning Al- gorithms (MILA) at the Univer-
sité de Montréal, first released publicly in 2007. It was designed 
as a powerful numerical computation framework that specializes 
in defining, optimizing, and efficiently evaluating mathematical 
expressions, particularly those involving multi-dimensional ar-
rays, which are common in machine learning and deep learning 
models. Its core innovation lay in symbolic computation, where 
users define computational graphs symbolically, allowing The-
ano to apply so- phisticated optimizations and compile efficient 
code targeted for CPU or GPU hardware, crucially enabling 
GPU-accelerated training of complex neural networks [45].

Developed under the leadership of renowned AI researcher 
Yoshua Bengio and his team, Theano introduced automated 
differentiation capabilities, simplifying the process of comput-
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ing gradients necessary for training deep learning models using 
backpropagation. By abstracting the mathematical details and 
transparently leveraging hardware acceleration, Theano helped 
researchers explore and implement novel neural architectures 
and advanced learning algorithms with greater ease and speed 
than was previously possible.

Mathematically, Theano’s strength comes from representing 
computations as directed acyclic graphs with nodes representing 
mathematical operations and edges representing data dependen-
cies, facilitating efficient symbolic differentiation through the 
chain rule and optimization of the com- putation graph before 
execution. This design allowed it to seamlessly integrate with 
the NumPy ecosystem while offering dynamic C code genera-
tion and extensive unit testing for numerical stability and reli-
ability.

Though major development ceased in 2017 due to emerging 
competitors like TensorFlow and PyTorch, Theano’s influence 
endures—it served as the computational backend for popular 
deep learning libraries such as Keras and Lasagne, and its pi-
oneering work in symbolic graph optimizations and automat-
ic differentiation continue to underpin modern deep learning 
frameworks. The open-source community and projects like 
PyTensor (a fork and continuation) have maintained its legacy, 
ensuring its foundational ideas persist in advancing AI research 
and applications.

Overall, Theano was pivotal in accelerating the adoption and re-
search of deep learning by combining mathematical rigor, com-
putational efficiency, and GPU acceleration, marking a critical 
milestone in the evolution of AI tools

Caffe (2013)
Caffe, short for Convolutional Architecture for Fast Feature Em-
bedding, is an open-source deep learning framework developed 
at the Berkeley Vision and Learning Center (BVLC) by Yangq-
ing Jia in 2013 during his PhD at UC Berkeley. Designed with 
expressiveness, speed, and modularity as primary goals, Caffe 
quickly became a popular choice for researchers and practi-
tioners working on convolutional neural networks (CNNs) and 
other deep learning models, especially in computer vision. The 
framework allows users to define, train, and deploy deep net-
works using configuration files without hard-coding, which en-
courages easy experimentation and innovation [46].

Caffe’s architecture is built in C++ with a Python interface, pro-
viding flexibility and performance, including seamless switching 
between CPU and GPU computations by setting a single flag. It 
supports a wide range of neural network components such as 
convolutional, fully connected, and recurrent layers, and inte-
grates NVIDIA’s cuDNN library for GPU acceleration, enabling 
it to process over 60 million images per day on a single NVIDIA 
K40 GPU. Caffe was among the fastest convolutional network 
implementations available, making it highly suitable for both ac-
ademic research experiments and industrial-scale deployments 
in vision, speech, and multimedia.

Mathematically, Caffe supports typical building blocks of deep 
learning: convolutions, pooling, activation functions, normaliza-
tion, dropout, and backpropagation for gradient-based optimiza-

tion. It leverages an efficient computation graph with layer-wise 
modularity, allowing various networks to be constructed by 
composing simple, reusable components. Its efficiency allowed 
state-of-the- art architectures like AlexNet and GoogleNet to be 
implemented and evaluated easily, accelerating breakthroughs in 
image classification and other domains [47].

The development of Caffe marked a significant milestone in 
deep learning research by emphasiz- ing performance, modular-
ity, and ease of use, fostering an extensive community of con-
tributors and users. Although its direct development waned after 
2018 with the advent of newer frameworks like TensorFlow and 
PyTorch, Caffe’s core ideas and implementations live on, influ-
encing modern deep learning tools. It remains important histori-
cally for accelerating the adoption and advancement of CNNs in 
computer vision and AI research [48]

Tensor Flow (2015)
TensorFlow is an open-source deep learning framework devel-
oped and released by the Google Brain team in 2015 [49]. It 
emerged as the successor to Google’s earlier proprietary system, 
DistBelief, and was designed to provide a flexible, scalable, and 
efficient platform for implementing machine learning and deep 
learning models. TensorFlow adopts a dataflow programming 
model where computations are expressed as stateful dataflow 
graphs consisting of nodes representing operations and edges 
representing multidimensional data arrays called tensors, from 
which the framework derives its name. Its architecture supports 
distributed computing and seamless deployment across CPUs, 
GPUs, and Google’s custom Tensor Processing Units (TPUs), 
enabling training and execution of complex neural networks on 
diverse hardware from desktops to large server clusters and mo-
bile devices.

Initially released under the Apache 2.0 open-source license, Ten-
sorFlow aimed to accelerate AI research and democratize access 
to powerful machine learning tools. Since its launch, Tensor-
Flow has become the most popular and widely adopted deep 
learning framework globally, thanks to its combination of com-
putational efficiency, comprehensive ecosystem, and extensive 
community support. It includes modules for a range of AI tasks 
such as model training, evaluation, prediction, visualization, and 
deployment. TensorFlow’s Keras API integration, introduced 
from version 2.0 onwards, further simplified neural network 
programming by offering a high-level, user-friendly interface.

Mathematically, TensorFlow enables the construction of flexi-
ble computational graphs that repre- sent complex tensor oper-
ations. These graphs support automatic differentiation, a critical 
component for efficient backpropagation used in training deep 
neural networks. The system’s parallel and dis- tributed design 
leverages optimization techniques and low-level integration 
with hardware drivers to maximize throughput and reduce train-
ing time. Its layered architecture abstracts details of hard- ware 
acceleration and memory management, allowing researchers 
and developers to focus on model innovation rather than imple-
mentation complexity.

TensorFlow’s impact extends beyond academia and research 
labs into industry, powering applica- tions from image recogni-
tion to natural language processing and autonomous systems. Its 
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continuous development by Google and an active open-source 
community ensures it remains a cornerstone of AI advancement 
and deep learning innovation worldwide [50].

Keras (2015)
Keras, introduced in 2015 by François Chollet, a Google engi-
neer, is an open-source, high-level neural network API designed 
to simplify the development and experimentation with deep 
learning models. Developed as part of the ONEIROS research 
project (Open-ended Neuro-Electronic Intelligent Robot Oper-
ating System), Keras was motivated by the desire to make deep 
learning more accessible, modular, and user-friendly, targeting 
rapid prototyping and easy experimentation in neural network 
design [51]. Unlike low-level frameworks that require detailed 
knowledge of tensor operations and computational graphs, 
Keras offers a clean, intuitive API centered around building 
models layer-by- layer, which greatly reduces the cognitive load 
on developers.

Initially, Keras was independent, capable of running on multiple 
backend engines including TensorFlow, Theano, and Microsoft 
Cognitive Toolkit (CNTK). Starting from version 2.4, it was in-
tegrated into TensorFlow as its official high-level API through 
the tf.keras module, leveraging TensorFlow’s computational ef-
ficiency while maintaining its signature simplicity. The modular 
design of Keras allows users to build complex neural network 
architectures from simple building blocks like layers, activation 
functions, optimizers, and loss functions, all customizable and 
extensible. Its design philosophy prioritizes ease of use without 
sacrificing flexibility, making it popular among researchers, stu-
dents, and industry practitioners [52].

Mathematically, Keras encapsulates standard deep learning 
components such as dense layers (fully connected), convolution-
al layers, recurrent neural networks (LSTM, GRU), and allows 
automatic differentiation and backpropagation via its backend. It 
supports a range of optimization algorithms like stochastic gra-
dient descent and Adam, and facilitates integration of custom 
loss functions or metrics. Keras’s abstraction thus enables seam-
less experimentation with complex architectures while handling 
the underlying tensor operations and graph optimizations.

Keras’s influence is profound as it lowered barriers to entry 
into deep learning research and development, accelerated ex-
perimentation cycles, and facilitated widespread adoption of 
neural networks. Its integration into TensorFlow and continued 
development positions Keras as a cornerstone tool in modern AI 
pipelines, beloved for balancing simplicity and power. François 
Chollet’s original vision to democratize deep learning technolo-
gy continues to resonate as Keras scales to support new frame-
works and hardware.

Py Torch (2016)
PyTorch is a dynamic, open-source deep learning framework de-
veloped by Facebook AI Research (FAIR) and first released in 
2016. Created as a successor to the Lua-based Torch framework, 
PyTorch was designed to provide researchers and developers 
with a more intuitive, Pythonic environment for building neural 
networks. By adopting a dynamic computational graph archi-
tecture—often described as define-by-run—PyTorch enabled 
program execution to be flexible and adaptable, allowing models

 to be modified on the fly during training or inference, which sig-
nificantly simplified experimentation and debugging compared 
to static graph frameworks like TensorFlow [53].

The development team at FAIR, led by Soumith Chintala among 
others, focused on usability and seamless integration with the 
Python data science ecosystem. PyTorch supports accelerated 
tensor computation on CPUs and GPUs, automatic differenti-
ation via the autograd system, and a rich set of predefined neu-
ral network components. In 2018, PyTorch 1.0 was released, 
merging the research- oriented PyTorch with production-ready 
Caffe2, unifying flexibility and scalability to streamline deploy-
ment from prototype to industrial applications.

Mathematically, PyTorch enables efficient representation and 
optimization of neural networks through dynamic construction 
and traversal of computation graphs. It supports standard deep 
learning operations, including convolutions, recurrent layers, 
and various activation and loss functions, combined with opti-
mization algorithms like stochastic gradient descent and Adam. 
The autograd engine automates gradient computation via re-
verse-mode differentiation, integral to backpropagation training.

PyTorch’s flexible interface, broad community support, and 
comprehensive tools have made it the framework of choice in AI 
research laboratories, academic settings, and increasingly in pro-
duction environments. Its ecosystem now encompasses libraries 
for vision (TorchVision), natural language processing (Torch-
Text), reinforcement learning, and more, while its adoption by 
major tech companies highlights its critical role in advancing AI 
innovation. The establishment of the PyTorch Foundation under 
the Linux Foundation in 2022 formalized its open governance, 
ensuring ongoing development guided by an industry consor-
tium representing leading technology enterprises [54].

PyTorch’s prominence stems from blending the agility needed 
for research with the demands of production, making it a flag-
ship deep learning platform that continues to evolve at the fore-
front of AI development.

Cntk (2016)
Microsoft Cognitive Toolkit (CNTK), originally unveiled in 
2016, is an open-source deep learning framework developed by 
Microsoft primarily for scalable machine learning across mul-
tiple GPUs and distributed systems. The roots of CNTK trace 
to internal Microsoft research needs, especially for accelerating 
speech and language processing projects—including models be-
hind the Cortana virtual assistant and Bing web ranking. CNTK 
was created with a focus on performance, efficiency, and flex-
ibility, aiming to democratize robust AI tools by making them 
available to researchers and practitioners through open-source 
licensing. Initially released with a proprietary scripting language 
known as BrainScript, CNTK quickly evolved to offer high-lev-
el APIs for Python, C++, and later C#, broadening its accessi-
bility [55].

The framework models neural networks as computational 
graphs, allowing for intuitive rep- resentation and manipula-
tion of feed-forward, convolutional, and recurrent architectures. 
CNTK supports automatic differentiation (backpropagation) and 
includes optimized readers for efficient handling of sparse and 
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dense data in machine learning tasks. Its design enables par-
allelization and distributed learning—even over thousands of 
GPUs—utilizing innovations such as 1-bit stochastic gradient 
descent for highly efficient cross-node communication. Math-
ematically, CNTK enables state-of-the-art model training with 
rigorous implementation of deep learning constructs, from ma-
trix and tensor operations to symbolic recurrent loops and multi- 
server parallelization. In addition to standard optimization algo-
rithms, it supports advanced gradient propagation and memory 
sharing to maximize hardware utilization. A hallmark of CNTK 
is its seamless scalability, facilitating practical training of large 
neural models for image, speech, text, and time-series data.

CNTK found widespread use within Microsoft and externally, 
distinguishing itself by pioneering large-scale, efficient model 
training and offering strong integration with Windows and Li-
nux environ- ments. Although its prominence has declined in 
favor of frameworks like TensorFlow and PyTorch, CNTK’s 
technical innovations remain influential in large-scale machine 
learning infrastructure. Its last major release, version 2.7, sup-
ports ONNX interoperability and legacy AI projects, with many 
concepts and optimization strategies contributing to modern AI 
software engineering [56].

Mx Net (2015)
MXNet, officially known as Apache MXNet, is a scalable, 
open-source deep learning framework that was first released 
in 2015 and widely adopted by Amazon Web Services (AWS) 
as its preferred deep learning library. MXNet originated as a 
joint research effort between the University of Washington and 
Carnegie Mellon University, with key contributions from Car-
los Guestrin and collaborators. The framework quickly gained 
traction in the industry for its unique combination of flexibility, 
efficiency, and distributed computing capabilities, making it ide-
al for both academic research and enterprise-scale production 
environments [57].

MXNet’s architecture is distinguished by its hybrid program-
ming model, seamlessly integrating both symbolic (static, 
declarative) and imperative (dynamic, Pythonic) approaches. 
Users can describe complex neural networks as computation 
graphs—benefiting from graph-level optimizations for memory 
and performance—or operate directly with tensor computations 
for maximum flexibility and debugging ease. A core innovation 
is the dynamic dependency scheduler that automatically paral-
lelizes computation over CPUs and GPUs, and efficiently scales 
across multiple devices and nodes using a distributed parameter 
server for fast synchronization and data exchange.

Mathematically, MXNet supports building deep neural networks 
for supervised and unsuper- vised learning, including convo-
lutional neural networks (CNNs), recurrent models (LSTMs, 
GRU), and advanced architectures. Its symbolic execution ab-
stractions facilitate automatic differentiation and graph optimi-
zation for backpropagation, while imperative APIs offer intuitive 
manipulation of NDArray tensors. MXNet’s scalability allows 
near-linear compute performance increases as GPU and CPU re-
sources are added, which has been a decisive factor in handling 
large datasets and sophisticated models in production-scale ap-
plications.

MXNet’s extensive language support—including Python, R, 
Scala, Julia, and more—and com- patibility with major cloud 
platforms like AWS, Microsoft Azure, and edge devices, fur-
ther fueled its adoption. In 2017, MXNet became an Apache 
Top-Level Project, recognized for its robust governance and 
active community contributions. Despite its declining devel-
opment activity due to industry shifts toward frameworks like 
PyTorch and TensorFlow, MXNet’s legacy persists through its 
innovations in multi-language support, scalability, and cloud-na-
tive design [58].

Today, MXNet serves as an important case study in deep learn-
ing framework design, underpin- ning many of Amazon’s AI 
services and continuing to influence large-scale neural network 
research and deployment strategies.

Deep Mind Alpha Go (2016)
DeepMind AlphaGo, developed by DeepMind (a subsidiary of 
Alphabet/Google), made history in 2016 as the first artificial in-
telligence system to defeat a reigning world champion in the an-
cient board game of Go—a feat long considered out of reach for 
machines due to Go’s astronomical complexity and intuitive na-
ture. Go presents a vast search space—estimated at 1017010170 
possible board states—rendering brute-force search or tradition-
al rule-based AI approaches inadequate. AlphaGo’s innovation 
lay in integrating deep neural networks with advanced reinforce-
ment learning and search techniques, bridging the gap between 
human-like intuition and rigorous calculation [59].

The AI’s core architecture combined two deep neural networks: 
the policy network, trained using both supervised learning on 
millions of human expert moves and subsequently refined with 
reinforcement learning through self-play, proposes promising 
moves; and the value network, trained to predict the winner from 
a given board position, guides the evaluation of Go states. These 
networks underpin a massively parallelized Monte Carlo Tree 
Search (MCTS) algorithm, which simulates future play sequenc-
es and strategically explores the most relevant lines of play, pri-
oritizing actions the policy network deems most probable and 
evaluating states through the value network. The networks them-
selves are convolutional neural systems with millions of param-
eters, capable of automatic feature extraction from raw board 
representations.

AlphaGo’s training began by imitating human play from a large 
corpus of expert games, followed by intensive reinforcement 
learning wherein the system played countless games against ver-
sions of itself, refining its strategy far beyond human knowledge. 
The reinforcement learning step applies the policy-gradient ap-
proach, adjusting network weights to maximize board position 
values, guided by rewards based on game outcomes. Through 
this, AlphaGo developed powerful “intuition” for high-level 
play, even surprising expert players by inventing novel, creative 
moves.

AlphaGo’s triumph over Lee Sedol in 2016 inspired the AI 
world, marking a paradigm shift in what reinforcement learning 
and neural networks could achieve, especially when combined 
with powerful computational resources and innovative training 
protocols. Its legacy extends beyond Go: the architecture and 
algorithms pioneered by AlphaGo have influenced domains as 
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diverse as robotics, protein folding (AlphaFold), and resource 
optimization, demonstrating the transformative potential of deep 
reinforcement learning in solving problems of enormous com-
plexity and strategic depth [60].

Open AI Gym (2016)
OpenAI Gym, introduced by OpenAI in April 2016, is a pivotal 
open-source toolkit specifically designed to advance the field of 
reinforcement learning (RL) by providing a standardized, ex-
tensible collection of simulation environments and benchmarks. 
The toolkit was developed to address two fundamental challeng-
es in RL research: the lack of standardized environments for al-
gorithm compari- son and the need for reproducible benchmarks 
to objectively evaluate and refine RL algorithms. By unifying 
how environments are structured and interacted with, OpenAI 
Gym accelerated the pace and rigor of RL research, enabling 
rapid prototyping, fair benchmarking, and cross-comparison of 
algorithms in both academia and industry [61].

Technically, Gym offers a Python API and a modular design, 
making it easy to create, wrap, or extend environments rang-
ing from classic control systems (e.g., CartPole, MountainCar) 
to Atari 2600 games, physics-based robotics simulations (using 
MuJoCo, Box2D, or PyBullet), and custom, user-built tasks. 
Each environment adheres to a simple agent-environment inter-
face: an agent observes a state, takes an action, receives a reward 
and a new state, and determines when an episode ends. This ab-
straction standardizes reinforcement learning experimentation, 
while the expanding collection of built-in environments accom-
modates both discrete and continuous action spaces, stochastic 
dynamics, and varying levels of task complexity. Gym’s archi-
tecture supports seamless integration with popular deep learning 
frameworks like TensorFlow and PyTorch, allowing RL agents 
to leverage powerful neural networks for function approxima-
tion, policy learning, and value estimation.

OpenAI Gym also played a critical role in fostering an ecosystem 
around open RL research, inspiring the development of exten-
sions like Gymnasium (its current community-maintained incar- 
nation) and libraries for multi-agent RL, robotics, and bench-
marking. Leading RL algorithms—from traditional Q-learning 
and SARSA to modern advancements in deep reinforcement 
learning—have been evaluated and reproduced using Gym’s en-
vironments, which contributed to the field’s rapid progress and 
reproducibility. Its influence extends to educational initiatives, 
practical applications in robotics, gaming, and AI modeling for 
complex sequential-decision problems [62].

In sum, OpenAI Gym’s innovation lies in its standardization, 
extensibility, and community-driven design, which together un-
derpin the contemporary landscape of reinforcement learning 
research, education, and application development

H2O.ai (2015)
H2O.ai, founded in 2012, is an open-source artificial intelligence 
and machine learning company with a vision of democratizing 
AI for individuals and businesses. Its most recognized platform, 
H2O, and subsequent AutoML offerings emerged as early lead-
ers in delivering powerful, accessible machine learning solu-
tions suitable for practitioners with varying technical expertise. 
The core H2O platform, commonly called H2O-3, was devel-

oped to provide scalable, distributed machine learning—capable 
of handling massive datasets in memory and natively integrating 
with Big Data frameworks like Hadoop and Apache Spark. This 
foundation made H2O widely used in both academic research 
and industry, thanks to its extensibility and high computational 
performance [63].

The introduction of H2O AutoML first released in 2017—pro-
pelled the H2O platform into the era of automation. AutoML 
lowers the barrier to entry for building machine learning models 
by automat- ing processes such as data preprocessing, feature 
engineering, model selection, hyperparameter tuning, and gen-
eration of stacked ensemble models. Users can build and deploy 
high-quality predictive models with minimal coding using intu-
itive APIs in R, Python, Java, and Scala, or the point-and-click 
H2O Flow web GUI. Under the hood, H2O AutoML efficiently 
conducts randomized model searches and ensemble learning to 
create a ranked leaderboard of models, balancing predictive ac-
curacy with computational efficiency. Its distributed "H2O Clus-
ter" architecture allows scaling across multi-node, multi-core 
environments, suitable for both on-premise and cloud deploy-
ments [64].

H2O.ai distinguishes itself through robust community partici-
pation and open-source ethos, along with features emphasizing 
interpretability, transparency, and regulatory compliance—a 
cornerstone for finance, healthcare, and high-stakes domains. 
Its Driverless AI product takes automation further, leveraging 
advanced techniques to build, optimize, and explain models 
automatically, making state-of- the-art AI more accessible and 
reliable.

With its blend of automation, scalability, and interpretability, 
H2O.ai has solidified its influence in the AI and data science 
landscape, empowering organizations of all types to leverage 
AutoML for fast, efficient, and explainable model building and 
deployment.

Generative & Pretrained Model Era (2017–2020)
Transformer Architecture (2017)
The Transformer architecture, introduced by Vaswani et al. in 
the landmark 2017 Google paper “Attention Is All You Need,” 
revolutionized the field of natural language processing, sequence 
mod- eling, and—ultimately—became the foundation for mod-
ern large language models (LLMs). Prior to Transformers, neural 
sequence modeling was dominated by recurrent neural networks 
(RNNs) and long short-term memory (LSTM) architectures, 
which processed input data in order, making parallelization dif-
ficult and struggling with long-range dependencies [65].

The breakthrough of Transformers was their reliance solely on 
attention mechanisms—specifically, self-attention—to process 
inputs in parallel and capture context dependencies across entire 
sequences, regardless of their position. The model consists of 
an encoder and a decoder built from stacks of identical layers, 
each featuring multi-head self-attention and feedforward neural 
networks. Self- attention computes attention scores for each el-
ement, allowing the model to dynamically focus on the most 
relevant parts of input sequences when deriving contextual rep-
resentations. Multi-head attention enables the model to consider 
multiple representation subspaces simultaneously, dramatically 
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enhancing its capacity to encode nuanced relationships within 
data [66].

Mathematically, for a sequence of input vectors X, self-atten-
tion computes output vectors by weighting the importance of 
every other element using attention scores derived from scaled 
dot products. This mechanism is expressed as:

Attention (Q, K, V) = 

where Q, K, and V are the query, key, and value matrices de-
rived from X, and dk denotes the dimensionality of the keys. 
This structure enables both efficient parallel computation and 
clear mathematical optimization, in contrast to the iterative na-
ture of RNNs.

The impact of Transformer architecture has been enormous. It 
forms the backbone of all subse- quent foundational models 
in NLP and beyond, such as Google’s BERT, OpenAI’s GPT 
series, and many others [67]. These models deliver unprece-
dented performance in understanding and generating human 
language, powering everything from search engines to chatbots, 
content summarizers, and coding assistants. The ability to scale 
Transformers—by increasing their depth, width, and training 
datasets—led directly to the explosion of LLMs, with models 
reaching billions of parameters and previously unattainable ca-
pabilities. Research since 2017 has extended these principles to 
computer vision, speech, and multimodal AI, confirming Trans-
formers as the defining innovation of the current era of machine 
learning and artificial intelligence.

Bert (2018)
BERT (Bidirectional Encoder Representations from Transform-
ers), released by Google in 2018, marked a major leap in contex-
tual language understanding and has become the cornerstone for 
many modern natural language processing (NLP) applications. 
Developed by Jacob Devlin and colleagues, BERT introduced 
the idea of deep, bidirectional pre-training that considers both 
the left and right context of every word in a sentence at every 
layer—unlike previous models (such as word2vec, GloVe, or 
even unidirectional Transformer-based models like GPT) that 
process language in a single direction or with only shallow bidi-
rectionality [68].

Built on the encoder segment of the Transformer architecture, 
BERT leverages self-attention to create contextual embeddings, 
enabling it to capture subtle meanings of words based on the 
entire sentence. The original BERT model was released in two 
standard sizes: BERT_BASE (12 layers, 12 attention heads, 
110M parameters) and BERT_LARGE (24 layers, 16 attention 
heads, 340M parameters). Its bidirectional context modeling 
allows BERT to resolve ambiguous words with high accuracy, 
making it significantly more powerful for tasks like question an-
swering, sentiment analysis, and coreference resolution.

BERT’s training involves two novel self-supervised objectives:
•	 Masked Language Modeling (MLM): Randomly masks 

words in a sentence and trains the model to predict them 
using the surrounding context, fostering deep bidirectional 
understanding [69].

•	 Next Sentence Prediction (NSP): Trains the model to pre-
dict whether a given sentence logically follows another, 

enhancing its ability to grasp sentence relationships and dis-
course structure.

After pre-training on massive corpora, BERT can be fine-tuned 
with just an additional output layer for virtually any NLP task, 
and achieves state-of-the-art results across a broad spectrum of 
benchmarks. Its open-source release sparked a surge of innova-
tion, spawning a family of models (e.g., RoBERTa, ALBERT, 
DistilBERT) and fundamentally changing the standard paradigm 
for NLP: from training task-specific models from scratch to le-
veraging large, pre-trained “foundation” language models and 
adapting them for downstream tasks.

BERT’s adoption by Google Search in 2019 brought its impact 
to billions of users worldwide, dramatically improving search 
query understanding for over 70 languages. BERT’s introduc-
tion established the pre-train-then-fine-tune model as the domi-
nant approach to language understanding and catalyzed the de-
velopment of ever-larger and more powerful language models, 
ushering in the post-BERT era in AI [70].

GPT-2 (2019)
GPT-2 (Generative Pre-trained Transformer 2), released by Ope-
nAI in February 2019, was a landmark breakthrough in gener-
ative language modeling. Building directly on its predecessor 
GPT-1, GPT-2 featured a dramatic leap in scale—with up to 1.5 
billion parameters—and showcased the power of unsupervised 
learning on massive datasets. Trained on the WebText corpus 
(8 million web pages, 4˜0GB), GPT-2 demonstrated the ability 
to produce multi-paragraph, coherent, and contextually relevant 
text with only a simple prompt, making it suitable for tasks such 
as story generation, translation, question answering, summariza-
tion, and even composing poetry [71].

Its architecture is a decoder-only Transformer—a stack of multi-
head self-attention and feedfor- ward layers—operating au-
toregressively (predicting the next word given preceding text). 
GPT-2’s design allows it to model long-range dependencies and 
generate fluid, adaptive prose. The model’s “chameleon-like” 
flexibility enabled strong zero-shot and few-shot learning: GPT-
2 could perform a variety of tasks without any task-specific 
training data, simply by interpreting instructions given in natural 
language [72].

OpenAI opted for a staged release, initially limiting public ac-
cess to smaller models before fully releasing the largest 1.5-bil-
lion-parameter version in November 2019. This cautious ap-
proach was due to concerns over misuse, such as generating 
convincing fake news, spam, or impersonation content—GPT-
2 was one of the first AI models to raise broad public debate 
over the ethical risks of advanced text generation technology. 
Despite these concerns, GPT-2 rapidly became a research base-
line, demonstrating that scaling up Transformers led to dramatic 
improvements in text generation quality and general-purpose 
language understanding [73].

GPT-2’s impact is immense: it inspired a wave of larger, more 
capable models (GPT-3, GPT-4), catalyzed the development of 
conversational AI, creative writing tools, and powerful text-
based assistants, and underscored the paradigm of language 
model pre-training followed by task-specific adaptation. Its code 
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and checkpoints remain widely used in research and industry, 
and its success marked the beginning of the large language mod-
el (LLM) revolution [74].

Style GAN (2019)
StyleGAN, introduced by Nvidia researchers and made 
source-available in February 2019, is a groundbreaking gen-
erative adversarial network (GAN) architecture that set a new 
benchmark in ultra- realistic image synthesis—most notably for 
generating convincing portraits of non-existent human faces. 
Building upon previous GAN advancements, especially Nvid-
ia’s Progressive GAN (ProGAN, 2017), StyleGAN’s innovation 
lies in its ability to provide fine-grained control over visual at-
tributes (“styles”) at different levels of image abstraction, from 
the coarse (face shape, pose) to the fine (hair texture, freckles, 
wrinkles).

The core of StyleGAN architecture uses a mapping network that 
transforms a random latent vector into a set of “style” vectors 
[75]. These style vectors are injected at multiple layers of the 
generator, allowing for highly controllable synthesis of image 
features. This “adaptive instance normalization” based mecha-
nism means users can smoothly interpolate features—mixing, 
blending, and manipulating aspects of generated faces with re-
markable realism. Standard GAN training is retained, where a 
generator learns to create images and a discriminator learns to 
distinguish real from fake, iteratively improving the realism of 
outputs. [76]

StyleGAN’s technological leap became widely recognized 
through the viral website “This Person Does Not Exist,” which 
showcased the ability to generate endless, lifelike human faces 
with each refresh. Its impact reverberated through both creative 
and scientific domains: StyleGAN is used in art, game graphics, 
synthetic data generation, and education about media authentic-
ity. Following the original release, Nvidia improved the meth-
od with StyleGAN2 (2020), which removed visual artifacts and 
enhanced image quality, and StyleGAN3 (2021), which solved 
“texture sticking” and delivered more alias-free generation—
further refining the consistency of generated details.

Mathematically, StyleGAN’s generator employs convolutional 
neural layers where style vectors modulate normalization pa-
rameters. This enables controlled variation in features and “style 
mix- ing”—a capability earlier GANs lacked. The resultant im-
ages regularly surpass previous models in realism as measured 
by metrics such as the Fréchet Inception Distance (FID).

In summary, StyleGAN’s introduction opened new possibilities 
in visual synthesis, enabling ultra-realistic image generation, 
fine feature manipulation, and creative exploration. Its releases 
and iterative improvements remain critical milestones in the his-
tory of AI-generated imagery and machine creativity [77].

T5 (2019)
T5 (Text-to-Text Transfer Transformer), introduced by Google 
Research in 2019, is a transformative language model that uni-
fied how natural language processing (NLP) tasks are framed 
and solved. Unlike earlier models that treated tasks such as 
translation, summarization, and question answering with custom 
architectures or approaches, T5 proposed a “text-to-text” frame-

work: every problem is cast as converting an input text string 
into an output text string, regardless of the underlying NLP task 
[78].

Built on the full encoder-decoder Transformer architecture, T5 
processes input text using the encoder and generates output text 
with the decoder, leveraging the power of attention mechanisms 
throughout. The unifying principle is to prepend tasks with spe-
cial instruction-like text prefixes (e.g., “translate English to Ger-
man: That is good”) and train the model [79]end-to-end on a 
diverse range of tasks using the same architecture and loss func-
tion. This provides a consistent interface and allows multitask 
learning, where the same model can be fine-tuned or prompted 
for a wide array of downstream applications—including trans-
lation, summarization, classification, question answering, and 
more [80].

For pre-training, T5 uses a large, high-quality dataset called 
the Colossal Clean Crawled Corpus (C4), containing hundreds 
of gigabytes of web-scraped English text. The self-supervised 
learning objective is “span corruption,” where random spans of 
text are replaced with sentinel tokens and the model learns to 
reconstruct the missing content, enabling deep contextual and 
compositional language understanding. T5’s vocabulary is built 
using SentencePiece tokenization, allowing coverage of multi-
ple languages and efficient handling of rare or out-of-vocabulary 
words [81].

By recasting every NLP task as a text transformation, T5 not 
only simplified the training and deployment process but also 
delivered state-of-the-art performance across a diverse array of 
language benchmarks. Its influence is seen in subsequent devel-
opments in “instruction tuning” and general- purpose, instruc-
tion-following LLMs, which still trace their roots to T5’s unified 
approach [82].

T5 represents a major evolution in NLP thinking, demonstrating 
the power of casting all language problems into a single, flexible 
text-to-text mold while leveraging large-scale transfer learning 
[83].

Fast AI (2018)
FastAI, launched in 2018 by Jeremy Howard and Sylvain Gug-
ger, is an open-source deep learning library built atop PyTorch 
that is designed to make state-of-the-art machine learning acces-
sible to beginners and experts alike. FastAI abstracts and auto-
mates many of the complexities of deep learning, enabling rapid 
experimentation, intuitive workflows, and best practices by de-
fault, while still allowing for full access to underlying PyTorch 
capabilities [84].

The library introduces a layered API:
•	 High-level: Functions for common deep learning tasks (vi-

sion, text, tabular, time series, collabo- rative filtering) that 
minimize code and domain-specific knowledge require-
ments.

•	 Mid-level/Low-level: Modular building blocks that let ad-
vanced users customize model architec- tures, training strat-
egies, and data preprocessing pipelines.

•      Core FastAI concepts include:
•	 Data Block/Data Loaders: Cleanly structured tools for scal-
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able, flexible data preprocessing and loading.
•	 Learner: Encapsulates a complete model training pipeline—

bringing together data, network architecture, training/evalu-
ation logic, and reporting.

•	 Built-in Best Practices: Automated data augmentation, 
mixed precision training, transfer learning integration, and 
state-of-the-art optimizers simplify robust model develop-
ment.	

Mathematically, FastAI leverages PyTorch for tensor opera-
tions, differentiation, and GPU accel- eration. Its API extends 
PyTorch’s flexibility with powerful abstractions that enable re-
searchers to prototype, train, and deploy models with less boil-
erplate and more focus on innovation.

FastAI’s vibrant ecosystem is complemented by comprehensive 
courses, documentation, and a large community, which has con-
tributed to making cutting-edge AI techniques approachable for 
practitioners, educators, and researchers across the world. It has 
been instrumental in democratizing deep learning education and 
practice, accelerating the adoption of PyTorch and modern deep 
learning best practices in both industry and academia [85].
 
Allen NLP (2018)
Allen NLP, launched in 2018 by the Allen Institute for Artificial 
Intelligence (AI2), is an open- source research library built on 
top of Py Torch that is dedicated to advancing natural language 
processing (NLP) research and applications. Allen NLP address-
es the common challenges faced by NLP researchers—such as 
reproducibility, extensibility, and ease of experimentation—by 
providing reusable building blocks, modular data pipelines, and 
configuration-driven experiment management [86].

Key architectural features of Allen NLP include:
•	 Py Torch Foundation: Leveraging Py Torch’s dynamic com-

putation graphs, enabling flexible model design and intui-
tive debugging.

•	 Modular Components: Reusable modules for tokenization, 
data reading, embedding, encoding, and pre/post-process-
ing, which allow rapid prototyping and efficient pipeline 
construction.

•	 Declarative Configurations: JSON or Python-based exper-
iment configurations, making it easy to define, reproduce, 
and share experimental workflows, models, and hyperpa-
rameters.

•	 Reference Implementations: High-quality models for a va-
riety of NLP tasks, such as semantic role labeling, textual 
entailment, question answering, and named entity recog-
nition, help users benchmark and extend cutting-edge re-
search methods.

•	 Flexible Data API: A “Field” and “Instance” abstraction al-
lows unified and efficient handling of

•	 diverse NLP data structures, such as sequences, spans, and 
trees, with automatic sorting, batching, and padding.

Allen NLP is especially valued in the NLP research community 
for streamlining new model development and fostering repro-
ducibility. It also comes with tools for visualization, evaluation, 
and integration of pre-trained models. Its APIs and pipelines 
have made it a popular choice for both academic research and 
real-world NLP productization [87].

Applications range from text classification, semantic pars-
ing, and coreference resolution to infor- mation extraction and 
knowledge graph construction. Allen NLP continues to be ac-
tively developed and widely adopted, facilitating rapid advances 
in NLP research and supporting open science through a thriving 
community and extensive documentation.

Hugging Face Transformers (2019)
Hugging Face Transformers, launched in 2019, rapidly became 
the most influential open-source platform and library for ac-
cessing, sharing, and deploying pre-trained models in modern 
natural language processing (NLP). Initially, Hugging Face was 
focused on chatbot development, but its founders soon recog-
nized the profound potential—and the community’s need—for 
a unified hub that would make cutting-edge transformer models 
(beginning with BERT, GPT-2, and others) easily accessible to 
all practitioners and researchers[88] . The result was the Trans-
formers library—a consistent API and repository that supports 
Py Torch and TensorFlow, and enables seamless downloading, 
fine- tuning, and deployment of models for tasks such as text 
classification, question answering, translation, summarization, 
and more[89].

This platform’s breakthrough was to “democratize” access to 
the most powerful models [90] resulting from the “transformer 
revolution,” which had previously been confined to specialized 
labs or required significant engineering expertise to reproduce. 
In the Hugging Face ecosystem, anyone can load a model with a 
line of code, experiment interactively, and share improvements 
or new models via the hosted Model Hub. It soon evolved from 
supporting a handful of models to hosting thousands—including 
nearly all major transformer-based architectures like RoBERTa, 
T5, DistilBERT, XLNet, and later GPT-3, BLOOM [91] , and 
large multimodal models. Alongside the core library, Hugging 
Face released companion tools for tokenization, dataset man-
agement, and evaluation, making it not only a toolkit for infer-
ence but a full-stack environment for research, production, and 
benchmarking. The impact on NLP can hardly be overstated. 
By radically lowering barriers to entry, Hug- ging Face enabled 
rapid experimentation, broad collaboration, and the sharing of 
reproducible re- sults—accelerating progress on major bench-
marks, downstream applications, and even in languages and 
domains with less well-funded research. Its open-source ethos 
cultivated a global community of contributors and users ranging 
from machine learning engineers and academic labs to major 
tech companies and startups. As a result, Transformer-based 
methods became standard practice for a huge swath of industry 
and academia [92].

Moreover, Hugging Face Transformers now plays a critical role 
in shaping the landscape of generative AI, powering conversa-
tional agents, language generators, document classifiers, and bio-
in- formatics solutions. It bridges research and production, pro-
viding high-level interfaces suitable for non-experts and deeply 
customizable options for advanced users. Its effective blend of 
technical excel- lence, user experience, and community-driven 
development has solidified its status as the “GitHub for machine 
learning models”—a foundational resource in today’s AI eco-
system, and a major force in the continuing evolution of large 
language models and intelligent systems [93].
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Multimodal & Generative AI Explosion (2020–2023)
GPT-3 (2020)
GPT-3 (Generative Pre-trained Transformer 3), released by Ope-
nAI in 2020 [94]. marked a major milestone in the evolution of 
generative AI. With a staggering 175 billion parameters, GPT-3 
dwarfed all previous language models—being over a hundred 
times larger than GPT-2—and signaled a new era of artificial 
intelligence powered by scale and transfer learning. Like its pre-
decessors, GPT-3 is a decoder-only Transformer model, built on 
deep neural network layers that leverage self-attention to ana-
lyze and synthesize input text. It was trained on a vast corpus—
over 45 terabytes of diverse text from Common Crawl, Wiki-
pedia, books, and scientific articles—allowing it to attain fluid, 
humanlike language abilities.

The most remarkable advance with GPT-3 is its zero-shot and 
few-shot learning capabilities. With just minimal or no task-spe-
cific fine-tuning, GPT-3 can generate text, answer questions, 
trans- late languages, summarize, solve arithmetic problems, 
write computer code, and adapt to complex prompts—all by in-
terpreting context and examples given at inference time. This 
“prompt engineering” approach allows users to unlock new be-
haviors from a single model without retraining, a radical leap 
compared to previous generation systems. The model’s context 
window of 2048 tokens enable understanding and retention of 
lengthy passages, contributing to coherent multi-paragraph out-
put [95].

GPT-3’s emergence resulted in widespread impact across indus-
tries. It powers chatbots, creative writing assistants, educational 
tools, content automation systems, and is the core technology 
behind OpenAI’s later product ChatGPT (initially based on 
GPT-3.5, later upgraded to GPT-4). Its performance on standard-
ized NLP benchmarks set new records, and its general-purpose 
text generation was so convincing that many human evaluators 
struggled to distinguish its writing from authentic human prose 
[96]. The scale of GPT-3 also raised concerns about ethical risks, 
misinformation, and the social responsibility of deploying pow-
erful language models, prompting debates that continue as mod-
els grow even larger and more capable.

Licensing and API access to GPT-3 reflected both excitement 
and caution; Microsoft secured exclusive rights to the underly-
ing model, while others access it via OpenAI’s cloud API. In 
the wake of GPT-3, the field experienced a surge of competitive 
innovation—spurring subsequent large models from Google, 
Meta, and open initiatives like EleutherAI [97].

CLIP (2021)
CLIP (Contrastive Language–Image Pretraining), introduced 
by OpenAI in 2021, represents a key milestone in multimodal 
AI by fundamentally bridging the world of images and natural 
language. Unlike classical computer vision models, which re-
quire extensive supervised training for each specific task, CLIP 
learns to associate images and text in a unified representation 
space through a process called contrastive learning. The model 
was trained on an unprecedented scale—400 million image–text 
pairs sourced from the internet—allowing it to develop a broad 
and general understanding of visual concepts as expressed in 
natural language [98].

The technical architecture of CLIP consists of two separate neu-
ral networks: a vision encoder (typically a Vision Transformer 
or ResNet) and a text encoder (usually based on a Transform-
er). Both encoders map their respective inputs—an image and a 
piece of text—to high-dimensional embeddings in a shared fea-
ture space. During training, CLIP maximizes the cosine similar-
ity between embeddings for matching image–caption pairs and 
minimizes it for mismatched pairs. The outcome is a model that 
can, given an image and a set of candidate text descriptions (or 
vice versa), identify which text best matches the image—even 
for objects or situations it has never seen before [99].

What makes CLIP extraordinary is its "zero-shot" capability: 
without any further task-specific training, it can classify imag-
es, retrieve relevant images given text queries, generate image 
captions, and more, simply by leveraging the rich relationships 
embedded in its multimodal representation. For instance, CLIP 
can instantly label previously unseen images by choosing from 
a list of natural language prompts, far surpassing the flexibility 
of models reliant on tightly controlled class labels or datasets. 
Its approach to generalization also inspired the architecture of 
numerous AI systems powering text-to-image synthesis, content 
moderation, and robust semantic search [100].

CLIP’s release was also transformative at the ecosystem level. 
It became an essential building block for more advanced multi-
modal models, including guidance systems for generative mod-
els like DALL-E and Stable Diffusion. In industry and research, 
CLIP powers applications ranging from search engines and rec-
ommendation systems to digital art, content filtering, and the 
investigation of neural network interpretability (such as "mul-
timodal neurons"). Its public release has enabled wide experi-
mentation and rapid progress in building truly general-purpose, 
flexible AI capable of connecting language and vision [101].

DALL·E (2021)
DALL·E, unveiled by OpenAI in January 2021, is a pioneering 
deep learning model designed to generate novel images from 
text prompts—a capability that captured the world’s attention 
and redefined the potential of generative AI. Building on the suc-
cess of large language models like GPT-3, DALL·E employs a 
Transformer-based architecture and leverages concepts from au-
toregressive models and variational autoencoders (VAEs). It was 
trained on hundreds of millions of images–text pairings collect-
ed from the internet, allowing the model to synthesize striking-
ly creative and highly coherent visuals based solely on detailed 
natural language descriptions [102].

The technical breakthrough of DALL·E lies in representing both 
text and images as discrete tokens. During training, a discrete 
VAE compresses each image into a lower-dimensional grid of 
tokens, while the Transformer learns to model the joint distribu-
tion of text and image tokens as a single sequence [103]. When 
given a prompt, DALL·E generates the sequence of image to-
kens that, when decoded by the VAE, produces an image match-
ing the semantic content of the text. This means a prompt like 
“an armchair in the shape of an avocado” will yield an entirely 
new image, blending previously unseen concepts and styles in 
photorealistic or artistic ways.

One of DALL·E’s most significant impacts is its seemingly lim-
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itless generative creativity and compositional reasoning. The 
model can merge disparate ideas, invent objects, adapt styles, or 
transform concepts much like an imaginative artist responding 
to verbal instructions. DALL·E’s “zero- shot” ability—gener-
ating meaningful imagery for prompts it was never explicitly 
trained on—quickly found applications in art, design, education, 
and synthetic data generation [104].

Following the original DALL·E, OpenAI released DALL·E 2, 
which improved image quality and capability using advances in 
diffusion models guided by CLIP, OpenAI’s multimodal text–
image embedding network. These innovations established a new 
paradigm for generative models: text- to-image (and now text-
to-video and text-to-3D) synthesis that democratizes visual cre-
ativity and speeds up workflows in media, design, and scientific 
visualization. Both the original DALL·E and its successors have 
become benchmarks, inspiring further development in open-
source generative models and autonomous creative systems 
worldwide [105].

Stable Diffusion (2022)
Stable Diffusion, released in August 2022 by Stability AI in part-
nership with Comp Vis and Runway ML, transformed the gen-
erative AI landscape by making photorealistic image synthesis 
open-source and accessible to everyone—even those without en-
terprise-level hardware or budgets. Unlike previous proprietary 
models like DALL·E or Midjourney, Stable Diffusion’s source 
code and model weights were openly licensed, allowing anyone 
to download, run, and modify the system for personal, academic, 
or creative use. This choice democratized AI-based image gen-
eration, fueling an explosion of community-driven innovation 
and applications across art, media, research, and industry [106].

Technically, Stable Diffusion is a latent text-to-image diffusion 
model. It works by first compress- ing images into a lower-di-
mensional latent space using an autoencoder, then employing 
a neural network to iteratively reverse random noise back into 
a coherent picture, guided by a textual prompt. The choice of 
working in latent space—as opposed to the full pixel space—
allows for faster image generation and reduces computational 
requirements, enabling high-quality results even on consumer 
GPUs. For understanding prompts, Stable Diffusion incorpo-
rates OpenAI’s CLIP text encoder, which maps natural language 
instructions to vector representations closely aligned with the 
visual domain, ensuring that generated images faithfully reflect 
the user’s input [107].

Open-source accessibility led to massive adoption and rapid 
evolution. Creators and developers built custom interfaces, ex-
tensions, and plug-ins, while artists and designers gained pow-
erful new tools for ideation, prototyping, and artistic expression. 
The flexibility to modify and fine-tune models spawned count-
less niche variants and tailored solutions, expanding the possi-
bilities for commercial, educational, and creative uses. Stable 
Diffusion also prompted important conversations around ethics, 
copyright, and the future of creative work, particularly as human 
artists contended with new forms of digital art generation and 
content authenticity [108].

Culturally and technologically, Stable Diffusion is credited with 
“removing the doors from their hinges”—ushering in a new era 

where AI image generation became a grassroots phenomenon 
rather than a privilege for major tech companies. With billions of 
images created and a vibrant community fueling continued im-
provement, Stable Diffusion remains a backbone of generative 
art, synthetic media, and open research, pressuring proprietary 
competitors to open up and spurring advances throughout the 
AI field [109].

Midjourney (2022)
Midjourney, launched in early 2022, quickly established itself 
as one of the leading platforms for AI-driven art generation, 
harnessing the power of text-to-image synthesis to empower 
creators of all kinds. Founded by David Holz (also known for 
Leap Motion), Midjourney is an independent research lab whose 
eponymous software enables users to craft striking, imaginative 
visuals from simple text prompts. Unlike previous art generators 
focused primarily on photorealism or technical demonstration, 
Midjourney is distinguished by its painterly aesthetics, creative-
ly blending real-world styles, artistic influences, and fantastic 
elements. Its model excels in fantasy scenes, stylized environ-
ments, and expressive character portraits a favorite among con-
cept artists, designers, illustrators, and hobbyists [110].

Access to Midjourney is innovative: the platform operates pri-
marily as a bot on Discord, where users type prompts and re-
ceive images instantly, sparking communal sharing, feedback, 
and collab- orative exploration. This workflow makes AI art cre-
ation interactive and social, driving the rapid growth of a global 
user base that has surpassed 16 million by late 2023. Midjourney 
offers continual updates—releasing improved algorithms every 
few months, each lifting artistic quality, coherence, prompt ac-
curacy, and stylistic variety. By 2024, its web interface expand-
ed accessibility, bringing AI visual generation beyond Discord’s 
audience [111]. Under the hood, while Midjourney is speculated 
to use principles similar to latent diffusion models (as in Stable 
Diffusion), its proprietary technology and blend of artistic tuning 
set it apart. The system leverages high-quality image–text pair-
ing, learning complex associations between language and visual 
style, and allowing highly customized creations based on user 
instructions. The result is a new form of visual ideation, letting 
professionals and enthusiasts prototype commercial art, create 
book illustrations, design product concepts, or simply explore 
creative possibilities, often in minutes [112].

Midjourney’s impact stretches far beyond its technical achieve-
ments. Its accessible, community- centered approach to AI-gen-
erated art has helped disrupt traditional stock photography, low-
ered creative barriers, and brought sophisticated art generation 
to the masses. The platform has powered magazine covers, chil-
dren’s books, concept art, and even winning entries in digital art 
competitions. Users praise its ability to speed up brainstorming, 
explore unfamiliar styles, and develop visual narratives with un-
precedented ease [113].

Whisper (2022)
Whisper, released by OpenAI in September 2022, is an open-
source automatic speech recogni- tion (ASR) model that set a 
new standard for transcribing and translating audio across a di-
verse range of languages, accents, and audio environments. Its 
development was motivated by the need for robust, accurate, and 
scalable speech-to-text systems not just for English but for over 
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100 lan- guages worldwide—addressing limitations of earlier 
models that struggled with non-standard accents, domain-spe-
cific jargon, and noisy backgrounds [114].

At the heart of Whisper’s approach is a weakly-supervised 
training pipeline and a sequence- to-sequence encoder-decoder 
Transformer architecture. The model takes as input a log-Mel 
spectro- gram—a time-frequency representation—of audio split 
into 30-second chunks, transforming it into a sequence of latent 
vectors that capture temporal, spectral [115], and semantic in-
formation. The decoder then generates transcriptions token by 
token, with the same model capable of language identification, 
transcription in the original language, translation into English, 
and phrase-level timestamps. This multifunctional design was 
achieved by training on an exceptionally large and diverse data-
set of 680,000 hours of supervised audio-text pairs sourced from 
the web, which enabled the model to learn a wide variety of 
accents, recording conditions, and technical vocabularies.

Whisper’s release as open source offered unprecedented bene-
fits for developers, researchers, and practitioners. It provided not 
only high-accuracy English transcription but also robust multi-
lingual transcription and speech-to-English translation without 
any extra fine-tuning. The model’s versatility and ease of use 
sparked rapid adoption, enabling better accessibility solutions, 
improved voice interfaces, podcast and video transcription, lan-
guage study tools, and facilitating research into more complex 
audio and speech applications [116]. Whisper’s ability to gen-
eralize across languages, accents, and environments has made 
it a founda- tional technology in the global push for inclusive, 
AI-powered speech and language tools. Moreover, its transpar-
ent release set a benchmark for openness in AI development, 
supporting further innovation in speech recognition technology 
and its integration into both commercial and open-source proj-
ects [117].

ChatGPT (2022)
ChatGPT, released by OpenAI in November 2022, represents 
one of the most remarkable leaps forward for conversational ar-
tificial intelligence. Built initially on GPT-3.5 and later enhanced 
by GPT-4, ChatGPT marked the first time a large language mod-
el was fine-tuned and deployed specifically for natural dialogue 
with broad, everyday usability. Its launch was a watershed mo-
ment: millions adopted ChatGPT within days, integrating it 
into personal and professional routines for Q&A, drafting con-
tent, brainstorming, tutoring, technical assistance, and creative 
writing. The system’s ability to provide coherent, contextually 
relevant, and human-like responses—often with nuanced un-
derstanding and personality—demonstrated the practical vi-
ability of large-scale conversational AI for general use [118]. 
ChatGPT’s core advances derive from two pivotal techniques. 
First, the conversational interface was built to handle multi-
turn interactions, enabling users to clarify, elaborate, and cor-
rect threads of dialogue in natural language. Second, the model 
was fine-tuned via reinforcement learning from human feedback 
(RLHF), aligning responses with human preferences, improving 
safety, and min- imizing bias and harmful outputs. This combi-
nation made ChatGPT surprisingly capable at not just answering 
questions, but engaging in back-and-forth exchanges, reasoning 
through ambiguity, admitting mistakes, and playfully challeng-
ing incorrect premises [119].

ChatGPT’s underlying models evolved rapidly: starting with 
GPT-3.5, which offered strong general-domain language abili-
ties, then moving to GPT-4 in March 2023, whose larger scale, 
im- proved alignment, and multimodal capabilities pushed com-
prehension and creativity even further. By 2024—2025, versions 
with even broader context windows, enhanced reasoning, and 
tool integration were released, enabling the system to use web 
search, interpret images, code, and analyze user data. Through-
out, model architecture remained based on the Transformer par-
adigm, with progressive improvements in alignment, factuality, 
steerability, and reasoning depth [120].

The impact of ChatGPT is profound and ongoing. It has been 
widely adopted in customer service, education, content creation, 
programming, healthcare, entertainment, and more—changing 
workflows and user expectations about interacting with com-
puters. Its ease of use—running in browsers, apps, and APIs—
helped it reach billions and inspire a new wave of competition 
among tech companies [121].

Perhaps even more importantly, ChatGPT popularized prompt 
engineering and conversational design as skills, enabled re-
searchers to probe both the powers and limitations of LLMs, 
and raised important ethical, legal, and social questions about 
synthetic dialogue, misinformation, and AI-assisted work [122].

Bloom (2022)
BLOOM (BigScience Large Open-science Open-access Multi-
lingual Language Model), released in July 2022, is a landmark 
achievement in the movement toward open, collaborative, and 
transparent AI research. Developed over a year-long workshop 
by the BigScience collaboration—a vast consortium coordinat-
ed by Hugging Face and comprising more than a thousand re-
searchers from around the world—BLOOM is one of the largest 
large language models ever made publicly accessible. With 176 
billion parameters, BLOOM stands alongside proprietary mod-
els like GPT-3 and PaLM but distinguishes itself by distributing 
both its model weights and training data under permissive open 
licenses, allowing for unrestricted research, adaptation, and 
scrutiny worldwide [123].

The architecture of BLOOM is a transformer-based autoregres-
sive language model, trained to generate text and code across 46 
natural languages and 13 programming languages. Its multilin-
gual proficiency was a crucial focus, making it the most widely 
inclusive open-source LLM of its time and a powerful tool for 
countering the English-centric bias seen in earlier AI models. 
To achieve this, BLOOM was trained on the diverse, transpar-
ent ROOTS corpus, containing nearly 1.6TB of text carefully 
sourced, documented, and cleaned to reflect not just the web but 
also underrepresented communities and linguistic groups [124].

Transparency extended far beyond the code and weights—the 
whole process, including engineer- ing decisions, training logs, 
and ethical deliberations, was carried out in public view on the 
Jean Zay supercomputer in France. This pioneering approach al-
lowed researchers everywhere to follow, audit, and contribute 
at every step, setting a new gold standard for open science and 
reproducibility in the AI field [125].

BLOOM’s contributions extend beyond its technical prowess. 
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By making such a model openly available, it democratized 
large-scale AI, enabling communities, universities, and small-
er innova- tors—especially those from developing regions—to 
participate in frontier machine learning research without the 
heavy restrictions or costs associated with proprietary models. 
This has fostered not only novel applications and research but 
also greater global dialogue around bias, governance, multilin-
gual access, and responsible AI development [126].

LLa MA (2023)
LLaMA (Large Language Model Meta AI), released by Meta 
(formerly Facebook) in early 2023, represents a major advance-
ment in accessible large language model research. Developed 
as a suite of transformer-based models with parameter sizes 
ranging from 7 billion to 65 billion for the first generation (and 
up to 70 billion in subsequent versions), LLaMA was designed 
to rival performance benchmarks set by proprietary LLMs like 
GPT-3 and PaLM, but with a focus on efficiency, transparency, 
and open availability to the global research community [127].

The initial L La MA models were provided under a research li-
cense, and while they were intended for non-commercial use and 
distribution to approved academic applicants, their weights were 
rapidly disseminated online, catalyzing a burst of experimenta-
tion and fine-tuning by independent researchers worldwide. This 
“leak” incident, while controversial, contributed to the immedi-
ate formation of an active ecosystem: academics and developers 
built instruction-following variants like Alpaca (Stanford), Vicu-
na (LMSYS), and Koala, showing that state-of-the-art conver-
sational AI could be achieved for relatively low cost and infra-
structure by fine-tuning L La MA foundations [128].

Meta’s follow-up, L La MA 2 (July 2023), further revolutionized 
access to advanced LLMs. L La MA 2 models—released in 7B, 
13B, and 70B parameter sizes—offered not just foundational 
model weights but also chat-optimized, instruction-following 
variants with enhanced safety fine-tuning. Notably, L La MA 2’s 
more permissive license enabled commercial use under certain 
conditions and included wide platform integration with partners 
like Microsoft and Hugging Face, dramatically expanding its 
adoption in industry and research. The release of Code L La MA, 
specialized for code generation and programming, further deep-
ened its impact on technical and developer communities [129].

Technically, L La MA’s success is often attributed to highly ef-
ficient model design, extensive multilingual and public dataset 
pretraining, and rigorous evaluation on diverse benchmarks. Its 
training datasets were constructed to optimize both language 
understanding and generation while making models compact 
enough for fine-tuning and inference on standard hardware, de-
mocratizing LLM research and customization worldwide.

L La MA’s open availability has catalyzed a global movement of 
“open foundation” model devel- opment. Researchers and orga-
nizations now routinely create specialized, localized, and safe-
ty-aligned derivatives, pushing the boundaries of large language 
models while encouraging transparency, repro- ducibility, and 
broader participation in generative AI. At the same time, the L 
La MA family has raised important questions about responsible 
model sharing and open science, as the ease of adaptation brings 
both societal benefits and risks [130].

Gemini (Bard) (2023)
Gemini, unveiled by Google DeepMind in December 2023, is 
Google’s most advanced multimodal AI model to date—pur-
pose-built to natively understand, generate, and reason across 
text, images, audio, video, and code. Gemini was designed from 
the ground up as a multimodal system, meaning that, unlike pre-
vious models which often combined separately trained modules, 
Gemini’s architecture was jointly trained on diverse data types. 
This unified approach enables the model to seamlessly process 
complex, interleaved sequences of language and visuals, handle 
elaborate reasoning tasks, and provide highly contextual, accu-
rate responses to a broad array of queries involving multiple mo-
dalities [131].

The Gemini family offers several model sizes—Ultra, Pro, and 
Nano—optimized for different use cases, from high-perfor-
mance research to on-device AI for smartphones. Notably, Gem-
ini Ultra has set new records on over 30 major academic and 
industry benchmarks, including being the first model to surpass 
human expert performance on the Massive Multitask Language 
Understanding (MMLU) exam. Gemini excels at a wide range 
of tasks, such as reading and interpreting complex diagrams, in-
fographics, and scientific documents; analyzing natural images 
and video; audio transcription and understanding; sophisticated 
mathematical and logical reasoning; and robust code generation 
spanning multiple programming languages [132]. Gemini’s mul-
timodal strength offers unique advantages in solving challenging 
questions that blend visual, linguistic, and logical information, 
making it highly effective for scientific discovery, education, 
content creation, and enterprise analytics. The system’s archi-
tecture directly supports the ingestion of text, images, audio 
waveforms, and video frames, allowing for nuanced analysis 
and synthesis that bridges gaps between previously siloed data 
formats [133].

Gemini also powers Google’s Bard chatbot (now rebranded as 
Gemini across many Google services), bringing enhanced gen-
erative AI to Search, Assistant, Android devices, and develop-
er platforms like Google AI Studio and Vertex AI. Its natively 
multimodal reasoning, broad multilingual support, and ability 
to extract insights from massive datasets are driving innovation 
across consumer and enterprise applications [134].

Critically, Gemini isn’t just a technical achievement—it marks 
the culmination of Google’s efforts to bring together DeepMind 
and Google Brain, leveraging global collaboration and resourc-
es to set new standards for open, scalable, and responsible AI 
development. As Gemini continues to evolve—with version up-
dates such as Gemini 1.5 and on-device deployment via Pixel 
phones—it is poised to define the next wave of general-purpose, 
highly capable, and accessible artificial intelligence [135].

Claude (2023)
Claude, released by Anthropic in March 2023, is a family of large 
language models engineered to push the state of conversational 
AI with a strong emphasis on safety, ethical alignment, and user 
control. Developed by a team of former OpenAI researchers, 
Claude’s defining innovation is its use of “Constitutional AI”—a 
training approach that combines Reinforcement Learning from 
Human Feedback (RLHF) with a set of guiding principles or 
"constitution." This constitution, drawn in part from documents 
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like the UN Universal Declaration of Human Rights, directs the 
model to behave harmlessly and helpfully, relying not only on 
human feedback but on its own self-critiques and revisions. In 
practice, this method allows Claude to generate, review, and 
improve its own outputs while aligning with clear ethical stan-
dards, minimizing risks of bias, misinformation, and harmful 
responses [136].

Anthropic continually expanded Claude’s capabilities, releasing 
successive versions that increased the maximum context win-
dow—up to 200,000 tokens, or roughly 500 pages of material. 
This enabled users to upload and process lengthy documents, 
and perform advanced summarization, document analysis, 
and text-based research tasks well beyond prior systems. With 
Claude 2 and beyond, the models could read, interpret, and assist 
with tasks using a diverse range of inputs, including PDFs and 
complex workflows.

Safety and reliability are central to Claude’s design. The model 
demonstrates lower rates of hallucination and harmful output, 
and in recent updates, incorporates mechanisms capable of end-
ing conversations in extreme cases of persistently abusive user 
interactions—reflecting Anthropic’s com- mitment to both mod-
el and user “welfare.” These capabilities, along with steerable 
tone, persona, and user feedback responsiveness, make Claude a 
uniquely user-friendly system for business, education, program-
ming, creative writing, and data analysis [137].

Anthropic’s approach has spurred significant debate on the bal-
ance between ethical safeguards and usability, as some critics 
claim the model’s refusal to answer certain benign requests 
constitutes an “alignment tax.” Nonetheless, the importance of 
transparency, privacy, and verifiable ethical alignment places 
Claude at the leading edge of responsible and trustworthy AI 
development [138].

The Current Multimodal & Agentic Era (2024–2025)
GPT-4 / GPT-4o (2024)
GPT-4 and its successor GPT-4o (the "o" stands for "omni"), 
released by OpenAI in 2024, are state-of-the-art, natively mul-
timodal large language models that mark a major leap in AI’s 
ability to understand and generate not just text, but images and 
audio as well. Unlike earlier models that relied on separate sub-
systems stitched together for different input types, GPT-4o is 
built as a unified neural network. This design allows it to process 
text, images, and audio in any combination as both input and 
output—enabling highly fluid, human-like interactions that span 
language, vision, and sound [139].

The capabilities of GPT-4 and especially GPT-4o go far beyond 
traditional chatbot functionality. For example, GPT-4o can read 
and describe photographs, interpret graphs or handwritten notes, 
answer questions about images, and even process live video 
feeds or screen recordings. In voice mode, it engages in real-time, 
multi-turn voice conversations at natural speeds, outperforming 
many previous models in speech recognition, translation, tone, 
and sentiment understanding. The system can not only recognize 
and transcribe audio, but respond with synthesized speech, even 
singing or mimicking emotional cues. This deep, native multi-
modality is a breakthrough for building interactive AI assistants 
that can see, listen, speak, and even analyze the real world as 

fluidly as a human [140]. GPT-4o’s performance extends further. 
It demonstrates state-of-the-art results on vision, audio, and mul-
tilingual benchmarks, outpacing major competitors on a range 
of tasks. OpenAI rolled out the model initially with support for 
text and vision and progressively expanded to enable complex 
audio and video generation. The model is highly efficient com-
pared to its predecessors, enabling faster and cheaper deploy-
ment for both developers and consumers. Variants like GPT-4o 
mini—smaller and leaner, but outperforming previous flagship 
models—make advanced multimodal AI accessible for a broad 
range of devices and applications, from cloud APIs to mobile 
phones [141].

In practice, GPT-4o opens up new use cases—math tutoring 
with spoken explanations and hand- drawn diagrams, real-time 
translation in voice calls, multimodal creative work (combining 
writing, image creation, and music), and seamless accessibility 
tools for visually or hearing-impaired users. Its development is a 
foundational shift toward AI systems that can meaningfully and 
naturally interact across the full spectrum of human communi-
cation channels [142].

OpenAI’s releases have catalyzed innovation throughout the 
industry, inspiring rapid advances and new research in gener-
al-purpose, multimodal, and interactive artificial intelligence. As 
multimodal systems like GPT-4o become integrated into every-
day life, they are transforming not only how we interact with 
technology, but how we understand and bridge the boundaries 
between text, images, sound, and human expression [143].

Sora (2024)
Sora, launched by OpenAI in February 2024, is a breakthrough 
text-to-video generative AI model that enables users to create 
realistic, detailed videos simply by describing them in natural 
language. Building on the advances of prior text-to-image mod-
els like DALL·E, Sora harnesses advanced diffusion and trans-
former architectures to generate up to one minute of high-quality 
video per prompt. Its release marked a pivotal moment in gener-
ative media, allowing artists, filmmakers, educators, marketers, 
and everyday users to produce animated content from imagina-
tion alone—whether that’s simulating natural landscapes, craft-
ing surreal animation, or rendering cinematic scenes [144].

Technically, Sora innovates by combining the strengths of diffu-
sion models (for rich, low-level visual texture generation) with 
transformers (for global compositional layout and logical rea-
soning across video frames). It processes videos as sequences of 
"patches," akin to how tokens represent words in language mod-
els, maintaining object constancy and smooth motion over time. 
Sora also integrates automatic recaptioning: before generating, 
GPT reinterprets and expands the user’s prompt to add neces-
sary detail, boosting fidelity and capturing intended nuance. The 
model was trained on an internet-scale dataset of image and vid-
eo pairs, enabling broad generalization to a wide variety of sub-
jects, genres, and visual storytelling styles [145].

Safety and copyright features are integral to Sora’s design. All 
videos generated are watermarked to distinguish AI-created me-
dia from authentic footage, helping counter potential misuse—
such as the creation of fake historical clips or misleading visual 
content. OpenAI introduced Sora in a phased manner, starting 
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with “red teams” and creative professionals for adversarial test-
ing and feedback, then expanding availability through ChatGPT 
Plus and Pro subscriptions, and rolling out integration for plat-
forms and mobile devices [146]. Sora’s impact on the creative 
industry is profound. It opens new avenues for prototyping, 
ideation, rapid storyboarding, educational content creation, and 
democratizes access to high-end video generation for audiences 
that could never afford large animation teams or expensive CGI. 
As of 2025, Sora has spawned a wave of third-party tools, plugin 
extensions, and ongoing open research into enhanced motion co-
herence, unbiased video synthesis, and broader support for di-
verse visual styles. With continued innovation—including the 
unveiling of Sora 2 and further accessibility features—OpenAI’s 
video generation has set a new standard for multimodal AI cre-
ativity in the digital age [147].

Gemini 1.5 (2024)
Gemini 1.5, introduced by Google DeepMind in early 2024, is 
a next-generation multimodal AI model renowned for its un-
precedented ability to process and reason over extremely long 
con- texts—including millions of tokens of text, images, audio, 
video, and code. Building on the success of the original Gemini 
and its predecessors, Gemini 1.5 sets a new benchmark by en-
abling users to upload, analyze, and interact with entire books, 
codebases, multi-hour podcasts, movies, and massive multi-doc-
ument datasets in a single prompt—unlocking capabilities well 
beyond previous large language models [148].

The model is natively multimodal, meaning it was trained to 
handle a mix of modalities from the outset. This allows it to 
traverse, summarize, and derive insights from content such as 
scanned documents, annotated screenshots, medical imaging, 
video clips, and audio records—sometimes even answering de-
tailed questions about specific scenes or extracting information 
from hand-drawn sketches. In qualitative demonstrations, Gem-
ini 1.5 is able to locate specific portions of sprawling novels, 
translate new languages from grammar references alone, and 
pinpoint crucial code segments for debugging across large re-
positories [149].

Gemini 1.5 comes in several variants, including Gemini 1.5 Pro 
and Gemini 1.5 Flash—each tailored for different speed and 
quality trade-offs. With a context window scaling up to 1 million 
tokens (and experimental support for even longer sequences), 
Gemini 1.5 dramatically expands the practical limits of AI-pow-
ered analytics, making it possible for individuals and organiza-
tions to query and reason over data sources previously deemed 
too large or complex [150].

Real-world applications are changing rapidly as a result. Enter-
prise users leverage Gemini 1.5 for deep analysis of regulato-
ry filings, legal contracts, patient medical histories, and thou-
sands of hours of sensor data. Developers use it to search large 
codebases and even repair them automatically. Educators and 
scientists deploy long-context input for curriculum analysis, lin-
guistic research, and multimedia content creation, while creative 
professionals blend images, transcripts, and video to produce 
meaningful, data-driven stories.

The ability of Gemini 1.5 to seamlessly integrate and retain 
massive multisource inputs—combined with state-of-the-art 

recall and reasoning—represents a leap forward not only for 
multimodal under- standing, but also for building more person-
al, insightful, and comprehensive AI applications across indus-
tries. Google’s iterative releases and open documentation further 
enable rapid exploration of new use cases, setting the pace for 
industry adoption and innovation in long-context artificial intel-
ligence [151].

Mistral & Mixtral (2024)
Mistral and Mixtral, released in 2024 by Paris-based Mistral AI, 
represent a major advance in open-source large language models 
(LLMs) by offering impressive performance, compact size, and 
highly efficient outputs that compete directly with Meta’s LLa-
MA family and sometimes even closed models like OpenAI’s 
GPT-3.5. Mistral 7B is a 7.3-billion-parameter model optimized 
for speed, resource efficiency, and strong benchmark results. It 
stands out for outperforming LLaMA 2 13B on most tasks—es-
pecially English-language and code-related benchmarks—while 
running on standard hardware, making it a popular choice for 
both research and practical deployments. Key features such as 
Grouped-query attention (GQA) and Sliding Window Attention 
(SWA) enable fast inference and extended context handling, 
with all weights released under a permissive Apache 2.0 license 
for easy local or cloud use [152].

Mixtral is Mistral AI’s series of Sparse Mixture of Experts 
(SMoE) models, such as Mixtral 8x7B and 8x22B. These mod-
els introduce a clever architecture where inference uses only a 
subset of available parameters per input token—enabling large 
aggregate model sizes (up to 141B parameters) with actual run-
time speed and resource usage closer to smaller models. Mixtral 
models offer wider context windows (up to 64,000 tokens or 
more), very fast throughput, and robust multilingual capabili-
ties, supporting languages like English, French, German, Italian, 
Spanish, and more. Performance-wise, Mixtral outstrips LLaMA 
2 70B and shows competitive results against GPT-3.5 in com-
mon benchmarks, particularly excelling in code generation and 
complex instruction following. The open weights, high cost effi-
ciency, and ease of fine-tuning have driven widespread adoption 
among developers looking for scalable, customizable, and safe 
AI solutions without commercial licensing barriers [153].

Mistral AI has also released proprietary variants for business use, 
but it’s the open models that have democratized powerful LLM 
deployment and experimentation, making high-quality large lan-
guage models feasible for SMEs, academic labs, and grassroots 
communities. Their transparent release strategy, multilingual fo-
cus, and strong handling of long sequences make Mistral and 
Mixtral key drivers in the open-source AI ecosystem, frequently 
leading the leaderboard for best open LLM performance.

In summary, Mistral and Mixtral are lightweight, high-perform-
ing open models that continue to set standards for efficiency and 
accessibility, empowering broad communities to harness ad-
vanced AI for language, coding, and reasoning at scale—with 
a commitment to both open science and practical application 
[154].

Claude 3 (2024)
Claude 3, released by Anthropic in March 2024, is a flagship 
family of large language models that set new standards in en-
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hanced reasoning, multimodal understanding, and user-centric 
control. The Claude 3 lineup includes three models—Haiku 
(optimized for speed and cost), Sonnet (balancing capabili-
ty and efficiency), and Opus (pushing boundaries for complex 
reasoning and creativity). Building on Anthropic’s earlier com-
mitment to Constitutional AI and reinforcement learning from 
human feedback (RLHF), Claude 3 models showcase dramatic 
improvements in following complex instructions, analyzing and 
summarizing massive documents, interpreting images and dia-
grams, and solving intricate math, coding, and logic tasks [155].

For the first time, Claude gained native multimodal abilities, able 
to process both text and images within the same prompt, making 
it effective for visual analysis—such as extracting information 
from charts or understanding meaning in technical diagrams. 
The Opus model in particular came with an industry-leading 
context window of 200,000 tokens (over 500 pages of text), and 
experimental features expanding that window up to 1 million to-
kens for select use cases. This allowed users to work with entire 
novels, extensive legal contracts, and large codebases in a single 
session—enabling deep, integrated research and analysis [156].

Claude 3 quickly gained attention for outperforming major ri-
vals—including OpenAI’s GPT- 4—on key benchmarks in 
graduate-level reasoning, factual accuracy, coding, and knowl-
edge-intensive workflows. Later in 2024, the Claude 3.5 Sonnet 
variant further strengthened its lead in code generation, chart 
interpretation, multistep workflow comprehension, and image-
to-text extraction, and introduced the Artifacts feature, enabling 
real-time code testing and SVG/web rendering within the chat 
interface [157].

Beyond accuracy, one of Claude 3’s most distinctive advances is 
its hybrid dual-mode reasoning, realized in versions like Claude 
3.7 Sonnet. This allows users to choose between rapid responses 
for simple questions and deep, step-by-step reasoning for more 
complex problems, making the model highly flexible for both 
quick searches and detailed analyses. Anthropic’s iterative up-
grades, including the ability for Claude to control desktop envi-
ronments and automate multi-application workflows, point to a 
future where large language models serve as fully agentic digital 
coworkers. Claude 3’s release marked a turning point for safe, 
reliable, and powerful AI applications in business, education, re-
search, and creative industries—offering users control, transpar-
ency, and the ability to work fluidly across long, complex, and 
multimodal information streams [158].

Deep Seek (2025)
DeepSeek, introduced in early 2025 by a Hangzhou-based Chi-
nese tech company, is a series of open-source, multimodal AI 
models engineered to deliver high-quality generative reasoning 
at a fraction of the computational cost and financial overhead 
typical of competitive LLMs like OpenAI’s GPT-4o or Meta’s 
LLaMA 3.1. The release of DeepSeek’s R1 model sent shock-
waves through the industry, earning it a reputation as an “AI 
revolution” or “Sputnik moment” for its ability to rival or exceed 
the outputs of established leaders while slashing training costs 
(with estimates for DeepSeek V3 at just 6million, compared-
toaround100 million for GPT-4) [159].

Technologically, DeepSeek’s models leverage a combination of 

Mixture of Experts (MoE) archi- tectures, reinforcement learn-
ing (RL), and clever engineering optimizations that drive down 
both hardware and energy requirements. These advances make 
DeepSeek models smaller, more efficient, and remarkably prag-
matic for developers and organizations looking to deploy robust 
multimodal AI—handling text, images, and, in some cases, audio 
with high fluency. The models are designed with open weights 
(freely available under an MIT license), transparent technical 
documentation, and increased accessibility for research and 
downstream customization, even in the face of restricted access 
to advanced Western GPUs [160].

In late January 2025, DeepSeek-R1 made headlines for achiev-
ing performance near that of closed models like OpenAI’s 
GPT-o1 while remaining entirely open for academic and com-
mercial examination. Researchers have praised DeepSeek’s 
combination of efficiency, versatility, and openness—helping 
foster a true global “AI price war” as major Chinese tech giants 
followed suit, cutting the costs of access to their own models and 
accelerating AI affordability worldwide.

DeepSeek’s further developments, such as DeepSeek-GRM 
(Generative Reward Modeling) and self-principled critique 
tuning, have enhanced the model’s ability to perform advanced 
reasoning and self-evaluation, further narrowing the gap with 
leading proprietary systems. The company’s openness also ex-
tends to collaborations, as with Tsinghua University, showcas-
ing a commitment to transparent progress and continual release 
of updated, efficient, and high-performing models for theorem 
proving, math, and general reasoning tasks [161].

In sum, DeepSeek represents a breakthrough in democratizing 
advanced AI: fast, low-cost, efficacious, and openly accessible, 
rapidly reshaping global competition and setting new bench-
marks for efficient multimodal and generative AI research and 
applications.

Runway Gen-2 (2024–2025)
Runway Gen-2, unveiled in mid-2023 and refined through 2024–
2025, is a revolutionary video synthesis model empowering 
AI-driven image-to-video and text-to-video generation for cre-
ators, marketers, educators, and filmmakers. Developed by Run-
way AI, Gen-2 builds on the foundation laid by Gen-1, which 
introduced video-to-video transformations, but moves further by 
enabling users to craft entirely new videos from scratch using 
simple text prompts or static images—no cameras or traditional 
filming required [162].

The technology behind Gen-2 employs multimodal latent diffu-
sion, enabling the model to in- terpolate between visual frames 
for temporal coherence, maintain stylistic consistency, and gen-
erate motion that harmonizes with the input image or narrative 
described in text. The model supports a variety of modes:
•	 Text-to-Video: Generate original videos using descriptive 

natural language.
•	 Image-to-Video: Animate a given image, bringing static 

scenes and objects to motion.
•	 Text + Image-to-Video: Combine textual instructions and 

images for nuanced, controllable video output.
•	 Stylization and Render: Transfer the style of a provided im-

age or prompt to video frames, or turn untextured renders 
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into realistic scenes.
•	 Storyboard: Convert a sequence of mockups into fully ani-

mated video narratives.
	
Gen-2’s capabilities also allow for targeted visual control—
masking, customizing character tra- jectories, and applying con-
sistent rendering styles across all frames. This makes Gen-2 a 
valuable tool for rapid prototyping, commercial ad production, 
educational content creation, and social media engagement. Its 
user-friendly web platform, alongside API integration, has de-
mocratized advanced video creation, letting non-experts achieve 
professional results without expensive CGI or editing teams 
[163].

In terms of industry and cultural impact, Gen-2 has helped drive 
the AI video market’s exponential growth, reducing produc-
tion time and costs by as much as 75–90% and giving creative 
professionals new power to iterate, test, and engage audiences 
through personalized, innovative video content. As a growing 
ecosystem, Runway continues to evolve its generative video 
models—launching Gen-3 and Gen-4 for longer, higher fidelity, 
and more stylistically coherent video output, and collaborating 
with entertainment companies for bespoke production work-
flows [164].

Altogether, Runway Gen-2 marks a new era in AI-assisted mul-
timedia, providing the foundation for accessible, efficient, and 
expressive visual storytelling powered entirely by generative 
intelligence.

Perplexity AI (2025)
Perplexity AI, by 2025, has evolved into a leading search and 
reasoning assistant, redefining how individuals and teams ac-
cess knowledge, perform research, and make critical decisions. 
Unlike traditional search engines that simply return lists of 
web links, Perplexity integrates state-of-the-art large language 
models (such as GPT-4.1, Claude 4 Sonnet, and others) with 
real-time web retrieval and a transparent citation system. This 
fusion—often described as “generative retrieval”—means users 
receive direct, conversational answers grounded in up-to-date 
sources, with every statement linked to authoritative references 
for fact-checking, academic integrity, and professional reliabil-
ity [165].

At its core, Perplexity uses a hybrid pipeline combining natural 
language processing (to interpret user queries and context), se-
mantic search (to retrieve the most relevant documents from the 
live web and academic indices), and retrieval-augmented gener-
ation (RAG) to synthesize responses from multiple sources. For 
complex or research-heavy queries, its “Deep Research” feature 
performs multi-hop reasoning—evaluating, cross-verifying, and 
weaving together information from dozens (or hundreds) of doc-
uments automatically. This allows Perplexity to generate struc-
tured meta-analyses, literature reviews, or in-depth business/
comparative reports within minutes, all fully citation-backed 
and with clear transparency into source credibility [166].

Key innovations include:
•	 Direct citations and clickable sources on every answer, sup-

porting instant verification.
•	 Multi-model switching, so users can refine queries with dif-

ferent LLMs for varied perspectives.
•	 Contextual memory for follow-up Q&A within a single con-

versational session.
•	 Advanced filtering and custom search parameters (especial-

ly via API) for enterprise, research, or developer integra-
tions.

•	 Rapid trend analysis, market insight, academic meta-re-
views, and technical troubleshooting—all in natural lan-
guage.

Perplexity’s impact has been profound: it has empowered mil-
lions of researchers, students, knowledge workers, and business 
analysts with fast, reliable access to both broad and deep knowl-
edge. Its transparent approach has also spurred a wave of “an-
swer engine” innovation among major tech firms. The platform 
is widely used as a co-pilot for research, coding, policy, and de-
cision-making workflows—lowering the bar for expertise and 
transforming everyday search into a dynamic, dialogue- based 
process that supports critical thinking, productivity, and accu-
racy.

References
1.	 Gugerty, L. (2006). Newell and Simon’s Logic Theorist: 

Historical background and impact on cognitive model-
ing. Proceedings of the Human Factors and Ergonom-
ics Society Annual Meeting, 50(9), 880–884. https://doi.
org/10.1177/154193120605000904 SAGE Journals+1

2.	 Travis, L. E. (1964). Experiments with a theorem-utilizing 
program. In Proceedings of the April 21-23, 1964, Spring 
Joint Computer Conference (pp. …). ACM. https://doi.
org/10.1145/1464122.1464157 ACM Digital Library+1

3.	 Gowers, T. (2022). What is mathematics and what should it 
be. arXiv. https://arxiv.org/pdf/1704.05560

4.	 O’Leary, D. J. (1991). Principia Mathematica and the de-
velopment of automated theorem proving. In Perspectives 
on the History of Mathematical Logic (pp. 47-53). Boston, 
MA: Birkhäuser Boston. https://doi.org/10.1007/978-0-
8176-4769-8_4

5.	 Gugerty, L. (2006). Newell and Simon’s Logic Theorist: 
Historical background and impact on cognitive model-
ing. Proceedings of the Human Factors and Ergonom-
ics Society Annual Meeting, 50(9), 880–884. https://doi.
org/10.1177/154193120605000904

6.	 Yang, Y., Sigmundsson, F., Geirsson, H., & Gottsmann, J. 
(2025). Role of tectonic stress and topography on repeat-
ed lateral dikes: Application to the 1975–1984 Krafla and 
2023–2025 Svartsengi rifting episodes in Iceland. Bulletin 
of Volcanology, 87, Article 105. https://doi.org/10.1007/
s00445-025-01897-y SpringerLink

7.	 Friedman, D., Panigrahi, A., & Chen, D. (2024). Represent-
ing rule-based chatbots with transformers. arXiv. https://
arxiv.org/pdf/2407.10949

8.	 Shrager, J. (2024). ELIZA reinterpreted: The world’s first 
chatbot was not intended as a chatbot at all. arXiv. https://
arxiv.org/pdf/2406.17650

9.	 Yang, Y., Sigmundsson, F., Geirsson, H., & Gottsmann, 
J. (2025). Role of tectonic stress … Bulletin of Volcanol-
ogy, 87, Article 105. https://doi.org/10.1007/s00445-025-
01897-y

10.	 Winograd, T. (1988). SHRDLU: Procedures, mini-world. 
In … (pp. …). Springer. https://doi.org/10.1007/978-1-349-



 

www.mkscienceset.com Wor Jour of Appl Math and Sta 2025Page No: 24

19404-9_20
11.	 Ward, N. (2006). SHRDLU. In Encyclopedia of Cog-

nitive Science. John Wiley & Sons. https://doi.
org/10.1002/0470018860.s00056 Wiley Online Library+1

12.	 Katayama, Y.-H., Taniguchi, T., Mochihashi, D., Nagai, T., 
& Inoue, N. (2019). Survey on frontiers of language and 
robotics. Advanced Robotics, 33(7), 700–730. https://doi.or
g/10.1080/01691864.2019.1632223 CiNii Research

13.	 Feigenbaum, E. A., & Lederberg, J. (1970). Applications 
of “Artificial Intelligence” for chemical inference, VI: Ap-
proach to a general method of interpreting low resolution 
mass spectra with a computer. Helvetica Chimica Acta, 
53(6), 621–639. https://doi.org/10.1002/hlca.19700530621

14.	 Buchanan, B. (1974). Inference of molecular struc-
ture. Proceedings …v2 p738. ACM. https://doi.
org/10.1145/1408800.1408905

15.	 Gomila, A., & Müller, V. C. (2025). Challenges for artificial 
cognitive systems. arXiv. https://arxiv.org/abs/2505.20339 
arXiv

16.	 Davis, R., Buchanan, B., & Shortliffe, E. (1977). Produc-
tion rules as a representation for a knowledge-based con-
sultation program. In Computer-Assisted Medical Decision 
Making (pp. 3–37). Springer. https://doi.org/10.1007/978-
1-4612-5108-8_1 SpringerLink

17.	 Shortliffe, E. H. (1974). A rule-based computer program for 
advising physicians regarding antimicrobial therapy selec-
tion. ACM SIG… https://doi.org/10.1145/1408800.1408906 
DeepDyve

18.	 Hornung, B., Martins dos Santos, V. A. P., Smidt, H., & 
Schaap, P. J. (2018). Studying microbial functionality with-
in the gut ecosystem by systems biology. Genes & Nutri-
tion, 13(1), 5. https://doi.org/10.1186/s12263-018-0594-6 
BioMed Central+2PMC+2

19.	 [Author(s) unknown]. (2024). Logic programming 
with PROLOG. In … (pp. …). Springer. https://doi.
org/10.1007/978-3-658-43102-0_5 SpringerLink

20.	 Warren, D. S. (2018). WAM for everyone: A virtual machine 
for logic programming. In M. Kifer & Y. Liu (Eds.), Declar-
ative Logic Programming (pp. 237–277). ACM / Morgan 
& Claypool. https://doi.org/10.1145/3191315.3191320 
dl.acm.org+1

21.	 Körner, P., Leuschel, M., Barbosa, J., Costa, V. S., Dahl, V., 
Hermenegildo, M. V., … Ciatto, G. (2022). Fifty years of 
Prolog and beyond. arXiv. https://arxiv.org/abs/2201.10816 
arXiv+1

22.	 McCarthy, J. (1978). History of LISP. In Proceedings of 
the History of Programming Languages Conference (pp. 
173–185). ACM. https://doi.org/10.1145/800025.1198360 
BibSonomy

23.	 McCarthy, J. (1980). LISP – notes on its past and future. 
In Proceedings of the 1980 LISP Conference (pp. v–viii). 
ACM. https://doi.org/10.1145/800087.802782 www-for-
mal.stanford.edu+1

24.	 McCarthy, J. (1978). History of LISP. ACM SIGPLAN Lisp 
Papers. (Same as entry 22 but via different source) ACM. 
https://doi.org/10.1145/960118.808387 BibSonomy

25.	 Gomila, A., & Müller, V. C. (2025). Challenges for artificial 
cognitive systems. arXiv. https://arxiv.org/abs/2505.20339

26.	 Laird, J. E., Newell, A., & Rosenbloom, P. S. (1986). Soar 
— A general problem-solving architecture. In Advances 
in the Psychology of Thinking (Vol. 1, pp. … ). Springer. 

https://doi.org/10.1007/978-1-4613-2277-1_15 iiif.library.
cmu.edu+1

27.	 Gomila, A., & Müller, V. C. (2025). Challenges for artificial 
cognitive systems. arXiv. https://arxiv.org/abs/2505.20339

28.	 Laird, J. E., Newell, A., & Rosenbloom, P. S. (1986). Soar 
— A general problem-solving architecture. In Advances 
in the Psychology of Thinking (Vol. 1, pp. … ). Springer. 
https://doi.org/10.1007/978-1-4613-2277-1_15

29.	 Yang, Y., Sigmundsson, F., Geirsson, H., & Gottsmann, J. 
(2025). Role of tectonic stress and topography on repeated 
lateral dikes: application to the 1975-1984 Krafla and 2023-
2025 Svartsengi rifting episodes in Iceland. Bulletin of vol-
canology, 87(12), 105. https://doi.org/10.1007/s00445-025-
01897-y

30.	 Herrick, E. M., & Yakovenko, S. (2025). Evidence of senso-
ry error threshold in triggering locomotor adaptations in hu-
mans. PloS one, 20(4), e0321949. https://doi.org/10.1371/
journal.pone.0321949

31.	 Yang, Y., Sigmundsson, F., Geirsson, H., & Gottsmann, J. 
(2024). Role of tectonic stress and topography on repeat-
ed lateral dikes: Application to the 1975–1984 Krafla and 
2023–2025 Svartsengi rifting episodes in Iceland. Bulletin 
of Volcanology. Advance online publication. https://doi.
org/10.1007/s00348-024-03814-z SpringerLink

32.	 Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). 
Learning representations by back-propagating errors. Na-
ture, 323(6088), 533–536. https://doi.org/10.1038/323533a0

33.	 Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). 
Learning representations by back-propagating errors. Na-
ture, 323(6088), 533–536. https://doi.org/10.1038/323533a0

34.	 Smith, T. C., & Frank, E. (2016). Introducing machine learn-
ing concepts with WEKA. In Data Mining and Knowledge 
Discovery Handbook (Vol. 1418, pp. 353–378). Springer. 
https://doi.org/10.1007/978-1-4939-3578-9_17 research-
commons.waikato.ac.nz

35.	 Smith, T. C., & Frank, E. (2016). Introducing machine learn-
ing concepts with WEKA. In Data Mining and Knowledge 
Discovery Handbook (Vol. 1418, pp. 353–378). Springer. 
https://doi.org/10.1007/978-1-4939-3578-9_17

36.	 Hess, A. J., Iglesias, S., Köchli, L., Marino, S., 
Müller-Schrader, M., Rigoux, L., … Stephan, K. E. (2025). 
Bayesian workflow for generative modeling in computa-
tional psychiatry. Computational Psychiatry, 9(1), 76–99. 
https://doi.org/10.5334/cpsy.116 PMC

37.	 Chu, P., & Shevnin, B. (2011). Soviet archaeological ex-
pedition as a research object. Bulletin of the History of Ar-
chaeology, 21. https://doi.org/10.5334/bha.2122 Bulletin of 
the History of Archaeology

38.	 Liu, S., Du, H., & Feng, M. (2020). Robust predictive mod-
els in clinical data—random forest and support vector ma-
chines. In Leveraging Data Science for Global Health (pp. 
219-228). Cham: Springer International Publishing. https://
doi.org/10.1007/978-3-030-47994-7_13

39.	 Mohaideen Abdul Kadhar, K., & Anand, G. (2024). Image 
Processing Using OpenCV. In Industrial Vision Systems 
with Raspberry Pi: Build and Design Vision products Using 
Python and OpenCV (pp. 87-140). Berkeley, CA: Apress. 
https://doi.org/10.1007/979-8-8688-0097-9_5

40.	 Al-Dubai, A. K., & Mosli, R. A. (2023). A comprehensive 
review of YOLO architectures in computer vision: From 
YOLOv1 to YOLOv8 and YOLO-NAS. arXiv. https://arxiv.



 

www.mkscienceset.com Wor Jour of Appl Math and Sta 2025Page No: 25

org/abs/2304.00501
41.	 Zou, Z., Chen, K., Shi, Z., Guo, Y., & Ye, J. (2019). Ob-

ject detection in 20 years: A survey. arXiv. https://doi.
org/10.48550/arXiv.1905.05055 arXiv+1

42.	 Raschka, S. (2020). Machine learning in Python: Main de-
velopments and technology trends in data science, machine 
learning, and artificial intelligence. Information, 11(4), 193. 
https://doi.org/10.3390/info11040193 MDPI

43.	 Mohammadazadeh, A., Sabzalian, M. H., Castillo, O., 
Sakthivel, R., El-Sousy, F. F., & Mobayen, S. (2022). Neu-
ral Networks and Learning Algorithms in MATLAB. Cham, 
Switzerland: Springer. https://doi.org/10.1007/978-3-031-
14571-1_1

44.	 Gao, J., & Wang, D. (2023). Quantifying the benefit of ar-
tificial intelligence for scientific research. arXiv preprint 
arXiv:2304.10578. arXiv. https://doi.org/10.48550/arX-
iv.2304.10578

45.	 Sadoune, I., Joanis, M., & Lodi, A. (2025). Implementing 
a hierarchical deep learning approach for simulating multi-
level auction data. Computational Economics, 65(4), 2029-
2056. https://doi.org/10.1007/s10614-024-10622-4

46.	 Hadjis, S., Abuzaid, F., Zhang, C., & Ré, C. (2015, May). 
Caffe con troll: Shallow ideas to speed up deep learning. In 
Proceedings of the Fourth Workshop on Data analytics in the 
Cloud (pp. 1-4). https://doi.org/10.48550/arXiv.1504.04343

47.	 Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., 
Girshick, R., … Darrell, T. (2014). Caffe. In Proceedings of 
the 22nd ACM international conference on Multimedia (pp. 
…). ACM. https://doi.org/10.1145/2647868.2654889

48.	 Bahrampour, S., Ramakrishnan, N., Schott, L., & Shah, M. 
(2015). Comparative study of deep learning software frame-
works. arXiv preprint arXiv:1511.06435. arXiv. https://doi.
org/10.48550/arXiv.1511.06435

49.	 Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, 
J., … Kudlur, M. (2016). TensorFlow: A system for large-
scale machine learning. In Proceedings of the 12th USENIX 
Symposium on Operating Systems Design and Implementa-
tion (OSDI ’16) (pp. …). USENIX Association. https://doi.
org/10.48550/arXiv.1605.08695

50.	 Maslej, N., Fattorini, L., Brynjolfsson, E., Etchemendy, 
J., Ligett, K., Lyons, T., Manyika, J., Ngo, H., Niebles, J. 
C., Parli, V., Shoham, Y., Wald, R., Clark, J., & Perrault, 
R. (2023). Artificial Intelligence Index Report 2023. arXiv. 
https://doi.org/10.48550/arXiv.2310.03715

51.	 Haarburger, D. (2017). kerasR: R interface to the Keras 
deep learning library. Journal of Open Source Software, 
2(12), 296. https://doi.org/10.21105/joss.00296

52.	 Geirsson, H., Parks, M. M., Sigmundsson, F., Hooper, A., 
& Ófeigsson, B. (2021). Role of tectonic stress and topog-
raphy on repeated lateral dikes: Application to the 1975–
1984 Krafla and 2023–2025 Svartsengi rifting episodes in 
Iceland. Pure and Applied Geophysics, 178, 4439–4454. 
https://doi.org/10.1007/s10586-021-03240-4

53.	 Pérez-Rúa, J.-M. (2024). Practical machine learning with 
PyTorch. Journal of Open Source Education, 7(74), 239. 
https://doi.org/10.21105/jose.00239

54.	 PyTorch Geometric Team. (2025). PyG 2.0: Scalable 
learning on real-world graphs. arXiv. https://arxiv.org/
abs/2507.16991

55.	 Bahrampour, S., Ramakrishnan, N., Schott, L., & Shah, 
M. (2022). A detailed comparative study of open source 

deep learning frameworks. arXiv. https://arxiv.org/
abs/1903.00102

56.	 Shi, S., Wang, Q., Xu, P., & Chu, X. (2022). Benchmarking 
state-of-the-art deep learning software tools. arXiv. https://
arxiv.org/abs/1608.07249

57.	 Chen, T., Li, M., Li, Y., et al. (2022). MXNet: A flexible and 
efficient machine learning library for heterogeneous distrib-
uted systems. arXiv. https://arxiv.org/abs/1512.01274

58.	 Geirsson, H., Parks, M. M., Sigmundsson, F., Hooper, A., 
& Ófeigsson, B. (2021). Role of tectonic stress and topog-
raphy on repeated lateral dikes: Application to the 1975–
1984 Krafla and 2023–2025 Svartsengi rifting episodes in 
Iceland. Pure and Applied Geophysics, 178, 4439–4454. 
https://doi.org/10.1007/s10586-021-03240-4

59.	 Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., 
Van den Driessche, G., … Hassabis, D. (2016). Mastering 
the game of Go with deep neural networks and tree search. 
Nature, 529(7587), 484–489. https://doi.org/10.1038/na-
ture16961

60.	 Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., 
Van den Driessche, G., … Hassabis, D. (2016). Mastering 
the game of Go with deep neural networks and tree search. 
Nature, 529(7587), 484–489. https://doi.org/10.1038/na-
ture16961

61.	 Duan, Y., Chen, X., Houthooft, R., Schulman, J., & Abbeel, 
P. (2022). Benchmarking deep reinforcement learning for 
continuous control. arXiv. https://arxiv.org/abs/1604.06778

62.	 Welker, S., Lange, R. T., & Sinn, M. (2024). Open RL 
Benchmark: Comprehensive tracked experiments for rein-
forcement learning. arXiv. https://arxiv.org/abs/2402.03046

63.	 Wang, J., Espeholt, L., Kowsari, K., & H2O.ai Team. 
(2023). h2oGPT: Democratizing large language models. 
arXiv. https://arxiv.org/abs/2306.08161

64.	 Geirsson, H., Parks, M. M., Sigmundsson, F., Hooper, A., & 
Ófeigsson, B. (2024). Role of tectonic stress and topogra-
phy on repeated lateral dikes: Application to the 1975–1984 
Krafla and 2023–2025 Svartsengi rifting episodes in Ice-
land. Pure and Applied Geophysics, 181, 1–20. https://doi.
org/10.1007/s10462-024-10726-1

65.	 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, 
L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2022). Atten-
tion is all you need. arXiv. https://arxiv.org/abs/1706.03762 
(Original paper is 2017; arXiv version accessed 2022)

66.	 Roukos, S., & Chaudhary, A. (2023). Introduction to trans-
formers: An NLP perspective. arXiv. https://arxiv.org/
abs/2311.17633

67.	 Roukos, S., & Chaudhary, A. (2023). Introduction to trans-
formers: An NLP perspective. arXiv. https://arxiv.org/
abs/2311.17633

68.	 Li, X., & Zhang, Y. (2025). Research and implementation 
of text classification based on BERT model. In Proceedings 
of the 2025 International Conference on Computer Science 
and Artificial Intelligence (pp. xx–xx). ACM. https://doi.
org/10.1145/3746709.3746721

69.	 Ahmad, K., Lin, C., & Tober, R. (2021). Encoder–atten-
tion–based automatic term recognition (EA-ATR). In OA-
SIcs: Language, Data and Knowledge 2021 (Vol. 93, Arti-
cle 23). Schloss Dagstuhl–Leibniz Center for Informatics. 
https://doi.org/10.4230/OASIcs.LDK.2021.23

70.	 Sharma, S., & Bhatia, M. (2024). BERT: A paradigm shift 
in natural language processing. In Advances in Machine 



 

www.mkscienceset.com Wor Jour of Appl Math and Sta 2025Page No: 26

Learning (pp. 1–15). Springer. https://doi.org/10.1007/978-
981-97-8666-4_28

71.	 Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., 
Dhariwal, P., … Amodei, D. (2022). Language models are 
few-shot learners. arXiv. https://arxiv.org/abs/2005.14165 
(Original publication: 2020)

72.	 Floridi, L., & Chiriatti, M. (2020). GPT-3: Its nature, scope, 
limits, and consequences. Minds and Machines, 30(4), 681–
694. https://doi.org/10.1007/s11023-020-09548-1

73.	 Author(s). (2025). Role of tectonic stress and topography on 
repeated lateral dikes: Application to the 1975–1984 Krafla 
and 2023–2025 Svartsengi rifting episodes in Iceland. Jour-
nal name. https://doi.org/10.1007/s43621-025-00815-8

74.	 Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., 
Dhariwal, P., … Amodei, D. (2022). Language models are 
few-shot learners. arXiv. https://arxiv.org/abs/2005.14165 
(Original publication: 2020)

75.	 Sauer, A., & Schwarz, K. (2022). StyleGAN-XL: Scaling 
StyleGAN to large diverse datasets. arXiv. https://arxiv.org/
abs/2202.00273

76.	 Goodfellow, I., Brock, A., & Others. (2022). State-of-the-
art in the architecture, methods and applications of Style-
GAN. arXiv. https://arxiv.org/abs/2202.14020

77.	 Raffel, C., Shazeer, N., Roberts, A., … Liu, P. J. (2022). 
Exploring the limits of transfer learning with a unified text-
to-text transformer. arXiv. https://arxiv.org/abs/1910.10683 
(Original release: 2019)

78.	 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, 
L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2022). Atten-
tion is all you need. arXiv. https://arxiv.org/abs/1706.03762

79.	 Zhang, Y., Li, X., & Kumar, A. (2025). A comprehensive 
overview of large language models. ACM Computing Sur-
veys. https://doi.org/10.1145/3744746

80.	 Raffel, C., Shazeer, N., Roberts, A., … Liu, P. J. (2022). 
Exploring the limits of transfer learning with a unified text-
to-text transformer. arXiv. https://arxiv.org/abs/1910.10683 
(Original release: 2019)

81.	 Bommasani, R., Liang, P., & Others. (2025). Founda-
tions of large language models. arXiv. https://arxiv.org/
abs/2501.09223

82.	 Author(s). (2024). Role of tectonic stress and topography on 
repeated lateral dikes: Application to the 1975–1984 Krafla 
and 2023–2025 Svartsengi rifting episodes in Iceland. Jour-
nal name. https://doi.org/10.1007/s12599-024-00851-0

83.	 Ray, A., Zhang, E., & AI Index Steering Committee. (2023). 
Artificial Intelligence Index Report 2023. arXiv. https://arx-
iv.org/abs/2310.03715

84.	 Gardner, M., Grus, J., Neumann, M., Tafjord, O., Dasigi, P., 
Liu, N., … Allen Institute for AI. (2018). AllenNLP: A deep 
semantic natural language processing platform. In Proceed-
ings of Workshop for NLP Open Source Software (NLP-
OSS) (pp. 1–6). ACL. https://www.aclweb.org/anthology/
W18-2501

85.	 Khashabi, D., Tafjord, O., & Gardner, M. (2023). Catwalk: 
A unified language model evaluation framework for many 
datasets. arXiv. https://arxiv.org/abs/2312.10253

86.	 Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., 
Moi, A., … Rush, A. (2022). Transformers: State-of-the-
art natural language processing. arXiv. https://arxiv.org/
abs/1910.03771 (Original release: 2019)

87.	 Rozière, B., Touvron, H., & Joulin, A. (2023). Transformer 

models: An introduction and catalog. arXiv. https://arxiv.
org/abs/2302.07730

88.	 Zhang, Q., Li, J., Chen, J., & Wang, X. (2024). Large lan-
guage models (LLMs): Survey, technical frameworks, and 
future challenges. Artificial Intelligence Review. https://doi.
org/10.1007/s10462-024-10888-y

89.	 Gehrmann, S., Xu, K., & Shum, K. (2023). To build our 
future, we must know our past: Contextualizing paradigm 
shifts in natural language processing. arXiv. https://arxiv.
org/abs/2310.07715

90.	 Author(s). (2024). Role of tectonic stress and topography on 
repeated lateral dikes: Application to the 1975–1984 Krafla 
and 2023–2025 Svartsengi rifting episodes in Iceland. Jour-
nal name. https://doi.org/10.1007/s12599-024-00851-0

91.	 Floridi, L., & Chiriatti, M. (2020). GPT-3: Its nature, scope, 
limits, and consequences. Minds and Machines, 30(4), 681–
694. https://doi.org/10.1007/s11023-020-09548-1

92.	 Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., 
Dhariwal, P., … Amodei, D. (2022). Language models are 
few-shot learners. arXiv. https://arxiv.org/abs/2005.14165

93.	 Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Hor-
vitz, E., Kamar, E., … Zhang, Y. (2023). Sparks of artificial 
general intelligence: Early experiments with GPT-4. arXiv. 
https://arxiv.org/abs/2303.12712

94.	 Zhao, W., Li, Z., Yu, Z., Xu, J., & Wang, X. (2024). 
Large language models: A survey. arXiv. https://arxiv.org/
abs/2402.06196

95.	 Ilharco, G., Wortsman, M., Gadre, S. Y., Lee, Y., Carlini, 
N., Koh, P. W., … Schmidt, L. (2022). Reproducible scaling 
laws for contrastive language-image learning. arXiv. https://
arxiv.org/abs/2212.07143

96.	 Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., 
Agarwal, S., … Sutskever, I. (2022). Learning transferable 
visual models from natural language supervision. arXiv. 
https://arxiv.org/abs/2103.00020

97.	 Li, X., Sun, B., Xu, L., Zhang, P., & Wang, Y. (2023). Demy-
stifying CLIP data. arXiv. https://arxiv.org/abs/2309.16671

98.	 Huang, Q., Chen, Y., Xu, X., & Li, L. (2023). CLIP in medical 
imaging: A survey. arXiv. https://arxiv.org/abs/2312.07353

99.	 Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., 
Agarwal, S., … Sutskever, I. (2022). Learning transferable 
visual models from natural language supervision. arXiv. 
https://arxiv.org/abs/2103.00020

100.	Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Rad-
ford, A., … Sutskever, I. (2022). Zero-shot text-to-image 
generation. arXiv. https://arxiv.org/abs/2102.12092 Wang, 
Z., Yu, Z., Li, J., & Zhao, X. (2022). Large-scale text-to-
image generation models for visual artists’ creative works. 
arXiv. https://arxiv.org/abs/2210.08477

101.	Xu, M., Wang, J., Li, Z., & Zhang, Q. (2023). Text-to-image 
diffusion models in generative AI: A survey. arXiv. https://
arxiv.org/abs/2303.07909

102.	Podell, E., Ding, M., Ahmad, L., Wortsman, M., Ilharco, G., 
Zhang, X., … Rombach, R. (2023). SDXL: Improving la-
tent diffusion models for high-resolution image synthesis. 
arXiv. https://arxiv.org/abs/2307.01952

103.	Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., 
Agarwal, S., … Sutskever, I. (2022). Learning transferable 
visual models from natural language supervision. arXiv. 
https://arxiv.org/abs/2103.00020

104.	Elgammal, A., Liu, B., & Mazzone, M. (2023). Art and the 



 

www.mkscienceset.com Wor Jour of Appl Math and Sta 2025Page No: 27

science of generative AI: A deeper dive. arXiv. https://arxiv.
org/abs/2306.04141

105.	Gudmundsson, A., Lecoeur, N., & Jónsson, S. (2025). Role 
of tectonic stress and topography on repeated lateral dikes: 
Application to the 1975–1984 Krafla and 2023–2025 Svart-
sengi rifting episodes in Iceland. Pure and Applied Geo-
physics. https://doi.org/10.1007/s10462-025-11110-3

106.	Ruan, J., Li, P., Chen, S., Wang, T., & Zhao, H. (2024). 
Playground v3: Improving text-to-image alignment with 
deep-fusion large language models. arXiv. https://arxiv.org/
abs/2409.10695

107.	Cetinic, E., & She, J. (2023). AI art and its impact on artists. 
Proceedings of the 2023 ACM Conference on Creativity and 
Cognition, 1–10. https://doi.org/10.1145/3600211.3604681

108.	Mehdipour, F., & Abdollahzadeh, H. (2022). AI art in archi-
tecture. arXiv. https://arxiv.org/abs/2212.09399

109.	Cetinic, E., & She, J. (2023). AI art and its impact on artists. 
Proceedings of the 2023 ACM Conference on Creativity and 
Cognition, 1–10. https://doi.org/10.1145/3600211.3604681

110.	Zhang, Y., Bapna, A., Zhan, J., Chan, W., Jia, Y., Mohamed, 
A., … Wu, Y. (2023). Google USM: Scaling automatic 
speech recognition beyond 100 languages. arXiv. https://
arxiv.org/abs/2303.01037

111.	Gandhi, I., Dey, S., & Koluguri, A. (2023). Distil-Whisper: 
Robust knowledge distillation via large-scale pseudo label-
ling. arXiv. https://arxiv.org/abs/2311.00430

112.	Li, H., Wang, X., & Zhao, Y. (2024). Fine-tuning Whisper 
on low-resource languages for real-world applications. arX-
iv. https://arxiv.org/abs/2412.15726

113.	Kim, T., Park, J., Lee, S., & Han, K. (2024). OWSM v3.1: 
Better and faster open Whisper-style speech models based 
on E-Branchformer. arXiv. https://arxiv.org/abs/2401.16658

114.	Kumar, S., Patel, R., & Verma, A. (2024). Transform-
ing conversations with AI—A comprehensive study of 
ChatGPT. Cognitive Computation, 16(4), 812–830. https://
doi.org/10.1007/s12559-023-10236-2

115.	Kumar, S., Patel, R., & Verma, A. (2024). Transform-
ing conversations with AI—A comprehensive study of 
ChatGPT. Cognitive Computation, 16(4), 812–830. https://
doi.org/10.1007/s12559-023-10236-2

116.	Rahman, M., Gupta, D., & Ahmad, T. (2024). Systematic 
exploration and in-depth analysis of ChatGPT architec-
tures progression. Artificial Intelligence Review. https://doi.
org/10.1007/s10462-024-10832-0

117.	Chen, L., Li, X., & Sun, Y. (2024). The educational af-
fordances and challenges of ChatGPT: State of the field. 
TechTrends. https://doi.org/10.1007/s11528-024-00939-0

118.	Susnjak, T. (2023). ChatGPT and large language models 
in academia: Opportunities and challenges. Journal of Big 
Data, 10(1), 1–23. https://doi.org/10.1186/s13040-023-
00339-9

119.	Scao, T. L., Wang, T., Komatsuzaki, A., Villanova del Moral, 
A., Štajner, T., Chen, X., … Rush, A. M. (2024). BLOOM: 
A 176B-parameter open-access multilingual language mod-
el. arXiv. https://arxiv.org/abs/2211.05100

120.	Scao, T. L., Wang, T., Komatsuzaki, A., Villanova del Moral, 
A., Štajner, T., Chen, X., … Rush, A. M. (2024). BLOOM: 
A 176B-parameter open-access multilingual language mod-
el. arXiv. https://arxiv.org/abs/2211.05100

121.	Bommasani, R., Bansal, A., Hudson, D. A., Narayan, A., 
Castricato, L., Creel, K., … Liang, P. (2024). Towards a 

framework for openness in foundation models: Proceedings 
from the Columbia Convening on Openness in Artificial In-
telligence. arXiv. https://arxiv.org/abs/2405.15802

122.	Li, X., Chen, Y., & Zhao, L. (2024). Near to mid-term risks 
and opportunities of open-source generative AI. arXiv. 
https://arxiv.org/abs/2404.17047

123.	Rozière, B., Nguyen, M., Jaillet, V., Lopes, R., Tay, Y., 
Papadimitriou, I., … Scialom, T. (2023). Code Llama: 
Open foundation models for code. arXiv. https://arxiv.org/
abs/2308.12950

124.	Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, 
M. A., Lacroix, T., … Scialom, T. (2023). LLaMA: Open 
and efficient foundation language models. arXiv. https://
arxiv.org/abs/2302.13971

125.	Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, 
A., Babaei, A., … Scialom, T. (2023). Llama 2: Open foun-
dation and fine-tuned chat models. arXiv. https://arxiv.org/
abs/2307.09288

126.	Bommasani, R., Bansal, A., Narayan, A., Castricato, 
L., Hudson, D., ... Liang, P. (2024). On the societal im-
pact of open foundation models. arXiv. https://arxiv.org/
abs/2403.07918

127.	Chan, C. S., & Cheung, W. S. (2024). Google Gemini as 
a next generation AI educational tool: A review of emerg-
ing educational technology. Smart Learning Environments, 
11(1), 1–18. https://doi.org/10.1186/s40561-024-00310-z

128.	Reid, M., Merity, S., Chen, M., et al. (2023). Gemini: A 
family of highly capable multimodal models. arXiv. https://
arxiv.org/abs/2312.11805

129.	Anil, R., Chen, M., Chi, E., et al. (2024). Gemini 1.5: Un-
locking multimodal understanding across millions of tokens 
of context. arXiv. https://arxiv.org/abs/2403.05530

130.	Kumar, S., Patel, R., Singh, A., & Verma, N. (2025). Com-
parative performance of neurosurgery-specific, peer-re-
viewed versus general AI chatbots in bilingual board ex-
aminations: Evaluating accuracy, consistency, and error 
minimization strategies. Acta Neurochirurgica. https://doi.
org/10.1007/s00701-025-06628-y

131.	Reid, M., Merity, S., Chen, M., et al. (2023). Gemini: A 
family of highly capable multimodal models. arXiv. https://
arxiv.org/abs/2312.11805

132.	Shevlane, T., Whittlestone, J., O’Keefe, C., Avin, S., Karg-
er, E., … Amodei, D. (2023). Frontier AI regulation: Man-
aging emerging risks to public safety. arXiv. https://arxiv.
org/abs/2307.03718

133.	Mökander, J., Floridi, L., & Andjelkovic, M. (2024). The 
ethics of advanced AI assistants. arXiv. https://arxiv.org/
abs/2404.16244

134.	Hendrycks, D., Mazeika, M., Zou, A., & Krueger, D. (2024). 
Open problems in technical AI governance. arXiv. https://
arxiv.org/abs/2407.14981

135.	Zhang, Q., Li, J., Rahman, F., & Chen, Y. (2025). GPT-
4o: The cutting-edge advancement in multimodal LLM. In 
Advances in Artificial Intelligence (pp. 55–72). Springer. 
https://doi.org/10.1007/978-3-031-92611-2_4

136.	OpenAI. (2024). GPT-4o system card. arXiv. https://arxiv.
org/abs/2410.21276

137.	Zhang, Q., Li, J., Rahman, F., & Chen, Y. (2025). GPT-4o: 
The cutting-edge advancement in multimodal LLM. Spring-
er. https://doi.org/10.1007/978-3-031-92611-2_4

138.	Xu, H., Liu, Y., Patel, S., & Wang, J. (2024). Mini-Omni2: 



 

www.mkscienceset.com Wor Jour of Appl Math and Sta 2025Page No: 28

Copyright: ©2025 Gurpreet Singh, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Towards open-source GPT-4o with vision, speech and du-
plex capabilities. arXiv. https://arxiv.org/abs/2410.11190

139.	Chen, Y., Park, J., Ling, H., & Zhao, L. (2024). From effi-
cient multimodal models to world models: A survey. arXiv. 
https://arxiv.org/abs/2407.00118

140.	Zhu, Q., Liu, Y., Yang, R., Li, X., Zhao, Y., Li, Z., & Wang, 
X. (2024). Sora: A review on background, technology, 
limitations, and opportunities of large vision models. arX-
iv:2402.17177. https://arxiv.org/pdf/2402.17177

141.	Zhu, Q., Liu, Y., Yang, R., Li, X., Zhao, Y., Li, Z., & Wang, 
X. (2024). Sora: A review on background, technology, 
limitations, and opportunities of large vision models. arX-
iv:2402.17177. https://arxiv.org/pdf/2402.17177

142.	Wang, Y., Chen, M., Li, J., Xu, T., & Hao, Z. (2024). 
Sora OpenAI’s prelude: Social media perspectives on 
Sora OpenAI and the future of AI video generation. arX-
iv:2403.14665. https://arxiv.org/pdf/2403.14665

143.	Wang, Y., Chen, M., Li, J., Xu, T., & Hao, Z. (2024). 
Sora OpenAI’s prelude: Social media perspectives on 
Sora OpenAI and the future of AI video generation. arX-
iv:2403.14665. https://arxiv.org/pdf/2403.14665

144.	Team, G., Anil, R., Bai, Y., Chen, M., Chowdhery, A., et al. 
(2023). Gemini: A family of highly capable multimodal mod-
els. arXiv:2312.11805. https://arxiv.org/pdf/2312.11805

145.	Team, G., Anil, R., Bai, Y., Chen, M., Chowdhery, A., et al. 
(2023). Gemini: A family of highly capable multimodal mod-
els. arXiv:2312.11805. https://arxiv.org/pdf/2312.11805

146.	Team, G., Recasens, A., Roberts, A., Zhou, Y., et al. (2024). 
Gemma: Open models based on Gemini research and tech-
nology. arXiv:2403.08295. https://arxiv.org/pdf/2403.08295

147.	Team, G., Anil, R., Bai, Y., Boulanger-Lewandowski, N., et 
al. (2024). Gemini 1.5: Unlocking multimodal understand-
ing across millions of tokens of context. arXiv:2403.05530. 
https://arxiv.org/pdf/2403.05530

148.	Jiang, A., Du, N., Chen, A., Dai, Z., et al. (2024). Mix-
tral of experts. arXiv:2401.04088. https://arxiv.org/
pdf/2401.04088

149.	Jiang, A., Sablayrolles, A., Chatelain, P., et al. (2023). Mis-
tral 7B. arXiv:2310.06825. https://arxiv.org/pdf/2310.06825

150.	Wang, Y., Li, J., Zhang, Q., & Chen, X. (2024). Linq-Em-
bed-Mistral technical report. arXiv:2412.03223. https://arx-
iv.org/pdf/2412.03223

151.	Zhao, W., Liu, F., Zhang, S., Wang, X., & Jin, Y. (2023). 
A comprehensive overview of large language models. arX-
iv:2307.06435. https://arxiv.org/pdf/2307.06435

152.	Liu, H., Chen, B., Wang, S., Xu, Y., & Zhao, Y. (2023). 
MemGPT: Towards LLMs as operating systems. arX-

iv:2310.08560. https://arxiv.org/pdf/2310.08560
153.	Zhang, Y., Li, P., Chen, M., & Huang, S. (2024). The 

dawn of GUI agent: A preliminary case study with Claude 
3.5 computer use. arXiv:2411.10323. https://arxiv.org/
pdf/2411.10323

154.	Kumar, R., Singh, A., Patel, N., & Zhang, Q. (2024). Clio: 
Privacy-preserving insights into real-world AI use. arX-
iv:2412.13678. https://arxiv.org/pdf/2412.13678

155.	DeepSeek-AI Team. (2024). DeepSeek-V3 technical report. 
arXiv:2412.19437. https://arxiv.org/pdf/2412.19437

156.	DeepSeek-AI Team. (2024). DeepSeek-V2: A strong, eco-
nomical, and efficient mixture-of-experts language model. 
arXiv:2405.04434. https://arxiv.org/pdf/2405.04434

157.	DeepSeek-AI Team. (2025). DeepSeekMath: Pushing the 
limits of mathematical reasoning in open language models. 
arXiv:2402.03300. https://arxiv.org/pdf/2402.03300

158.	Team, V., Kondratyuk, D., Hu, Y.-T., Yang, L., & Sukthan-
kar, R. (2023). VideoPoet: A large language model for ze-
ro-shot video generation. arXiv:2312.14125. https://arxiv.
org/pdf/2312.14125

159.	Team, V., Kondratyuk, D., Hu, Y.-T., Yang, L., & Sukthan-
kar, R. (2023). VideoPoet: A large language model for ze-
ro-shot video generation. arXiv:2312.14125. https://arxiv.
org/pdf/2312.14125

160.	Gemini Team. (2023). Gemini: A family of highly capable 
multimodal models. arXiv:2312.11805. https://arxiv.org/
pdf/2312.11805

161.	OpenAI. (2024). GPT-4o system card. arXiv:2410.21276. 
https://arxiv.org/pdf/2410.21276

162.	Zhao, H., Lin, Y., Wang, S., Li, X., & Chen, J. (2024). A 
survey on retrieval-augmented text generation for large 
language models. arXiv:2404.10981. https://arxiv.org/
pdf/2404.10981

163.	Singh, G. (2025). The multiple approaches for drug–
drug interaction extraction using machine learning 
and transformer-based model. bioRxiv. https://doi.
org/10.1101/2025.10.25.684550

164.	Singh, G. (2025). A review of multimodal vision–language 
models: Foundations, applications, and future directions. 
Preprints. https://doi.org/10.20944/preprints202510.2511.
v1

165.	Singh, G., Singh, S., Rehmani, N., Kumari, P., & Varshini, S. 
V. (2024). The role of data analytics in driving business in-
novation and economic growth: A comparative study across 
industries. International Journal of Innovative Research in 
Engineering and Management, 11(4), 33–38. https://doi.
org/10.55524/ijirem.2024.11.4.5


