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[Abstract )
1 present a comprehensive analytical investigation of semi-discrete time-stepping methods applied to Hamiltonian
systems in two spatial dimensions. This study explores the dynamics of a particle subjected to five distinct potential
functions, encompassing both continuous potentials with one discretized dimension and fully discrete potentials
defined on a two-dimensional lattice. The semi- discretization schemes combine continuous evolution for momenta
(and one spatial coordinate in some cases) with probabilistic hopping rules for the discrete spatial variables. For
each potential, I analyze the preservation of inherent discrete symmetries (including reflection, translation, and
permutation), the behavior of conserved or invariant quantities, the characteristics of fixed points, and the properties
of the probabilistic transitions governing the discrete motion. This comparative analysis across a range of potential
landscapes provides valuable insights into the applicability and dynamical features of such hybrid discretization

techniques for modeling physical systems with various forms of discrete symmetry.

J

Keywords: Semi-discrete Dynamics, 2D Lattice, Cosine Potential, Symmetry, Average Drift, Diffusion, Permutation Symmetry,

Discrete Symmetry, Potential Function.

Introduction

Semi-discretization offers a polrful approach to modeling phys-
ical systems by treating some variables discretely while others
remain continuous. Preserving the inherent discrete symmetries
of these systems is crucial for accurate and physically relevant
numerical methods. This paper presents an analytical study of
semi-discrete time-stepping methods applied to a particle in two
dimensions, exploring their behavior across five distinct poten-
tial functions exhibiting various discrete symmetries. This meth-
odology combines Euler’s method for continuous evolution with
probabilistic hopping for discrete spatial coordinates. For each
potential, I analyze symmetry preservation, conserved quanti-
ties, fixed points, and the characteristics of the probabilistic tran-
sitions. This work aims to provide insights into the dynamics of
hybrid discretization techniques for Hamiltonian systems with
diverse discrete symmetries.

Analysis of Semi-Discrete Dynamics in a Potential with
Mixed Polynomial and Sinusoidal Contributions

Solving Methodology

The solving methodology for this potential involves first
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semi-discretizing the Hamiltonian by treating the x-coordi-
nate as discrete and applying Euler’s method to the continuous
variables. The discrete x-coordinate is updated probabilistical-
ly based on the x-momentum. Analytical investigations then
focus on examining the symmetries of the potential and the
semi-discrete map, analyzing the conservation of energy using
the derived update rules, identifying fixed points by solving the
resulting algebraic equations, and characterizing the expected
behavior of the probabilistic stepping process [1, 2].

Semi-Discretization Methodology
The Potential Funciton:

V(x,y) = Asin*(ax) + B(x* + Cx?) + Dsin®(by) + E(y* + Fy*)

Discretization of the x-Coordinate

For the discretization of the x-coordinate, a common and often
convenient approach is to use a uniform grid. You can define the
discrete x-coordinate as:

X, = 1Ax

where:

e iisaninteger (..., —2, -1, 0, 1, 2, ...) representing the index
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of the discrete point.
e Ax is the grid spacing, which is a positive constant repre-
senting the distance betlen adjacent discrete points.

Implications of this Discretization

e The particle’s position in the x-direction will only be allold
to take on these discrete values.

*  Ax becomes a parameter in yThis system that you will need
to choose. The choice of Ax can influence the accuracy of
yThis semi-discrete approximation compared to the orig-
inal continuous system. A smaller Ax typically leads to a
finer resolution and potentially better accuracy but might
also increase the computational effort if you Ire to simulate
this numerically. For analytical work, Ax will appear as a
parameter in These equations.

Continuous Evolution Using Euler’s Method
Let the Hamiltonian of the system be given by:

bl 2
H(x,y, px, py) = % + % + Asin?(ax) + B(x* 4+ Cx?) + Dsin®(by) + E(y* + Fy?)
During the continuous evolution step, the x-coordinate is held
fixed at a discrete value xi = iAx. Thus, the effective Hamiltonian
for this step is:

P
H(x:,, pa, py) = % + % + Asin®(ax;) + B(x} + Cx?) + Dsin’(by) + E(y* + Fy?)
I use Hamilton’s equations of motion: § = 9 and p = —%%.

For the y-coordinate

2
TR S B
apy  Apy\2m  2m m

. _9H 9
=" T oy

Using the chain rule:

(- -+ Dsin®(by) + E(y* + Fyz))
;—ysinz(b}f} = 2sin(by) cos(by) - b = bsin(2by)

a%{y“ +Fy?) = 4 + 2Fy = 2y(2" + F)
py = —(bDsin(2by) + 2Ey(2y2 +F))

For the x-coordinate and its momentum:

on _2 (A sin?(ax) + B{x* + szj)

i v NN

x=x;

% sin? (ax) = 2sin{ax) cos(ax) - a = asin(2ax)
a

5.0 44 Cx?) = 403 +2Cx
X

Pr = —(aAsin(2ax;) + B(4x} +2Cx;))
Now, applying Euler’s method for a time step h:
Ynt1 22 Yn Hhy(tn) = yu + F:inh
Pyni1 & Pyn + hpy(ty) = pyn — h(bD sin(2by,) + 2Ey, (243 + F))
Prent1 = P+ hpx(tn) = pan — h(aA sin(2ax;) + 3(41’? +2Cx;))

Here, xi remains constant during this continuous update from
timenton+ 1.

Probabilistic Update of the Discrete x-Coordinate

The probabilistic update of the discrete x-coordinate i from in
to int+1 is governed by the value of
nn, defined as:
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where p_ +1 is the x-momentum after the continuous Euler up-
date, h is the time step, m is the mass of the particle, and Ax is
the grid spacing.

The probability of hopping to neighboring sites is then deter-
mined as follows:

**Case 1: n > 0** (Indicates a tendency for the particle to
move in the positive x-direction) The probability of hopping to
the next grid point i, + 1 is:

. . . . xnt1h
Plipy1 = in +1) = min(1, [gu]) = mm(l,%)

The probability of staying at the current grid point i is:

. ‘ . . _ h
Plipsr = in) =1 — Pligsy =in+1) =1— mm(l, %)

The probability of hopping to the previous grid point i — 1 is:
P(qu =in+1)=0
**Case 2: n < 0** (Indicates a tendency for the particle to
move in the negative x-direction) The probability of hopping to
the next grid point in + 1 is:
P{fn-i—l =in+1)=0
The probability of staying at the current grid point i_ is:
) =1—min (1, 77'%;31’;?)
The probability of hopping to the previous grid point in — 1 is:
Pliysy =iy — 1) = min(1, [5a]) = min(l__ p;:;_g;h ) = min(l__ _p;;,_;;h)
**Case 3: 1= 0** (Indicates no tendency for the particle to
move in either x-direction based on momentum)

The probability of hopping to the next grid pointi_+ 1 is:
Pliyg1 =in+1) =0

Pant1h

Plinsr =in) =1— Pligyg =in—1) =1— min(l, sl

The probability of staying at the current grid point i _is:

Piyq = fln) =1

The probability of hopping to the previous grid pointi — 1 is:
P{£Jr+l =iy — 1) =0

This probabilistic update completes one time step of the
semi-discretization methodology for the first potential function.

Analysis

Symmetry Analysis

I start with the reflection symmetry about the y-axis, where
I consider the transformation x — —x. In the context of This
semi-discretization, this corresponds to the discrete index i —
—1, s0 xi = iAX becomes x—i = —iAx = —(1Ax) = —xi.

The first step is to see how the potential function behaves under
this transformation. Can you substitute —x for x in the expression
for V (x, y) and see if V (—x, y) is equal to V (x, y)?

The potential function is:

V(x,y) = Asin?(ax) + B(x* + Cx?) + Dsin®(by) + E(y* + Fy?)
Substitute —x for x:

V({—x,y) = Asin®(a(—x)) + B{{—x)* + C(—x)?) + Dsin®(by) + E(y* + Fy?)
To show that the potential V(x, y) is symmetric under the reflec-
tion x — —X, | substitute —x into the potential function:

V(—x,y) = Asin*(a(—x)) + B((—x)* + C(—x)?) + Dsin®(by) + E(y* + Fy*)
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Using the properties that sin(—z) = — sin(z) and thus

sin’(—z) = (— sin(z))* = sin*(z), and that(—x)* = x4 and

(—x)* = x2, I get:

V(—x,y) = A(sin(ax))? + B(x* + Cx?) + Dsin?(by) + E(y* + Fy?)
V(—x,y) = Asin®(ax) + B(x* + Cx?) + Dsin®(by) + E(y* + Fy?)

Thus, I can see that V (—x, y) = V(X, y), which confirms that the

potential is symmetric under reflection about the y-axis.

Next, I analyze how the probabilistic update of the discrete
x-coordinate behaves under the transformations i — —i_and
P, — P, Recall that n = =4 Under these transfor-
mations, 1 becomes 1= >0 = —n Now, I consider the
probabilities:
If, before transformation, n_ > 0:

Pliys1 = iy +1) = min(1,1,)

P("JH»l =in — 1) =0

After transformation, n < 0, and the index in becomes —in. A
hop to in + 1 corresponds to a hop to —in — 1, and a hop to in — 1
corresponds to a hop to —in + 1. Forn <0:

Pliyig=—iy+1) =0
Pliy1 = —in — 1) = min(1,] — yu|) = min(L, 7,)
I'see that the probability of hopping from in to i + 1is the same
as the probability of hopping from —i to —i — 1 =—(1 + 1),
which respects the reflection.
Now consider if, before transformation, n < 0:

Pligs1 =in+1)=0

P(in-i—l - 1"n - 1) - min(l_, |’hi|) - min{l, _fb!)
After transformation, n > 0:

Pliyy1 = —in +1) = min(1, | — 4a|) = min(1, —i,)
P{f1r+l - _f” - 1) =0

Here, the probability of hopping from in to in — 1 is the same as
the probability of hopping fromi to—i +1=—(in— 1), again
respecting the reflection.

Finally, ifn, =0, thenn, =0, and the particle stays at the current
index in both cases (i, +1 =1,
andi +1=-1 ).

I have shown that the potential function V(X, y) is symmetric
under the reflection x — —x. In the semi-discretized system, this
corresponds to the transformation of the discrete index i — —i
and the momentum p_— —p_. This analysis of the probabilistic
X X
update rule for the x-coordinate revealed that the probabilities of
hopping to reflected states are equal, thus the semi-discretization
respects the reflection symmetry about the y-axis in a statistical

sense.

To show that the potential V (X, y) is symmetric under the reflec-
tion y — —vy, I substitute —y into
the potential function:
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Vix,—y) = Asin?(ax) + B(x* + Cx®) + Dsin?(b(—y)) + E((—y)* + F(—y)%)

Using the properties that sin(—z) = —sin(z) and thus sin®(—z) = (—sin(z))? = sin?(z), and that
(=p)* =y*and (—y)* =y 1 get:

V(x,—y) = Asin®(ax) + B(x* + Ca%) + D(sin(by)* + E(y* + Fy*)

V(x, —y) = Asin®(ax) + B(x* + C2?) + Dsin®(by) + E(y* + Fy?)

Thus, I can see that V (x, —y) =V (X, y), which confirms that the
potential is symmetric under reflection about the x-axis.

Next, I look at the continuous evolution with the transformed
variables y — —y and py — —py, starting from a state (i, ~y,,
P, *pyn) at time n.

Using the Euler update rules: For the y-coordinate:

(=Pyn) r
‘I-fn-f-l - (_‘V}z] + Tl,mh = —{y” — %h) - _,Vn+l

For the y-momentum:
p_f,ur+l = {_Pyn) — h(bDsin(2b(—y,)) + ZE{_er){z(_yn)z +F))

Since sin(—z) = — sin(z) and (—y)? = y?, this becomes:
p;,1+1 = —Pyn — h(bD(— Sin(Zber)) - ZE,VH (Zyﬁ + F))

Pyni1 = —Pyn + hbD sin(2by, ) + 2hEy, (2y2 +F)

Now I look at —p__+1:
—Pyn+1 = _(P_I,Hr — h(bDsin(2by, ) + ZE.VH(ZF% +F)).

—Pun+1 = —Pyn -+ hbD sin(2byn) + 2hEya (2y; + F)
I see that p=pyn+1.
For the x-momentum, the transformation y — —y does not di-
rectly affect the update rule, so
P’ =pxn+l1.
xn+1
To verify the symmetry of the continuous evolution under the
reflectiony — —yandp — P, I
recall the Euler update rules:

p
Yut1 = Yn + %h

Pyn+1 = Pyn — h(bD Sil“l(Zby”) + 2Eyn (Zyﬁ +F))
Pxn+1 = Pan — h{a_f‘:l sin(Zax;) —+ B{.glx-? + ZCJ’!))

Now, consider a state at time n transformed as (i, =y, P, —
p...)- Applying the update rules to this transformed state yields:

Pun

(_ pyn) h Fyn
m m

= _{er +

Vg1 = (—yn) + h) = —Yni1

Pyns1 = (—Pyn) — R(bD sin(2b(—yn)) + 2E(—yn)(2(—yn)* +F))
Using sin(—z) = — sin(z), I have:
Pys1 = —Pyn — h(bD(— sin(2by,,)) — 2Ey,(2y;, + F))

Plust = —Pyn + hbD sin(2byn) + 2hEyn(2y;, + F)

I also found that —pyn+1 is:

—pyn+1 = —(pyn — h(bD sin(2by,,) + 2Ey, (2y;; + F))) = —py, + hbDsin(2by, ) + 2hEy, (2y3 + F)

Thus, p’ =—p +1. The update rule for p_ +1 remains unchanged
i yn xn

as it does not depend on y or p . These results show that the con-

tinuous evolution using Euler’s method respects the reflection

symmetry about the x-axis.
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I have established that the potential and the continuous evolution
are symmetric under reflection about the x-axis. Now, I consider
the probabilistic update of the x-coordinate.

The probability of hopping in the x-direction depends on the pa-
rameter 1, defined as:

; Pans1 b
In = M- Ax
I need to examine how pxn+1 is affected by the transformation y

— —y and py — —py. From the Euler update rule for px, I have:
Pxn+1l = Paxn — h(aA sin(Zax!-) + B{éb."? + QCJ’!-))

I can observe that this equation for p  , depends on:

s p,,: the x-momentum at the current time step.

e h: the time step size.

* a, A, B, C: parameters of the potential function related to
the x-component.

*  x; the discrete x-coordinate, which is not transformed under

y—=7y

The transformation y — —y and p, = 7P, does not appear in
the update rule forp .. Therefore, the value of p,,., femains
unchanged under this transformation.

Since n, depends directly onp_ ., and other constant parameters
(h, m, Ax), nn will also remain unchanged. As the probabilities
of hopping in the x-direction are determined solely by n , these
probabilities will also be unaffected by the transformation y —

—y and p, = P,

Therefore, the probabilistic update for the x-coordinate respects
the reflection symmetry about the x-axis.

To analyze the translational symmetry in x, I substitute x +a_for
x in the potential function:
Vix+ay,y) = Asin®(a(x +ay)) + B{(x +ay)* + Clx +ax)?) + Dsin®(by) + E(y* + Fy?)
Expanding the terms involving x:
sin®(a(x + ay)) = sin’(ax + aa,)

(x+a:)* = x* + 430, + 62702 + 4xad + a?
(x +ax)? = 22 + 2xay + a2

Substituting these back into the potential:

Vix+ay,y) = Asin®(ax +an,) + B{x¥ + 4x3a, + 62202 + dxad + af + Cx? + 2Cxa, + Cal) + Dsin®(by) + E(y* + Fy?)
For V (x + ax, y) to be equal to V (x, y) = A sin*(ax) + B (x* +
Cx?) + D sin*(by) + E (y* + Fy?) for any arbitrary ax, the follow-
ing conditions would need to hold:

Asin®(ax + aay) = Asin®(ax)

B(x* + 4x*a, + 6x%a2 + 4xa® + a% + Cx® 4 2Cxa, + Ca?) = B(x* + Cx?)

The first condition requires aax = nz for some integer n, which
means ax cannot be arbitrary unless A = 0. The second condition
requires all the terms involving ax to be zero for any x, which is
only true if B=10 and ax = 0.

Therefore, in general, V (x + a, y)# V (X, y) for an arbitrary
constant ax. This means the potential does not exhibit transla-

tional symmetry in the x-direction.

To analyze the translational symmetry in y, I substitute y + ay for
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y in the potential function:
V(x,y+ay) = Asin?(ax) + B(x* + Cx?) + Dsin®(b(y + ay)) + E((y + a,)* + F(y +a,)?)

Expanding the terms involving y:
sin®(b(y + ay)) = sin?(by + bay)

(v +ay)* = v* + 4y°a, + 6y2a2 + dya + a,

(y+ .szy)2 = y2 + 2yay + aﬁ
Substituting these back into the potential:

(5od 4 B0z + A + 5+ Cofip+ S0.hg + o fip + )7 + (P + hg) s @ + (10 + )g + (w0}, us 7 = (Fu )
For V (x, y + ay) to be equal to V (X, y) = A sin*(ax) + B (x* +
Cx?) + D sin*(by) + E (y* + Fy?) for any arbitrary a, the follow-
ing conditions would need to hold:

D sin?(by + bay) = D sin®(by)

E(y* + 4y3ay + 6y2a§ + 4yu§ + a3 + Fy? + 2Fyay + Puﬁ) = E(y* + Fy?)

Similar to the x-translation case, these conditions are generally
not met for an arbitrary a, unless D=0 and E = 0.

Therefore, in general, V (x, y + ay) ~ V (X, y) for an arbitrary
constant a . This means the potential does not exhibit transla-
tional symmetry in the y-direction.

Conservation of Energy
I analyze the change in the continuous part of the Hamiltonian
Hc over one time step. At time n, [ have:

2 2
H.(n) = % + %’t’ + Asin®(ax;) + B(x} + Cx?) + Dsin®(by,) + E(y% + Fy?)

At time n + 1, using the Euler u%date rules, I have:
Yn+1 = Yu + %h
Pyn+1 = Pyn — h(bD sin(2byy) + 2Eyy (Zy% +F))
Pxni1 = Pan — h(aAsin(2ax;) + B(4x? +2Cx;))
The Hamiltonian at time n + 1 is:
Pons

2
P . .
H/(n+1) = 7;’;":1 T Asin®(ax;) + B(x} + Cx?) + Dsin?(by, 1) + E(yh 1 + Fy2,1)

Substituting the update rules:
1 2
Hen+1) = 5 - (pm — h(aAsin(2ax;) + B(4x? + 2Cx,-)))
1 4 ) 2
+ 5, (Pon = (D sin(2by,.) + 2By (297 + F)) )
+Asin2(uxi) + B(x? + Cx%) + Dsinz(b(y,, + %h)) + E((y,, + p;”/:’h)4 + F(yn + %h)z)

Expanding the squared terms:

Prii1  Phi— 2pah(aAsin(2ax;) + B(4x3 + 2Cx;)) + h2(aAsin(2ax;) + B(4x} 4 2Cx;))?
2m 2m

pﬁw B oy — 2Pyl (bD sin(2by) + 2Eyu (2% + F)) + h2(bD sin(2byy) + 2Ey, (2y3 + F))?
o2m 2m

By comparing H (n + 1) with H (n), it is clear that due to the
terms proportional to h and h2 in the kinetic energy part, and
also due to the non-linearity of the potential terms in y, H (n +
1)/=Hc(n) in general. The change in energy over one time step
is of the order of h. Therefore, Euler’s method is not energy-con-
serving for this system.

The expected potential energy at time n + 1, denoted as (Vn+1),
given the particle was at discrete position i at time n, can be ex-
pressed as a lighted sum of the potential energies at the possible
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next positions (i + 1, i — 1, i), with the lights being the corre-
sponding probabilities of hopping. Let i . be the y-coordinate

after the continuous Euler update. Then:
(V1) = Plins1 =i+ in = )V (xip1, Y1) + Plinis =1 = i = )V(xi-1, yus1) + Plins1 = ilin = )V (xi, yni1)

I have the following cases for the hopping probabilities based
on 7, M'

**(gge |- Tln>0**
(V1) = min(L5)V (Xis1, Y1) + 0 V(X1 Yui1) +
*+Case 2: < 0

(Virr) = 0- V(xisr, Y1) +min(L [ )V (¥i-1, Ynt1) + (1 — min(1, [, )V (
**Case 3: nqn = 0**

(Var1) = 0- V(Xig1, Yns1) +0- VX1, Yni1) +1- V(¥ yny1) =

(1= min(L, 1))V (%, Yns1)

Xi, yn+1)

V(i Ynt1)
where V(xj,y,41) for j € {i —1,i,i +1} is given by:

V(xj,yns1) = Asin®(axj) + B(x} + Cx) + Dsin’ (by41) + E(Ypy1 + Fyipa)

To analyze the conservation of average total energy, I would then
need to look at (Hn+1) = xn+1 +p2 yn+1 + (Vn+1) and compare
it with the energy at time n, potentially also in an average sense
if the initial x-position was considered probabilistic. Since the
continuous part of the energy is generally not conserved by Eul-
er’s method, and the potential energy changes due to the hop, the
average energy is also likely not conserved in general. A more
detailed analysis would involve substituting the specific form of
the potential and the Euler update rules.

I delve into the detailed algebra for the conservation of average
total energy, starting with the case where n > 0.
The Hamiltonian at time n is:

H, = %+Zﬂ+Asm (ax;) + B(x* + Cx2) + Dsin?(by,) + E(y* + Fy2)

The average Hamlltoman attimen+ 1 forn_ >0 is:

P vy +1
(Hy) = P Pt

2m 2m
Substitute the Euler update forp___,

2
Pl = (p,,, — h(aAsin(2ax;) + B(4x? + ZCJ{,'))) = p2, — 2pxnh(aAsin(2ax;) + B(4x? +2Cx;)) + O(h?)

A min(L i)V (i1, Yuia) + (1= min(L 7))V (i, i)

Substitute the Euler update forp,

st = (py" — h(bD'sin(2by,) + 2Ey, (242 + F)))z = P}y — 2pyuh(bD sin(2by,) + 2By, (293 + F)) + O(1?)
Substitute the Euler update for yn+1 in the potential terms. This
will lead to terms involving yn and polrs of h. For instance:
PUth) = sind by, + “22%0) = sin () + O)

sin?(By,41) = sin (b(y,,

4
Yie1 = (yn @h) =yi+O0(h)

and similarly for other terms in the potential.
Now, I look at (H +1) —H_:

(Hyor) — Ho = {p§,172pxnh(uAsin(2ux,)+B(4xl3+2Cx,-)) pgn]
n+1) — Hn = — ==

2m 2m

. P2 — 2pynh(bD sin(2by,) + 2By, (243 + F))  pla
2m T om

+min(1, 7,)V (xit1, Yut1) + (1= min(L, 172))V(xi, Yni1) — V(xi, yn) + OU‘Z)

I can see terms like:

R,
- p;f}j (aAsin(2ax;) + B(4x} +2Cx;))

h
_ p% (bD sin(2byy) + 2Ey, (242 + F))

and terms arising from the difference in potential energy due to
the hop in x and the evolution of y toyn+1.

Consider the difference in potential energy terms:
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min(1, 7,)[Asin® (a(i + 1)Ax) + B(((i + 1)Ax)* + C((i +1)Ax)?) + Dsin® (byns1) + E(ys1 + Fyi )]
o+ (1= min(L 7)) [Asin? (ai0x) + B((18x)* + C(i8x)?) + Dsin (b 1) + B 1 +Fi )]

— [Asin®(aidx) + B((idx)* + C(iax)?) + Dsin? (by,) + E(yt + Fy?))

Evenify . =X, +Ax
will generally not cancel out with the terms involving x,, unless
the potential is translationally invariant in x, which I have shown
is not the case.

~ yn for small h, the terms involving x,

Therefore, (Hn+1) — Hn &~ 0 in general. The average energy is
also not conserved by this semi- discretization method. A similar
analysis holds forn <0.

I now consider the case where nn < 0. Recall that m | = —n =
p)m+1h
—  mAx *
The Hamiltonian at time n remains the same:
Pin

Hy = 230 P p i (a3 + Bt + C2) + Disin(byn) + E(s + Fi?)

The average Hamlltoman attimen+ 1 forn, <0 is:

2
Pint1 an+1
<Hn+l> = ;1:; +—— m

+ min(L, 72 )V (xi—1, Yn1) + (1 — min(L [17a])) V (x5, Yn41)

Substituting the Euler update terms forp?yn+1 p?yn+1 as I did be-
fore:

— 2pxnh(aAsin(2ax;) + B(4x? + 2Cx;)) + O(K?)
2m

2
Pxn

(Hn+1> =

+me — 2pyuh(bD sin(2byy, ) + 2By, (2y5 + F)) + O(1?)
2m
+min(1, [7u )V (i1, Yui1) + (1 — min(L, [172])) V (xi, Y1)

L1 ) - HM:
— 2pyuli(aAsin(2ax;) + B(4x} +2Cx;)) pgn]

Now consider (H

2
(1) = Hy = {”

2m 2m

4 Pin — 2Pynh(bD sin(2byy) + 2Eyu(2y7% + F)) B @
2m 2m

+min(L, 7))V (xi-1, Y1) + (1= min(L, |17 )V (x5, Yui1) = V (x5, y0) + O (W)

Again, | have terms proportional to h arising from the kinetic

energy updates. The difference in potential energy is now:
min(L, |17, ])[Asin® (a(i — 1)Ax) + B(((i = 1)Ax)* + C((i = 1)Ax)?) + Dsin®(by, 1) + E(Wy41 + Fyi 1))
+ (1= min(1, |7, ]))[Asin?(aiAx) + B((idx)* + C(iAx)?) + Dsin?(by,+1) + E(yh 1 + Fy2 1))
— [Asin?(aiAx) + B((iAx)* + C(iAx)?) + Dsin? (by,) + E(y4 + Fy3)]

Similar to the nn > 0 case, the terms involving X, | = x, — Ax
will generally not cancel out with the terms involving x, and the
evolution of y also contributes to energy change. Thus, even for
n,<0,(H ) —H ~0in general, and the average energy is not

conserved.

Properties of the Probabilistic Step
The probability of transitioning from a discrete x-position i at
time n to a position j at time n + 1 is given by:

min(1, #,) ifj=i+land#, >0
0 ifj=i+landy, <0
) o ) min(1, |#,]) ifj=i—1landy, <0
Plins1=jlin =1) = e
0 ifj=i—landy, >0
1—min(1,|n,|) ifj=i
0 otherwise

h
where 17, = 12 anl?,

The expected change in the discrete x-coordinate over one time
step, (Ai) = (i, ,, — 1), is (Ai) = sgn(nn) min(1, [nn]).

The variance in the x-position after one time step is min(1, mn|)
(1 =min(1, n |)) ifn ~0,and 0 ifn =0.
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The probabilistic step can be vield as a biased random walk on a
1D lattice. The bias is determined by n, .

Conclusion

This investigation of the first potential function using the
semi-discretization method revealed that while the potential ex-
hibits reflection symmetry about both the x and y axes, it lacks
translational symmetry. The standard Euler method used for the
continuous evolution did not conserve energy, and due to the
probabilistic hopping in the x-coordinate, the average energy of
the system was also found to be generally non-conserved. The
probabilistic step itself introduces a biased random walk on the
discrete x-lattice, driven by the x-momentum, which allows the
system to explore different spatial regions.

Analysis of a Semi-Discrete System in a Potential with Expo-
nentially Damped Oscillations

Solving Methodology

For the potential with coupled trigonometric dependencies, the
semi-discretization methodology remains the same. The analyt-
ical investigation, holver, requires careful handling of the cou-
pled terms when examining symmetries and deriving the change
in energy. Finding fixed points involves solving a system of
equations that includes these coupled terms, and the probabilis-
tic step analysis remains consistent with the previous cases [3]
The Potential Function:

V(x,y) = e sin(ax) + e P cos(by)

Semi-Discretization Methodology

Discretization of the x-Coordinate

The semi-discretization involves considering the x-coordinate at
discrete points xi = iAX. The Hamiltonian becomes:

px Py —ax?

H(x,y, px, py) = ~— T e i sin(ax;) te BV cos(by)
The partial derlvatlves calculated are:
oH _
dpy  m
—ZL; = Z,Sye_'sy2 cos(by) + be PV sin(by)
oH Px
apy  m
_OH Dax;e sin(ax;) — ae 03! cos(ax; )
ox
Continuous Evolution Using Euler’s Method
Py"
Yns1 = Yn +

Pyn+1 = Pyn + (Zﬁyﬂe’ﬁyﬁ cos(byyu) + be P¥i sin(byn))h

2 2
Pxn+l = Pan + (chx,-e"“f sin(ax;) — ae” "% cos(axi))h

— pxu+1h

where 1, e

The probabilistic update for i is as follows: Ifn >0, then P(i .,
=i +1)=min(l,n ), PG, =i —1)=0, andP(z =1)=
*mm(l n,)- Ifnn<0 thenP(i ., =i +1)=0, P(zn =i -1)
=min(l,n |),andP(i ,, =1 ): 1 —min(1, n ). Ifn =0, then
P(int1=in+1)=0,P(G ,, =1 —1)=0,and P(z =1)=1
Probabilistic Update of the Discrete x-coordinate

The probabilistic update of the discrete x-coordinate i (and hence
xi) is based on nn = pxn+1lh:

Ifn >0:
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P(in-}—l =iny+ 1) = min(l, '7”)
Plipy1 =in—1)=0
P(£n+l = iri) =1- min(lr UH)

Ifn, <0:
Pligir = in+1) =0
P(in+1 - in - 1)

P(in1 = in) =1 —min(1, [#a])
Ifn, =0:
P(fﬁ_’_l - in + ].) - O

= min(1, |17,])

P(fn_f_]_ - fﬂ. — 1) — O

P(inJrl - in) =1

Analysis

Symmetry Analysis

Let the potential function be
Vix,y) = g sin(ax) + e PV cos(by)

Now, I substitute x with —x:

V(—x,y) =e 207 x)) + e ¥ cos(by)

I know that (—x)2 = x2 and sin(—ax) = — sin(ax). Therefore,
V(-x,y) = e’“xz(f sin(ax)) + N cos(by)

sin(a(—

V(-x,y) =~ sin(ax) + e cos(by)

Comparing V(—%, y) with V(x, y) = e’ sm(ax) + e By cos(-
by), I can see that V(—x, y) &~ V(X, y) unless emax’® sin(ax) = 0 for
all x, which is not generally true.

Therefore, the potential is not symmetric under reflection about
the y-axis (x — —x), unless specific conditions on the parameters
a and a are met such that e—ax2 sin(ax) = 0.

Let the potential function be

V(x,y) = gm0 sin(ax) + e Y’ cos(by)

Now, I substitute y with —y:

V(x, —y) = i sin(ax) + e Py’ cos(b(—y))

I know that (—y)?> = y? and cos(—by) = cos(by). Therefore,
V(x,—y) = e sin(ax) + e PV cos(by)

Comparing V(x, —y) with V(x, y) = e—(xxz sin(ax) + e_By2
cos(by), I can see that

Vix,~y) =V(x,y)

Therefore, the potential is symmetric under reflection
about the x-axis (y — —y). Let the potential function

V(x,y) =e ** sin(ax) + e PV’ cos(by)
Now, 1
Vix+ayy) = emlxtas)? sin(a(x +ay)) + e P cos(by)

substitute X with X + a:

Expanding the terms, I get:

—a(x®2ayx+a?)

V(x+axy) =e sin(ax + aay) + o B cos(by)
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For translational symmetry in the y-direction, I require
V(x, y + ay) = V(x, y) for any arbitrary ay. This would
mean:

2t al) gin (g 4 aay) + e Py cos(by) = e sin(ax) + P cos(by)

Subtracting the first term from both sides, I need:

e~ 204 aE) in (ax + aay) = e~ sin(ax)

This equality does not hold for arbitrary @ and y unless p = 0
and b = 0, in which case the second term is constant. If B = 0
and b ~ 0, then I would need cos(b(y + ay) = cos(by), which

implies bay = 2nm for some integer n. This must hold for any
ay, which is not possible. If f &~ 0, the exponential term breaks

. 2 2 _n2
the translational symmetry as e P 23" £ ¢ BY” for a /0.
Therefore, the potential is not symmetric under translation in the
y-direction.

Conservation of Energy
The potential energy at time n + 1 is Vn+1 = e n+1 sin(axn+1)
+ en+1 cos(byn+1). The ex- pected potential energy (Vn+1)de-
pends on the probability of the hop in the x-direction.
Case 1: m > 0 The probability of hopping to i + 1 is min(1, 1 ),
and the probability of staying atiis 1 — min(1, ).

(V1) = min(1, ) V(xi 41, Y1) + (1= min(1, 70 )) V(xi, y41)
(Viy1) = min(1, 77,,) (c"“'zﬂ sin(axj;q) + e Pin cos(by,z‘1)> + (1 —min(1,7,)) (e”“rz sin(ax;) + e P cos(by, 11 ))
Case 2: < 0 The probability of hopping to i — 1 is min(1,
[n.]), and the probability of staying at i is 1 — min(1, n_|).

(Viepr) = min(L, |17, )V (xi1, Y1) + (1 = min(L, [17,)) V (xi, g1
(Vi) = min(L [, )V (xi1, Y1) + (1= min(L [72]))V (xi, Y1)
Case 3: mn =

el g
(Vig1) = V(xi,Yns1) = e " sin(ax;) +e P cos(byn+1)

0 The probability of staying at i is

In all cases, yn is given by the Euler update Y1 = s+ 5k

The Hamiltonian at time n is:

Pou | Pin | a2 B2
= rxn  CJ7 X7 g1 . Yn
H, + +e sin(ax;) +e cos(byy,)

The average Hamiltonian at time n + 1 is given by:

2
P yn+1
2m

P2 1
(Hn+1) = (LH> +

2m + (V!‘.H’].}

where

Puns1 = Pun + (2ByneP¥i cos(byn) + be P sin(by) )
and

Prns1l = Pan + (Zax,-e’“g sin(ax;) — ae % cos(ax;))h
For the case n__

0, Thave (V, 1) = V(xi,yui1) = e sin(ax;) + ¢ Pt cos(by, 41)

The difference in Hamiltonians is:

2 2 2 2
~ Pynsr = P | Pyni1 = Py
2m 2m

(Hus1) — Hn + V(x5 Yug1) — V(x5 yn)

I expand the squared momenta using the Euler update

Page No: 07 /

www.mkKkscienceset.com

rules:
Pyn+1 = Pyn + (2ﬁy”e_ﬁygf cos(by,) + be P sin(byn))h

Pxnsl = Pan + (20:x,-e_“§ sin(ax;) — A= cos(ax,-))h

So

Yy . 2
Puir — Vi = (pun + (2Byne P cos(by) + be A% sin(byn) ) ) 1,
= p]2/n + 2pyn (Zﬁyﬂeiﬁy% cos(byy) + beiﬁy% Si-“(byﬂ)) h+ O(hz) - p]2/n
= 2pyn (2Byue P cos(byu) + be P sin(by) )i+ O(k?)

And

. a2 2
Prast = P = (pon+ (20vie™ sin(ax;) — e~ cos(ax)) ) )" - p2,
= P2+ 2P (Zacx,-e_""(l2 sin(ax;) — e~ cos(ax,-))h +O(K) = p,

=2ps (vacl-e’”""g sin(ax;) — e cos(ax,-))h +0(h?)
Now consider the potential energy difference:

V(i Yue1) = V(xi,yn) = € PVt cos(by,s1) — e PYi cos(by)
Expanding Yn1 =i+ 50h+ O() ysing Taylor series, I
would generally find a term proportional to h.

Therefore, (Hn+1) — Hn will generally not be zero but will
have terms of order h, indicating that

the average energy is not conserved by the Euler method
for this semi-discrete system as Il1.

Case 1: nn > 0 The average Hamiltonian difference is:

2 2 2 2
_ Pxn+1— Pan n Pynt1 — Pyn <

(Hy41) — Ha m o + (V1) = V(x1,Yn)

2 2
(o) — Hy = Pt = Phn Ponis ~Pin

om o +min(L, )V (X1, Yui1) + (1= min(Lga))V (x5, 1) = V(xi, yn)

Substituting the expressions for the kinetic energy
differences (up to order h):

1
{Hp41) — Hn = m (2pxn (2;«3:,-:2"“““1'2 sin(ax;) — ae cos(axl-))h)

+ % (2py,, (Z,Byﬁe’ﬂyﬁ cos(byy,) + be P¥: sin(byn)) h)
+min(1,7,)(Asin?(ax; 1) + Bsin®(ax; ;1) + Csin®(by, 1))
+ (1~ min(1, 14)) (Asin® (ax;) + Bsin® (ax;) + Csin®(by1))
— (Asin®(ax;) + Bsin*(ax;) + Csin®(byx))

Case 2: nn < 0 The average Hamiltonian difference is:

2 2 2 .2
pxn+1 — Pxn pyn+1 ,Uyn
H, —H, = Vo) — Vi,
(Hai1) = Hy T S (Vi) = V (i)
Prut =P | Powt ~Pin )
(Hyg1) = Hy = ==+ =5 == e min(L 1)V (xio1, Yusn) + (1= min(L |1 )V (xis Y1) = Vi v

Substituting the expressions for the
differences (up to order h):

kinetic energy
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(Hy41) — Hy (prn (200(,-6’“:g sin(ax;) — ae cos(ax,-)) h)

~

2m
+ ﬁ (Z;Uy]1 (Zﬁyne’ﬁyg cos(byy,) + be P sin(byn))h)
+min(1, [,|)(Asin®(ax;_1) + Bsin*(ax;_1) + Csin®(by,11))
+ (1 —min(1, |#,])) (A sin?(ax;) + Bsin®(ax;) + Csin®(by,41))
— (Asin?(ax;) + Bsin*(ax;) + Csin®(byy,))

Inboth cases, I'see that (H,,,) —H is generally not zero. The
Euler method introduces errors of order h in the continuous
part, and the probabilistic hop introduces differences in the
potential energy at x,, x +1, or x,—1. Therefore, the average
energy is not conserved for this semi-discrete system using
Euler’s method.

Properties of the Probabilistic Step

The probability of transitioning from a discrete x-position
i at time n to a position j at time n + 1 is given by:

(min(1, 4,) ifj=i+1andy, >0
0 ifj=i+landy, <0
. . . min(1, ) iff=i—1and#y, <0
Pliyy1 =jlin=1) = (Ll . J . o
0 ifj=i—landy, >0
1 min(L, [ga]) ifj =1
0 otherwise
h — pxn-Hh
where 17, = 5=

The expected change in the discrete x-coordinate over one
time step, (Ai) = (i ,, —1 ), can be calculated as: If nn > 0:

(Af) = (ip +1—iy) min(1, 1) + (in — 1 —iy) - 04 (in — i) (1 — min(1, 7)) = min(1,7,)
Ifn<0:

(Ad) = (in +1 = in) -0+ (in — 1 = i) min(L, [a]) + (in — i) (1 = min(1, |4])) = = min(L, lya])
Ifn.<O0:

(Ai) =0

In summary:
(Bi) = sgn(ig) min(1, |17 |)

The variance in the x-position after one time step can be
expressed as ((A1)?) — (Ai)? I calculate ((Ai1)?) = ((int+1 —
in)?):

Ifn<0:

(A1) = (1)* min(L,7a) + (=1)*- 0+ (0)*(1 = min(1, 7)) = min(L, 1)

Ifn.<O0:

((A1)%) = (1% 0+ (=1)* min(L, [14]) + (0)*(1 — min(L, [17.])) = min(L, [7u])
Ifn<0:

((ai)*) =0

So

((8)?) = min(1, [1]).

The variance is then: If n, > 0: min(1, n ) — (min(1, n ))* =
min(1, n )(1 — min(1,n )) If n <0: min(1, n ) — (— min(l,
m,)? = min(1, n (1 = min(1, ) If n, =0: 0 — 0% =0.

The probabilistic step can be vield as a biased random walk
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on a 1D lattice. The bias is determined by the parameter 1.
When n > 0, there is a higher probability of moving to the
right, and whenn <0, there is a higher probability of mov-
ing to the left. The magnitude nn| controls the strength of
this bias (up to a maximum probability of 1). Whenn =0,
the walk has no bias in either direction (although the prob-
ability of hopping is zero in this specific implementation).

Conclusion

Investigation of the second potential function V(x, y) = A
sin*(ax) + B sin*(ax) + C sin?*(by) using the semi-discret-
ization method shold that I could successfully apply the
methodology. Holver, similar to the first potential, the av-
erage energy of the semi-discrete system is generally not
conserved when evolved using the Euler method due to the
inherent non-conservation of Euler’s method for contin-
uous Hamiltonian systems and the probabilistic nature of
the hopping in the x-direction. The probabilistic step itself
functions as a biased random walk on the discrete x-lattice,
driven by the x-momentum.

Semi-Discrete Dynamics on a 2D Lattice with a Discrete
Cosine Potential

Solving Methodology

The methodology for this case involves a full discretization
of the spatial coordinates, while momenta remain continu-
ous. I use finite differences to approximate the forces from
the discrete potential and Euler’s method to update the mo-
menta. The position update is probabilistic, with hopping on
the 2D lattice. The analytical investigation includes analyz-
ing the discrete symmetries of the lattice and potential, ex-
amining the conservation of average energy considering the
probabilistic hops, determining conditions for a stationary
average position on the lattice, and investigating potential
diffusion-like behavior [4].

The Potential Function:
V(i,j) = Acos(keilx + kyjAy + ¢)
Semi-Discretization Methodology
Discrete Positions on the 2D Lattice
I are given the discrete cosine potential function:

V(i,j) = Acos(kyiAx + kyjAy + ¢)

I approximate the forces using finite differences:
V(i+1,j)-V(i-1,))

filij) ~ = 2Ax

Vi,j+1)—-V(i,j-1)

2Ay
First, I evaluate the potential at (i + 1,j) and (i — 1, j):
V(i+1,j) = Acos(ky(i + 1)Ax + kyjAy + ¢) = Acos(kyidx + ke Ax + kyjAy + ¢)

Fj(f,j) ~ =

V(i—1,j) = Acos(ky(i = T)Ax 4+ kyjAy + ¢) = Acos(kyidx — ke Ax +kyjAy + ¢)

Now, substitute these into the expression for Fi(i, j):

Acos(kyiAx 4+ kyAx + kyjAy + ¢) — A cos(kyilx — kyAx + kyjAy + )
B 2Ax

F(i.j) ~

I use the trigonometric identity: cos(a + b) — cos(a — b) = —2
sin(a) sin(b). Let a = kxiAx + kyjAy + ¢ and b = kyAy.
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A(=2sin(keidx + kyjAy + @) sin(kzAx))
B 2Ax
_ Asin(kyidx +kyjAy + @) sin(k:Ax)
Ax

The forces from the discrete cosine potential, using finite
difference approximations, are:

.. Asin(kyidx + kyjAy + ¢) sin(kyAx)
F(i, ) =~ Ay

, Asin(kyidx + kyjAy + ¢) sin(k,Ay)

Momentum Update Using Euler’s Method

The Euler update rules for the momenta are given by:
Pint1 = Pip + Filin, ju)h
Pin+1 = Pin + Fj(in, ju)h

I found the forces to be:

. Asin(kyiAx + kyjAy 4 ¢) sin(kyAx)
Pl (11 ]) =~ Ax

) Asin(kyiAx + kyjAy + ¢) sin(k,Ay)
Fi(i,j) = Ay

Substituting these into the Euler update rules, I get:

Asin(kyinAx 4+ kyjuAy + ¢) sin(kyAx
Pi,'n+1=,'0;',n+( (kx yXlx]/ ¢) sin(kx ))h

Asin(kyinAx + kyjnAy + @) sin(k, A
pﬁ,r:+1:pj,n+( (xn ygyy ¢) (y y))h

The momenta at the next time step n + 1 are updated from the
momenta at the current time step n according to the following
rules:

Ah . . . .
Pin+1 = Pin T 2 sin(kxinAx + kyjnAy + ¢) sin(kxAx)

Ah . . .
Pjnt1 = Pjn + Ay sin(kyiy Ax + kyjnAy + ¢) sin(k, Ay)

Probabilistic Position Update (Hopping)

Let the current lattice site at time step nbe (i , j, ). The parameters
influencing the hopping probabilities are:

Pszrlh
Tin = " Ax
o pj,n+1h
Tim = “nay

The probabilities of transitioning to a new site (int+1, jn+1) at
time step n + 1 are:

*  Probability of hopping in the +i direction:

P(iy41 = 1a+1,jys1 = ju) = max(0, min(0.25, ’Ti,n))
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*  Probability of hopping in the —i direction:

Pliyt1 =iy — 1, jps1 = ju) = max(0, min(0.25, —¥; )

*  Probability of hopping in the +j direction:

P(iynt1 = insjug1 = ju + 1) = max(0, min(0.25,7; ,))

*  Probability of hopping in the —j direction:
Plipii =injn1 =jn—1) = max(O,min(U.ZS,fryjl,,))
*  Probability of staying at the same site:

Pliys zfilrjnJrl zjn) = 1*P+i*P7i*P+j*P7j

The position on the 2D lattice is updated probabilistically at
each time step based on the values of ], and n, which depend
on the momenta. The particle has a chance to move one step in
the positive or negative i or j direction, or to stay at its current
location. The maximum probability of hopping in any single
direction is limited to 0.25.

Analysis
Discrete Symmetry Analysis
For the potential V(i, j) = A cos(k iAx + k yjAy + ¢) to be

invariant under the lattice translations (i, j) — (i +n, j + ny),
where n_and n  are integers, | must have:

V(i+ny,j+ny) = V(3i,j)

Substituting the potential function, this condition becomes:

Acos(kx(i+ nx)Ax + ky(j + ny) Ay + ) = A cos(kxiAx + kyjAy + ¢)

This equality holds if and only if the arguments of the cosine
functions differ by an integer multiple of 27:

(kx (i + ny) Ax 4+ ky(j + ny) Ay + ) — (keidx + kyjAy + ¢) = 27tm

where m is an integer. Simplifying the left side, I get:

kynyAx + kynyAy = 27tm

This equation must hold for all integers n_and n.

Consider the case where n =0. Then I need k n Ax = 2m.
This must hold for any integer n. The smallest non-zero
integer is n_= 1, so I must have k Ax =2mm_for some integer
m_. For this to hold for all n, it implies that k Ax must be an
integer multiple of 2.

Similarly, consider the case where n_=0. Then I need k n Ay
=2mm. For this to hold for any 1nteger n , it implies that kK Ay
must be an integer multiple of 2.

Therefore, the conditions for the potential to be invariant under
the translational symmetries of

the lattice are:
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27T,

ki:Ax = L, =2mm,

X

27Ty
kyAy = TLy = 27Tm,
Y

where mx and me are integers, and L = 1, L = 1 as I am
considering a shift by one lattice unit. More generally, if

I consider periodicity over L and L lattice units, then

kax = Z_L_""“ and k,ay = 2
! Y= L. where mx, my, Lx, Ly are integers. For

invariance under a shift by one lattice unit (n,_ =1, n =1), Ineed
k Ax =2mm_and kyAy = 27tmy.

The discrete cosine potential V(i, j) = A cos(kxiAx + kyjAy + ¢)
exhibits the translational sym-

metries of the 2D lattice if and only if kxAx is an integer multiple
of 2w and kyAy is an integer multiple of 2.

Conservation of Average Energy

The expected potential energy at time step n + 1 is given by:

(V(i!1+laj!1+l)> = P(tn+1 =iy + 1:]n+1 - ]n) n+ 1,jn)
+ Pliny1 = in — 1, jus1 —]”)V(t” =1, ju)
+ P(int1 = insjus1 = jn + DV i, ju + 1)
+ P(inr = insjns1 = jn — DV in, ju — 1)
+ Plins1 = tnjns1 = ju)Vin, ju)

Substituting the probabilities I defined:

(V(ins1sjns1)) = max(0, min(0.25, 17;,,) )V (in + 1, ju)
+max(0,min(0.25, =7;,))V (in — 1, jun)
+ max(0, min(0.25, qi,,,))V(i,,,j,, +1)
+max (0, min(0.25, =1;,,))V (in, ju — 1)
+ 1 — max(0, min(0.25, 17;,,) ) — max (0, min(0.25, —1; ,)) —
— max(0, min(0.25, —1;,,))
V(ins jn)

max(0, min(0.25, 7;,,))

Now, I substitute the potential function V(i, j) = A cos(k iAx
+k y]'Ay +¢):

(V(in+1,jn+1)) = max(0, min(0.25, 1 ,) ) A cos(ky (in + 1)Ax + kyjudy + )
+ max(0, min(0.25, —#; ) ) A cos(kx (i — 1) Ax + kyfjuly + ¢)
+ max(0, min(0.25, %, ) ) A cos(kyinAx + ky (ju + 1) Ay + )

+ max (0, min(0.25, —1y; ;) ) A cos(kxinAx + ky(ju — 1)Ay + ¢)

+ (1= Py =P — Pyj— P_j) Acos(kyinAx + kyjuldy + ¢)

The expected potential energy at the next time step is a lighted
average of the potential evaluated at the current site and its fThis
nearest neighbors, with the lights given by the probabilities of
hopping or staying.

Difference in Average Energy (Hn+1) — Hn

The difference in average energy betlen time step n + 1 and n is:

Page No: 10 /

www.mKkscienceset.com

1 Ah 2
(Hy41) — Hy = ( (p[ nt — Ax sin(kyiyAx +kyju Ay + @) sm(kxAx))
1

Ah 2
(pj 2t Ay —— sin(kyinAx + kyjnAy + ¢) sm(kJAy))

+ max(O,mm(O.ZS, Hin))Acos(ky(iy + 1)Ax + kyjuAy + ¢)
+ max (0, min(0.25, —#; ,)) A cos (kx (i, — 1)Ax + kyj. Ay + ¢)
+ max (0, min(0.25, ;,,)) A cos(kyinAx + ky (i + 1) Ay + ¢)
+ max(0, min(0.25, —1;,)) A cos(kxinAx +ky (ju — 1) Ay + ¢)

+(1=P.;— P ;— Py ;— P_j) Acos(kyinAx +kyjuly + ¢)
Pk, P
i, JEL . .
,ﬁ T Acos(kyiyAx + kyjnAy + ¢P)>
where g, = fisth y, = Pt and P = max(0, min(0.25,

n n))Pﬂ. = max(0, min(0.25, n; D) P = max(0, min(0.25, - D)

Expanding the squared momentum terms:

2 2
| Pin | PinAh R 1 (Ah .
(Hy+1) — Hy = (Tm Ay sin(...) sin(k Ax) + 5\ Ax sin(...) sin(kxAx)
2 2
p;‘,n Pf,nAh . . 1 Ah . .
+ E + m—Ay Sl.l'l() sm(kyAy) + ﬂ A_y Slﬂ(m) S]I\(kyﬂy)

+max(0, min(0.25, #; ;) ) A cos(kx (in 4+ 1)Ax + kyjnly + ¢)

+ max(0, min(0.25, —1; ;) ) A cos(kx (in — 1)Ax + kyjuAy + ¢)

+ max(0, min(0.25, 1;,,) ) A cos(kxinAx + ky(ju + 1)Ay + )

+ max(0, min(0.25, —1;,,)) A cos(kyinAx + ky (i — 1)Ay + ¢)
+ (1= Py — P_j— Pyj— P_j) Acos(kyinAx + kyjudy + ¢)

2
plﬂ pfy" . -
S Acos(kxznAerky]nAer(p))

where sin(...) represents sin(kxinAx + kyjnAy + ¢). Summary
of Energy Conservation By observing this expression, I can see
that (Hn+1) — Hn is generally not equal to zero. The terms

proportional to h arise from the Euler method, indicating that
the continuous part of the dynamics is not energy-conserving.
Furthermore, the expected potential energy at time n + 1 is
generally different from the potential energy at time n due to
the probabilistic hopping, introducing further terms that do not
cancel out. Therefore, the average energy is not conserved for
this semi-discrete system using this Methodology.

Conclusion Regarding Conservation of Average Energy

The average energy of the system is generally not conserved
under the described semi- discretization methodology and the
use of Euler’s method for updating the momenta. This lack of
conservation arises from two primary sThisces:

1. Non-Conservation of Euler’s Method: The Euler method,
being a first-order approximation, does not generally
conserve energy for continuous-time Hamiltonian systems.
This introduces terms proportional to the time step h in the
energy difference.

2. Probabilistic Hopping and Potential Energy Changes: The
probabilistic movement of the particle on the lattice leads
to the expected potential energy at the next time step being
different from the potential energy at the current time step.
This difference, along with the kinetic energy changes, does
not generally sum to zero.

Therefore, while this semi-discretization method allows for
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the evolution of the system, it does not inherently conserve the
average energy.

Conditions for a Stationary Average Position

For a stationary average position on the lattice, I require that the
expected change in both the i and j coordinates over one time
step is zero:

(M) = {igy1—1n) =0
(Aj) = (jut1 = jn) =0
The expected change in the i-coordinate is given by:
(Aiy = (in+1—=in)Pyi+ (in — 1 —in)P_j+ (in —in) (1 =Py —P_; — P, — P_;)
(Ai) =P —P_;
Substituting the expressions for P, and P_:

(Ai) = max(0, min(0.25,7; ,)) — max(0, min(0.25, —7; ,))

For (A1) = 0, I must have:

max (0, min(0.25, #; ,)) = max(0, min(0.25, —#; ,))

This condition is satisfied if and only if n, = 0.

Similarly, the expected change in the j-coordinate is given by:

(Afp = (n+1=ju)Pij+ (in =1 =ju)P_j+ (ju = ju)(1 = Py = P_j = Pj = P_j)
(Bf) =Py =P

Substituting the expressions for P, and P

(Af) = max(0, min(0.25,1;,,,)) — max(0, min(0.25, —1;,,))

For (Aj) = 0, I must have:

max(0, min(0.25,7;,,)) = max(0, min(0.25, —1;,))

This condition is satisfied if and only if nj,n = 0.

. in+1h
Recall that 77, = % and 7, = %*;— Therefore, the

conditions for a stationary average position are:

i h

PLll —0 — pipar =0
Pins1h
Bt g — =0

The average position on the 2D lattice remains stationary if and
only if the momenta at the next time step in both the i and j
directions are zero. This implies that there is no net drift of the
particle on the lattice in either direction, on average.

Analysis of Diffusion-like Behavior

To explore diffusion-like behavior, I consider the mean squared
displacement (MSD). The expected squared change in the i and
j coordinates at each step are:

((Aig)?) = Py; + P_; = min(0.25, max(0,7;,,)) + min(0.25, max(0, — 1, ,))

{(Aj)?) = Py i+ P_j = min(0.25, max(0, 7j,4)) + min(0.25, max(0, —7;,,))

Page No: 11 /

www.mKkscienceset.com

The MSD after N time steps is

(RY) = () + (R) = Ly (((Qin)) + ((8jn)?) assuming the
average position starts at zero and the changes in i and j are
uncorrelated and have zero mean on average.

The momenta evolve as:
Pint1 = Pin + Fi(in, ju)h
Pin+1 = Pjn + Filin, jn)h
where the forces are:

_ Asin(keibx + kyjAy + ¢) sin(kxAx)

.. Asin(keiAx 4+ kyjAy + ¢) sin(k,Ay)
Fj-(z,]) ~ Ay

Assuming average initial momentum is zero and the average
force over the lattice is zero, the squared momentum in the
i-direction evolves as:

B2 [ Asin(kyAx)\?
<pzz,n+l>z<plz.ﬂ>+7(%))

This implies that the average of the squared momentum grows
linearly with time step n. Consequently, (2i,n) will also grow.

As (m2) increases, ((Ain)?) tends towards saturation. If ((Ain)?)
and ((Ajn)*) reach approxi-mately constant values, then the
MSD, (R2 ), grows linearly with N, indicating diffusion-like
behavior.

Holver, the periodic potential might introduce trapping or
oscillations, complicating the simple linear growth of MSD. A
rigorous analysis requires further investigation.

The semi-discrete dynamics on the 2D lattice with a discrete
cosine potential can exhibit diffusion- like behavior if the mean
squared displacement of the particle grows linearly with time.
This is expected to occur when the average squared momentum
increases over time due to the fluctuating forces from the
potential, leading to a roughly constant rate of hopping. Holver,
the periodic nature of the potential can also lead to deviations
from simple diffusion, such as trapping or oscillations. A detailed
characterization of the long-time behavior would require more
advanced analytical techniques or numerical simulations.

Summary of Observations and Results for Semi-Discrete
Dynamics on a 2D Lattice with a Discrete Cosine Potential

e Semi-Discretization: 1 successfully applied a semi-
discretization method where the spatial coordinates are
discrete, momenta are continuous, forces are approximated
using finite differ- ences, momenta are updated using
Euler’s method, and the position on the 2D lattice evolves
probabilistically with defined hopping rules.

e Discrete Symmetries: The potential V(i, j) = A cos(kxiAx
+ kyjAy + ¢) exhibits the translational symmetries of the 2D
lattice if kxAx and kyAy are integer multiples of 2.

e Conservation of Average Energy: This analysis indicated
that the average energy of the system is generally not
conserved due to the inherent non-conservation of the Euler
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method for the continuous momenta and the changes in
potential energy arising from the probabilistic hopping on
the lattice.

e Stationary Average Position: The condition for a stationary
average position on the lattice (i.e.,no net drift) is that the
average momenta in both the i and j directions are zero,
leading to ni,n = 0 and nj,n = 0.

e Potential Diffusion-Like Behavior:
possibility of diffusion-like behavior by

I explored the

looking at the mean squared displacement (MSD). The analysis
suggests that if the average squared momentum increases over
time due to the fluctuating forces from the potential, the MSD
could grow linearly with time, indicating diffusion. Holver, the
periodic nature of the cosine potential might also lead to more
complex phenomena like trapping or oscillations, which could
deviate from simple diffusion. A more detailed investigation
would likely require further analytical techniques or numerical
simulations.

Analysis of Semi-Discrete Motion in a 2D Lattice Potential
Exhibiting Permutation Symmetry

Solving Methodology

The methodology for this case involves a full discretization
of the spatial coordinates, while momenta remain continuous.
I use finite differences to approximate the forces from the
discrete potential and Euler’s method to update the momenta.
The position update is probabilistic, with hopping on the 2D
lattice. The analytical investigation includes analyzing the
discrete symmetries of the lattice and potential, examining the
conservation of average energy considering the probabilistic
hops, determining conditions for a stationary average position
on the lattice, and investigating potential diffusion-like behavior

[5]-

The Potential Function:

V(i, j) = A cos(kiAx) cos(kjAy)
Semi-discretization Methodology

Discrete Positions on the 2D Lattice

Forces from the Discrete Potential

I am given the discrete cosine potential function:
V(i, j) = A cos(kiAx) cos(kjAy)

I approximate the forces using finite differences:

V(i+1,j)—V(i-1,j)

Fili.j) ~ - —-

i,j+1)-V(Ej—1)
2Ay

Fiij) ~ — 2

Calculation of F (i, j)
First, I evaluate the potential at (i + 1, j) and (i — 1, j):
V(i+1,j) = Acos(k(i +1)Ax) cos(kjAy) = A cos(kiAx + kAx) cos(kjAy)

V(i—1,j) = Acos(k(i —1)Ax) cos(kjAy) = A cos(kiAx — kAx) cos(kjAy)
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Now, substitute these into the expression for Fi(i, j):

A cos(kix + kAx) cos(kjAy) — A cos(kihx — kAx) cos(kjAy)

E(i, i)~ —
i) 2%

Factor out the common term Acos(kjAy):

 Acos(kjAy)(cos(kidx + kAx) — cos(kiAx — kAx))
2Ax

Fi(i,j) =

I use the trigonometric identity: cos(a + b) — cos(a — b) = -2
sin(a) sin(b). Let a = kiAx and b = kAx.

_ Acos(kjAy)(—2sin(kiAx) sin(kAx))

FE(J,]) ~

2Ax
. Asin(kiAx) cos(kjAy) sin(kAx
E(i,j) ~ ASinkidx) A(Jy) (kax)
x
Calculation of F].(i, 1)

Next, I evaluate the potential at (i, j + 1) and (i, j — 1):

V(i,j+1) = Acos(kidx) cos(k(j+ 1)Ay) = A cos(kiAx) cos(kjAy + kAy)
V(i,j — 1) = Acos(kiAx) cos(k(j — 1)Ay) = A cos(kiAx) cos(kjAy — kAy)
Now, substitute these into the expression for Fj(i, 1)

_ Acos(kiAx) cos(kjAy + kAy) — A cos(kiAx) cos(kjAy — kAy)

Fi(i,j) = 3Ay

Factor out the common term A cos(kiAx):

 Acos(kiAx)(cos(kjAy + kAy) — cos(kjAy — kAy))
2Ay

F(i,j) =

I use the trigonometric identity: cos(a + b) — cos(a — b) = -2
sin(a) sin(b). Let a = kjAy and b = kAy.

A cos(kiAx)(—2sin(kjAy) sin(kAy))

. A cos(kiAx) sin(kjAy) sin(kA
Fi(i,j) ~ (kirx) A(y} y) sin(kAy)

Summary of Results

The forces from the discrete cosine potential V(i, j) = A cos(kiAx)
cos(kjAy), using finite differ- ence approximations, are:

... Asin(kiAx) cos(kjAy) sin(kAx)
Fi(i,j) = Ax

A cos(kiAx) sin(kjAy) sin(kAy)
Ay

E(i, ) =~

Continuous Momenta Update using Euler’s Method

Momentum Update using Euler’s Method

The Euler update rules for the momenta are given by:
Pin+1 = Pin + E(irt;jn)h

Pint1 = Pjn t Fj(ifizjn.)h
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I found the forces for the potential V(i, j) = A cos(kiAx) cos(kjAy)
to be:

__ Asin(kiAx) cos(kjAy) sin(kAx)

E(i)j) ~ o
.. A cos(kiAx) sin(kjAy) sin(kA
Eij) ~ (kiAx) A(y] y) sin(kAy)

Substituting these into the Euler update rules, I get:

Asin(kiyAx) cos(kj, Ay) sin(kAx
Pin+1 = Pin + ( (kin ) A(x]” y) ( ))h

A cos(kiyAx) sin(kj, Ay ) sin(kA
Pini1 = pm+< (kinAx) A(y} y) sin( y))h

Summary of Momentum Update Rules

The momenta at the next time step n + 1 are updated from the
momenta at the current time step

n according to the following rules:

Ahsin(kAx) . . .
Pin+1 = Pin + # sin(ki, Ax) cos (kjnAy)

Ahsin(kAy)

Piut1 = Pjn + Ay cos(kiyAx) sin(kj, Ay)

Probabilistic Position Update (Hopping)
Probabilistic Position Update on the 2D Lattice

Let the current lattice site at time step n be (in, jn). The parameters
influencing the hopping probabilities are:

_ Pins1h
i mAx

o pj,n+lh
lin = “may

The probabilities of transitioning to a new site (i _, j, ,,) at time
stepn + 1 are:

*  Probability of hopping in the +i direction:
Pliys1 = in+ L jus1 = ju) = max(0, min(0.25, 1;,))

*  Probability of hopping in the —i direction:
P(ips1 = in = 1,jpy1 = jn) = max(0,min(0.25, 1))

*  Probability of hopping in the +j direction:
P(in1 = in, jus1 = jn +1) = max(0, min(0.25,7;,))

*  Probability of hopping in the —j direction:
Piyi1 = insjus1 = ju — 1) = max(0,min(0.25, —7;,,))

*  Probability of staying at the same site:

Plins1 =insjui1 =Jju) =1- P,i—P_;— P+j - P,i

where
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P.; = max(0, min(0.25, #; ;)

)

P_; = max(0, min(0.25, —77; ,))

P, ; = max(0, min(0.25, 5 ,))
)

P;= max(0, min(0.25, —#;,,))

Summary of Probabilistic Update Rule

The position on the 2D lattice is updated probabilistically at each
time step based on the values of ni,n and nj,n, which depend
on the momenta. The particle has a chance to move one step in
the positive or negative i or j direction, or to stay at its current
location. The maximum probability of hopping in any single
direction is limited to 0.25.

Analysis
Permutation Symmetry Analysis
Translational Symmetry of the Potential

For the potential V(i, j) = A cos(kiAx) cos(kjAy) to be invariant
under the lattice translations (i, j) — (i +n_, j + ny), where n_

and n_ are integers, I must have:

V(i+nyj+my) = V(ij)

Substituting the potential function, this condition becomes:
Acos(k(i + ny)Ax) cos(k(j + ny)Ay) = A cos(kiAx) cos(kjAy)

This equality holds if and only if kn Ax is an integer multiple of
2m and kn Ay is an integer multiple of 2z. That is:

kAx = 27tmy

kAy = 27tm,,

where m_and m_ are integers. These conditions must hold for
all integers n_and n . The smallest non-zero integer is n_= 1
and n =1,s0 for the potential to be invariant under a shift by
one lattice unit in both directions, I require:

kAx = 2mwm,,

kAy = 27tmy,

where m_and m_ are integers. More generally, if I consider the
periodicity of the lattice, the potential will be periodic if kAx =
2’{% and kAy = 27{% ~where L_and L, are the periods in
terms of the number of lattice units, and m , m are integers.

Summary of Translational Symmetry

The discrete cosine potential V(i, j) = A cos(kiAx) cos(kjAy)
exhibits the translational symmetries of the 2D lattice (by one
lattice unit in each direction) if and only if kAx is an integer
multiple of 2n and kAy is an integer multiple of 2.

Permutation Symmetry of the Potential

I will now examine the permutation symmetry of the potential
V(i, j) = A cos(kiAx) cos(kjAy). Permutation symmetry requires
that the potential is invariant under the exchange of indices i and
J» 1.e., V(i,j) = V(, 1).
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The potential function is:
V(i,j) = Acos(kiAx) cos(kjAy)

Swapping the indices i and j, I get:

V(j,i) = Acos(kjAx) cos(kiAy)
For permutation symmetry, I need V(i,j) = V(j,i), so:

Acos(kiAx) cos(kjAy) = A cos(kjAx) cos(kiAy)

This equality holds for all integer values of i and j if the lattice
spacing is the same in both directions, i.e., Ax = Ay.

I consider a square lattice where Ax = Ay = a. In this case, the
potential becomes:

V(i, j) = A cos(kia) cos(kja)
Now, if I exchange i and j:
V(j, 1) = A cos(kja) cos(kia)

Since multiplication is commutative, cos(kja) cos(kia) = cos(kia)
cos(kja), which means V(j, 1) =

V@, j).
Summary of Permutation Symmetry

The potential function V(i, j) = A cos(kiAx) cos(kjAy) exhibits
permutation symmetry (V(i, j) = V(j, 1)) when the lattice spacing
is the same in both the x and y directions (Ax = Ay), which
corresponds to a square lattice.

Conservation of Average Energy
Expected Potential Energy at Time n + 1

The expected potential energy at time step n + 1 is given by:

(V(int1sjn+1)) = Pliys1 = in + L jpg1 = ju) V(in + 1, jn)
Plips1=1in— 1 jyr1 = ]n)V(fn =1, ju)
Plins1 = injut1 = jn + 1)V in, jn + 1)
Plins1 = inju1 = jn — L)V (in, ju — 1)
Plini1 = tn, jut1 = ju)V(in, fn)

Substituting the probabilities:

(V(ins+1sjns1)) = max(0, min(0.25,1;,) )V (in + 1, ju)
+ max (0, min(0.25, —1;,, )V (in — 1, ju)
+ max (0, min(0.25, r;rj’”))V(i”,jn +1)

+ max(0, min(0.25, ~1;,,))V (i, ju — 1)
+(1-Py;—P;—P,—

P+I ] P,I)V(In,j”)

Now, I substitute the potential function V(i, j) = Acos(kiAx)

cos(kjAy):

= max(0, min(0.25,1; ,)) A cos(k(in + 1)Ax) cos(kj, Ay)

+ max (0, min(0.25, —#; 4, )) A cos(k(in — 1)Ax) cos(kj,Ay)

+ max(0, min(0.25, 17; ,)) A cos (ki Ax) cos(k(jn +1)Ay)

+ max(O min(0.25, 711]‘ ,i))A cos(ki,Ax) cos(k(jn — 1)Ay)
(1-P,—P -
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where P, = max(0, min(0.25, 1, )), P_, = max(0, min(0.25,

—ni’n)), Pﬂ. = max(0, min(0.25, nj’n)),
P = max(0, min(0.25, ;)
Summary of Expected Potential Energy

The expected potential energy at the next time step is a lighted
average of the potential evaluated at the current site and its fThis
nearest neighbors, with the lights determined by the probabilities
of hopping or staying, which depend on the momenta.

Difference in Average Energy (H , ) — H

The difference in average energy betlen time step n + 1 and n is:

Pl v +1 v: v
1 n in n P
(Hpt1) — Ho = (2'7;; + JZm + (V(ins, Jn+1)>) - (Zm + Zlfm + V(lnrfn))

where

Ah sin(kAx)

Pintl = Pin + Ax sin(ki,Ax) cos(kjnAy)

Ahsin(kAy) .

Pjn1 = Pjn+ ¥ os(ki, Ax) sin(kj, Ay)

and (V(i_,,,].,,)) is:

= max (0, min(0.25,7; ,,) ) A cos(k(i, + 1)Ax) cos(kj,Ay)
( (025, =i )) A cos(k(in — 1)Ax) cos(kjnAy)
+ max(0, min(0.25, 1, )) A cos (kinAx) cos(k(ju +1)Ay)
+ max(0, min(0.25, —j;,,)) A cos (kip Ax) cos (k(j, — 1)Ay)
+ (1= Pyi— P_j = Pyj— P_j) Acos(kinAx) cos(kjaAy)

<V(in+1ljn+l)>
+ max(0, min

Substituting these into the energy difference equation and
expanding the squared momentum terms will result in a lengthy
expression. Holver, similar to the previous case with the single
coupled cosine potential, I can expect that (Hn+1) — Hn will
generally not be zero. The Euler method introduces terms of
order h, and the probabilistic hopping leads to changes in the
expected potential energy that will not perfectly balance the
changes in kinetic energy.

Summary of Energy Conservation

As with the previous potential, the average energy is generally
not conserved for this semi-discrete system when using Euler’s
method for momentum updates and a probabilistic hopping
rule. The approximations inherent in Euler’s method and the
statistical nature of the position updates lead to a non-zero
difference betlen the average energy at consecutive time steps.

Stationary Average Position on the Lattice
Conditions for a Stationary Average Position

For a stationary average position on the lattice, I require that the
expected change in both the i

and j coordinates over one time step is zero:
<A’> = (in+1 - il’l> =0
(Af) = (fnt1 = ju) =0

The expected change in the i-coordinate is given by:
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(Ai) = (in + 1= i) Pys+ (in = 1= i) P_i + (i — in)(1 = Py = Py = Py — P_})
(Aiy = Py; — P
Substituting the expressions for P, and P_;:

{Ai} = max(0, min(0.25,#;,)) — max(0, min(0.25, —1; ,))

For (A1) = 0, I must have:

max (0, min(0.25, ; ,)) = max(0, min(0.25, —; ,))

This condition is satisfied if and only if . = 0.

Similarly, the expected change in the j-coordinate is given by:

{8j) = (ju + 1= ju)Psj+ (u = L= ju)P—j+ (ju — ju) (1 = Py; = P_j — P4j — P_j)
(Aj) =Py =P

Substituting the expressions for P and P

(Aj) = max(0, min(0.25, ;,) ) — max (0, min(0.25, —1;,))

For (Aj) = 0, I must have:

max(0, min(0.25,7;,)) = max(0, min(0.25, —;,,))

This condition is satisfied if and only if n, = 0. Recall that

Hin = p;‘};,&;h and 75j,, = I‘JTA*}_'* Therefore, the conditions for a

stationary average position are:

Pin+1
mn;x =0 = pin1=0
Pin+1
mAy =0 = Pinn =0

Summary of Conditions for Stationary Average Position

The average position on the 2D lattice remains stationary if and
only if the momenta at the next time step in both the i and j
directions are zero. This implies that there is no net drift of the
particle on the lattice in either direction, on average.

Potential Diffusion-like BehaviThis Analysis of Potential
Diffusion-Like Behavior

To explore diffusion-like behavior, I again consider the mean
squared displacement (MSD). The expected squared change in
the 1 and j coordinates at each step are:

((Ain)?) = Py; 4 P_; = min(0.25, max(0, 1j; ,)) + min(0.25, max(0, —; ,))

((Ajn)?) = Py j+ P_; = min(0.25, max(0,#;,,)) + min(0.25, max(0, —1;,))

The momenta evolve as:

Ahsin(kAx)

Pin+1 = Pin + Ax sin(ki, Ax) cos(kjy Ay)

Ahsin(kAy)
Pin+1 = Pjn + #

cos(kiyAx) sin(kj, Ay)

I consider the average force over the lattice. The average of
sin(kiAx) cos(kjAy) and cos(kiAx) sin(kjAy) over a sufficiently
large lattice is zero (assuming kAx and kAy are not integer
multiples of 2x). Thus, if the initial average momentum is zero,
it will remain around zero.
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Now, I look at the evolution of the average squared momentum
in the i-direction:

<p12,n+1> = {(pin+ Filin ju)h)*) = <Pi2,n> + 28(pinFiling jn)) + W2 (Fi(in, jn))

Assuming (p, ) =0, the term (p, F,(i,, j,)) might also be zero
on average. The last term is:

Asin(kAx)

2
<Fi-(z‘mjn)2>=( ik )<sin2(kfnm)cos2(my)>

Using the averages (sin2(0)) = 1/2 and (cos2(6)) = 1/2 over a
cycle:

. 2
(Bl i) = 3 (25

Similarly,

- 1/ Asin(kAy) \?
(Pj(fn:]ri)2> R~ 1 (A(yy))
Thus, (p?,,,) ~ (p},) + Lﬁ;(%){ and similarly for p . This
shows that the average squared

momenta grow over time. Consequently, (n?) and (n? ) will
also grow. As () increases, the values of ((Ai )*)and ((Aj,)*)
will tend towards saturation. If these values become roughly
constant, the MSD will grow linearly with time, indicating
diffusion-like behavior.

Summary of Potential Diffusion-Like Behavior

Similar to the previous potential, the semi-discrete dynamics
with V(i, j) = A cos(kiAx) cos(kjAy) can also exhibit diffusion-
like behavior. The fluctuating forces from the potential cause
the average squared momenta to grow, leading to a non-zero
probability of hopping. Over time, this can result in a linear
growth of the mean squared displacement. The periodic nature
of the potential can still influence the details of this diffusion,
potentially leading to anisotropic diffusion if Ax &~ Ay or if the
parameters in the i and j directions are different.

Motion Along the Line i = j

I consider the motion along the line i =j for the potential function
V(i, j) = A cos(kiAx) cos(kjAy).

I assume a square lattice where Ax = Ay = a, so the potential is:
V(i,j) = Acos(kia) cos(kja)

Potential Along i=j
Substituting j = i, the potential along this line is:

V(i,i) = Acos(kia) cos(kia) = A cos*(kia)

This can also be expressed using the double angle formula for
cosine:

V(i) =

NS

(14 cos(2kia)) =

N
N

+ = cos(2kia)
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This represents a 1D periodic potential along the line i =j.
Forces Along i =]
For a square lattice, the force components are:

Asin(kia) cos(kja) sin(ka)
a

FI(I,]) ~

.. Acos(kia) sin(kja) sin(ka
F ) Acostii)sinltjosiniin)

Along the line i = j, these become:

Fi(i,i) = Asin(kia) coz(km) sin(ka) _ %sin(Zkia) sin(ka)
Fi(i,i) = A cos(kia) su;(kza) sin(ka) _ %sin&km) sin(ka)

Thus, F(i,1) = Fj(i, i) along the line i =j.

The potential along the line i = j for the given 2D lattice
potential on a square lattice is a 1D periodic potential. The
forces in the i and j directions are equal along this line and
depend on sin(2kia).

The motion of a particle starting on this line, under the defined
semi-discretization with independent hopping, may or may not
stay on this line.

Analysis of Average Drift

The average drift in the i and j directions is given by the
expected change in position per time step:

(Ai) = Py — P_; = max(0,min(0.25, #; ,)) — max(0, min(0.25, —#; ,))
(Aj) = Pyj— P_j = max(0, min(0.25, 77; ;) ) — max(0, min(0.25, —n; ) )

. ot
wheren; , = p;;;‘g;k and 77;,, = 2 ﬁfg;l,. and the momenta are
updated by:

Ahsin(kAx) . . .
Pins1l = Pin+ # sin(ki, Ax) cos(kj,Ay)

Ahsin(kAy)

Pin+1 = Pjn + Ay cos(ki, Ax) sin(kj,Ay)

If the initial average momenta are zero, (p,,) = 0 and (pj 0 =0,
the average force in the i-direction over the lattice is:

(Fi(ins jn)) = ‘A‘S”‘T&"A"Nsm(kmx) cos(kjnAy))
If kAx and kAy are not integer multiples of 2x, then (F) =
0 and (F) = 0. This implies (p,,,,) =0and (p,, ) = Q, gnd
consequently (n, ) = 0 and (nj)“) = 0 on average.Substituting
these into the average drift equations gives:

{(af)) =0
((Af)) =0
Therefore, under the assumption of zero initial average

momentum and that kAx and kAy are not integer multiples of
27, the average drift for this potential is zero. A non-zero average
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drift could occur with non-zero initial average momentum or if
the average force is non-zero.

Average Drift with Non-Zero Initial Average Momentum

Suppose at the initial time n = 0, the particle has a non-zero
average momentum (p, ) = P,  and (pjso) =P, Assuming the
average force from the potential is zero, the average momenta
at subsequent time steps remain constant:

((Af)) =0

{((8j)) =0

The average drift in the i and j directions becomes:

Ay _ - Pioh . Pyh
{{Ai)) = max(0, min(0.25, mAx)) max(0, min(0.25, mAx))
. . Pjoh . Pjoh
_ i _ _
({Aj)) = max(0, min(0.25, _mAy)) max (0, min(0.25, mAy))

If P, >0, there is a positive average drift in the i-direction. If P,
<0, there is a negative average drift. The magnitude of the drift
increases with [P, | until it saturates at 0.25 steps per time step.
Similar behavior occurs for the drift in the j-direction based on
the sign and magnitude of P].O.

A non-zero initial average momentum leads to a constant
average drift in the direction of the initial momentum. The speed
of this drift depends on the magnitude of the initial momentum
and system parameters, with a maximum drift rate of 0.25 lattice
sites per time step in each direction.

Average Drift Due to Specific Values of Potential Parameters

The forces are given by:

Asin(kA

Fi(i,j) =~ % sin(kiAx) cos(kjAy)
Asin(kA

“(i,]) ~ % cos(kilx) sin(kjAy)
For a non-zero average force over the lattice, the averages
(sin(kiAx) cos(kjAy)) or (cos(kiAx) sin(kjAy)) must be non-
zero. If kAx =2mm_(integer m ), then sin(kiAx) =0, so F, =0.
Similarly, if kAy = 2nmy, then sin(kjAy) = 0, so F = 0.

For a non-zero average of sin(kiAx) or cos(kiAx) over all

integers 1, kAx would typically need to be a multiple of 2n
(making sine zero) or zero (making sine zero).

Holver, in a finite lattice of size L < L, averages like
% Ef;’l : might be non-zero for specific relationships betlen
kAx and Lx.Lx i=0

For the infinite lattice case, it is generally challenging to obtain
a sustained non-zero average force with this potential through
specific values of k, Ax, or Ay alone.

Achieving a sustained non-zero average force, and thus a constant
drift, through specific choices of the potential parameters k,
Ax, or Ay is difficult for this potential over an infinite lattice.
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Such a drift might be possible in finite lattices or with specific
relationships betlen these parameters and the lattice dimensions.

Effects of Boundaries on Average Drift

In a finite lattice with boundaries, the probabilistic hopping
rule needs to be modified when the particle reaches an edge.
I consider two common types of boundaries: reflecting and
absorbing.

Reflecting Boundaries
Consider a lattice bounded by 0 <i<L and 0 <j<L_

» If the particle is at ), and ni,n < 0 (attempting a hop to i
= —1), a reflecting béundary would prevent this. A simple
rule might be that the probability P_, is redistributed to the
probability of staying at i = 0 or hopping in the +i direction.
This would create a net average drift away from the
boundary ati=0.

¢ Similarly, atii =L — 1 withn, >0 (attempting a hop to
i=L), the hop would be prevented, and the probability
P, would be redistributed, leading to an average drift away
from the boundary ati=Lx — 1.

*  The same logic applies to the boundaries in the j direction at
j=0andj= L —1 based on the sign of N

In general, reflecting boundaries in a finite lattice with a
symmetric potential tend to cause an average drift away from
the boundaries.

Absorbing Boundaries
Again, consider a lattice bounded by 0 <i<L and0<j< L.

»  If the particle reaches any of the boundaries (e.g.,1=0,1=
L—-1,j=0,j= L - 1), it is absorbed and removed from
the system.

e If I consider an ensemble of particles, the total number of
particles within the lattice will decrease over time.

e The average position of the particles that remain in the
lattice might shift depending on the poten- tial and the
initial distribution. For a symmetric potential and a
symmetric initial distribution, the average position of the
surviving particles might stay roughly at the center, but the
probability distribution will narrow as particles at the edges
are absorbed.

Absorbing boundaries do not directly create a drift of the average
position if the potential and initial conditions are symmetric.
Holver, they do change the overall distribution and lead to a loss
of particles from the system.

Summary

Reflecting boundaries typically induce an average drift away
from the boundaries due to the prevention and redistribution
of hopping probabilities that would lead outside the lattice.
Absorbing boundaries lead to the removal of particles upon
reaching them, which changes the overall distribution but may
not cause a net drift in the average position of the remaining
particles in cases of symmetry.
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Symmetries of the Forces
The force components are given by:

_ Asin(kiAx) cos(kjAy) sin(kAx)
B Ax

Fi(i,})

_ Acos(kiAx) sin(kjAy) sin(kAy)

B (i) A

Permutation Symmetry

Under the exchange of indices i «» j and lattice spacings Ax <
Ay, the forces transform as:

Asin(kjAy) cos(kiAx) sin(kAy)
Ay

Fi(j, 1, Ay, Ax) = = F(i,j, Ay, Ax)
A cos(kjAy) sin(kiAx) sin(kAx)

Fi(j,i, by, Ax) = A

= F(i, ], Ax, Ay)

If Ax = Ay = a, then F(j,i) = Fj(i,j) and Fj(]',i) = F(,]).
The forces are interchanged under permutation of indices
on a square lattice.

Reflection Symmetry

Reflection about the i-axis (j <> —j):

_ Asin(kiAx) cos(—kjAy) sin(kAx) _ ;o
- Ax —

Fi(il 7])

_ Acos(kiAx) sin(—kjAy) sin(kAy)

£l ) i = (i)

Reflection about the j-axis (i < —i):

E(—i,j) = A sin(—kiAx) czsx(k].ﬁy) sin(kAx) — _E (i)

A cos(—kiAx) sin(kjAy) sin(kAy)

= Fi(i,j)

Rotational Symmetry (for Ax = Ay = a)
Rotation by 90 degrees ((i, j) — (—j, 1)):

P Asin(—kja) cos(kia) sin(ka)  Asin(kja) cos(kia) sin(ka)
T a B a !

P Acos(—kja) sin(kia) sin(ka) A cos(kja) sin(kia) sin(ka)
T a - a

= Fz(j/*i)

Symmetries of the Forces
The force components are given by:

~ Asin(kiAx) cos(kjAy) sin(kAx)

F(i,j) = -
. A cos(kiAx) sin(kjAy) sin(kA
Fy(i,j) = (kidx) A(yf y) sin(kAy)

Permutation Symmetry
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Under the exchange of indices i - j and lattice spacings Ax <> Ay,
the forces transform as:

Asin(kjAy) cos(kiAx) sin(kAy)
Ay

E(j,i, Ay, Ax) = = Fj(i,j, Ay, Ax)
A cos(kjAy) sin(kiAx) sin(kAx)
Ax
If Ax = Ay = a, then F(j,i) = Fj(i,j) and Fj(]',i) = F(,)).
The forces are interchanged under permutation of indices

on a square lattice.

Fi(j,i, Ay, Ax) = = F(i,], Ax, Ay)

Reflection Symmetry

Reflection about the i-axis (j < —j):

Asin(kiAx) cos(—kjAy) sin(kAx)

Fi(ir*j) = Ax :Fi(ifj)

A cos(kiAx) sin(—kjAy) sin(kAy)

F A ~F(i.j)

(i, —f) =

Reflection about the j-axis (i <> —i):

Asin(—kiAx) cos(kjAy) sin(kAx)

F(-i,)) = Ax = -5},
Fi(—i,j) = A cos(—kiAx) Sgl(k]Ay) sm(kAy) Fi(i,j)
Y
Rotational Symmetry (for Ax = Ay = a)

Rotation by 90 degrees ((i,j) — (-, 1)):

F—ji) = Asin(—kja) c;)s(km) sin(ka) _ 7Asin(kja)co;(km)sin(ka) = i)

_ A cos(—kja) sin(kia) sin(ka) A cos(kja)sin(kia) sin(ka)

n n

=FE (]r 7")
Summary of Force Symmetries

The forces exhibit specific symmetry properties under permutation
and reflection of the lattice indices. On a square lattice, the force
components are interchanged upon swapping i and j. Reflections
about the axes invert the sign of the force component along the
other axis. Rotational symmetry is more complex and involves a
relationship betlen the components at the rotated points.

Symmetries of the Motion

The motion of the particle is governed by the momentum update
rules and the probabilistic hopping on the lattice. I consider how
these behave under the discrete symmetries.

Reflection Symmetry

Reflection about the i-axis (j <> —j): The potential V(i,
j)- The forces transform as

)= VG,

Fi(i, =) = Fi(, j) and Fi(i,
rules become:
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px " + F( 7]n)h = Pin + F( 7]‘n)h = Pz,n + H(i:zrjn)h = Pi,n+1

F'(jmjn))h =

The 1 parameters transform asn=n, and n= N, Thls leads to
a swap in the hopping probabilities in the ] dlrectlon P=p . and
P = P, while the probabilities in the i direction

/
pi,n+l

P; nt+l — p;n +F (Z—:u 7]‘;);’ = —Pjn+ (- *(Pj,n + P‘(itlrjn)h) = —Pjnt+1

remain the same. If the initial distribution of j and pj is symmetric,
the average motion will respect

This Reflection Symmetry.

Reflection about the j-axis (i <> —i): The potential V(—i, j) = V(i,
j)- The forces transform as Fi(—i, j) = —Fi(, j) and Fj(—i, j) = Fj(i,
j)- Similar to the previous case, if pi,n changes sign, then pi,n+1
changes sign, and the hopping probabilities in the i direction are
swapped. The motion respects reflection about the j-axis on average
with symmetric initial conditions.

Rotational Symmetry (for Ax = Ay = a)

Under a 90-degree rotation (i, j) — (—j, 1), the potential is invariant.
The forces transform, and

if the momenta also transform as p, = P and p / = p, a more
complex analysis shows that the dynamlcs should respect the
rotational symmetry on average if the initial state is also rotationally
symmetric.

Summary of Motion Symmetries

The semi-discrete motion exhibits the discrete symmetries of the
underlying potential on average, provided that the initial conditions
of the system are also symmetric with respect to the transformations
considered. Reflections about the axes lead to corresponding
reflections in the average motion, and rotational symmetry of the
potential and initial state implies rotational symmetry in the average
dynamics.

Conclusion

Summary of Observations and Results for Semi-Discrete Motion
with Permutation Symmetry Potential

e Semi-Discretization: I applied the same semi-discretization
methodology as before.

e Forces: I calculated the forces Fi(i, j) and Fj(i, j) using finite
difference approximations.

*  Momentum Update: I used Euler’s method to update the
momenta based on these forces.

e Probabilistic Hopping: The position on the lattice evolves
probabilistically based on the updated momenta.

* Discrete Symmetries: The potential V(i, j) = A cos(kiAx)
cos(kjAy) exhibits translational sym- metry under certain
conditions on kAx and kAy, permutation symmetry when Ax
= Ay, and also possesses reflection and rotational symmetries
(for a square lattice).
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*  Conservation of Average Energy: The average energy is
generally not conserved for similar reasons as with the previous
potential.

e Stationary Average Position: The average position is
stationary if the average momenta are zero.

e Potential Diffusion-Like Behavior: The system has the
potential for diffusion-like behavior, with the mean squared
displacement growing over time due to the fluctuating
momenta.

e Motion Along i = j: For a square lattice with lattice spacing a,
the potential along this line is A cos2(kia), and the forces Fi and
Fj are equal to A sin(2kia) sin(ka).

*  Average Drift: The average drift is zero if the initial average
momentum and average force are zero. A non-zero initial
average momentum leads to a constant average drift. The
average force from this potential is typically zero over an
infinite lattice.

*  Variance of the Position: The variance of the position grows
over time, indicating diffusion, even when the average drift is

Z€10.

*  Symmetries of the Forces: The forces exhibit specific
symmetries under permutation and reflec- tion of indices.

*  Symmetries of the Motion: The motion respects the
symmetries of the potential and forces on average, provided
the initial conditions are also symmetric.

Results

Thorough Comparison and Contrast of the Two Analyzed
Potentials

I'have analyzed two potential functions using the semi-discretization
methodology:

1. V@i, )) = Acos(k iAx +k jAy + ¢)
2. V,(i,]) = Acos(kiAx) cos(kjAy)

L Comparison and Contrast of Properties within Each
Potential:

For both potential functions:

*  Semi-Discretization Methodology: The same methodology
was applied to both.

e Conservation of Average Energy: Average energy is
generally not conserved for both due to the Euler method and

probabilistic hopping.

e Stationary Average Position: Requires zero average momenta
in both 1 and j directions for both.
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* Potential Diffusion-Like Behavior: Both potentials show
the potential for diffusion-like behavior driven by fluctuating
momenta.

e Average Drift: For both, average drift is zero under zero
initial average momentum and average force. Non-zero initial
average momentum leads to drift.

II. Pairwise Comparison and Contrast of the Two Potentials
Across Analyzed Properties:

e Discrete Symmetries:

—  VI1: Translational, rotational (if square lattice and kx = ky), and
reflection symmetries.

— V2:Translational, permutation (if Ax = Ay), rotational (if square
lattice), and reflection

symmetries.

—  Contrast: V2 possesses permutation symmetry on a square
lattice, which is not a general symmetry of V1.

e Forces:

—  VI: Coupled forces where each component depends on both i
and j through the argument kxiAx + kyjAy + ¢.

—  V2: Separable forces:

.~ Asin(kiAx) cos(kjAy) sin(kAx)
D= Ax
. Acos(kiAx) sin(kjAy) sin(kAy)
1= Ay

—  Contrast: V1 produces coupled forces, while V2 produces
separable forces.

*  Motion Along i =j (Square Lattice, Ax = Ay = a):
—  VIL: VI(i, i) = A cos((kx + ky)ia + ¢).
—  V2:V2(i, 1) =Acos2(kia) = A (1 + cos(2kia)).

—  Contrast: Different forms of 1D periodic potentials along the
linei=j.

*  Symmetries of the Forces:

—  The specific symmetry properties under permutation and

reflection differed betlen the two potentials, reflecting the forms of
their respective force expressions.

*  Symmetries of the Motion:
—  Both potentials resulted in motion that respects the symmetries

of the potential and forces on average, given symmetric initial
conditions.
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Group-wise Comparison and Contrast Across All Analyzed
Properties

The semi-discretization methodology established a common
framework, leading to similarities in high-level behaviors such as
energy non-conservation, conditions for stationary average position,
and the potential for diffusion. The key differences observed in This
analysis stem from the distinct mathematical structures of the two
potential functions, particularly regarding their symmetries and the
nature of the forces they produce (coupled vs. separable).
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