
World Journal of Applied Mathematics and Statistics

www.mkscienceset.com Wor Jour of Appl Math and Sta 2025

Research Article

Analytical Study of Semi-Discrete Hamiltonian Dynamics in Diverse 
Potential Landscapes with Discrete Symmetries

*Corresponding author: Saheba M Shaik, Independent Researcher.

Submitted: 24 November 2025     Accepted: 16 December 2025     Published: 26 December 2025

Citation: Shaik, S. M. (2025). Analytical Study of Semi-Discrete Hamiltonian Dynamics in Diverse Potential Landscapes with Discrete 
Symmetries. Wor Jour of Appl Math and Sta, 1(4), 01-20.

Page No: 01

Abstract
I present a comprehensive analytical investigation of semi-discrete time-stepping methods applied to Hamiltonian 
systems in two spatial dimensions. This study explores the dynamics of a particle subjected to five distinct potential 
functions, encompassing both continuous potentials with one discretized dimension and fully discrete potentials 
defined on a two-dimensional lattice. The semi- discretization schemes combine continuous evolution for momenta 
(and one spatial coordinate in some cases) with probabilistic hopping rules for the discrete spatial variables. For 
each potential, I analyze the preservation of inherent discrete symmetries (including reflection, translation, and 
permutation), the behavior of conserved or invariant quantities, the characteristics of fixed points, and the properties 
of the probabilistic transitions governing the discrete motion. This comparative analysis across a range of potential 
landscapes provides valuable insights into the applicability and dynamical features of such hybrid discretization 
techniques for modeling physical systems with various forms of discrete symmetry.
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Introduction
Semi-discretization offers a poIrful approach to modeling phys-
ical systems by treating some variables discretely while others 
remain continuous. Preserving the inherent discrete symmetries 
of these systems is crucial for accurate and physically relevant 
numerical methods. This paper presents an analytical study of 
semi-discrete time-stepping methods applied to a particle in two 
dimensions, exploring their behavior across five distinct poten-
tial functions exhibiting various discrete symmetries. This meth-
odology combines Euler’s method for continuous evolution with 
probabilistic hopping for discrete spatial coordinates. For each 
potential, I analyze symmetry preservation, conserved quanti-
ties, fixed points, and the characteristics of the probabilistic tran-
sitions. This work aims to provide insights into the dynamics of 
hybrid discretization techniques for Hamiltonian systems with 
diverse discrete symmetries.

Analysis of Semi-Discrete Dynamics in a Potential with 
Mixed Polynomial and Sinusoidal Contributions
Solving Methodology
The solving methodology for this potential involves first 

semi-discretizing the Hamiltonian by treating the x-coordi-
nate as discrete and applying Euler’s method to the continuous 
variables. The discrete x-coordinate is updated probabilistical-
ly based on the x-momentum. Analytical investigations then 
focus on examining the symmetries of the potential and the 
semi-discrete map, analyzing the conservation of energy using 
the derived update rules, identifying fixed points by solving the 
resulting algebraic equations, and characterizing the expected 
behavior of the probabilistic stepping process [1, 2].

Semi-Discretization Methodology
The Potential Funciton:

Discretization of the x-Coordinate
For the discretization of the x-coordinate, a common and often 
convenient approach is to use a uniform grid. You can define the 
discrete x-coordinate as:
xi = i∆x
where:
•	 i is an integer (..., −2, −1, 0, 1, 2, ...) representing the index 
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of the discrete point.
•	 ∆x is the grid spacing, which is a positive constant repre-

senting the distance betIen adjacent discrete points.

Implications of this Discretization
•	 The particle’s position in the x-direction will only be alloId 

to take on these discrete values.
•	 ∆x becomes a parameter in yThis system that you will need 

to choose. The choice of ∆x can influence the accuracy of 
yThis semi-discrete approximation compared to the orig-
inal continuous system. A smaller ∆x typically leads to a 
finer resolution and potentially better accuracy but might 
also increase the computational effort if you Ire to simulate 
this numerically. For analytical work, ∆x will appear as a 
parameter in These equations.

Continuous Evolution Using Euler’s Method 
Let the Hamiltonian of the system be given by:

During the continuous evolution step, the x-coordinate is held 
fixed at a discrete value xi = i∆x. Thus, the effective Hamiltonian 
for this step is:

I use Hamilton’s equations of motion:  
For the y-coordinate

Using the chain rule:

For the x-coordinate and its momentum:

Now, applying Euler’s method for a time step h:

Here, xi remains constant during this continuous update from 
time n to n + 1.

Probabilistic Update of the Discrete x-Coordinate
   The probabilistic update of the discrete x-coordinate i from in 
to in+1 is governed by the value of
ηn, defined as:

where pxn+1 is the x-momentum after the continuous Euler up-
date, h is the time step, m is the mass of the particle, and ∆x is 
the grid spacing.

The probability of hopping to neighboring sites is then deter-
mined as follows:
**Case 1: ηn > 0** (Indicates a tendency for the particle to 
move in the positive x-direction) The probability of hopping to 
the next grid point in + 1 is:

The probability of staying at the current grid point in is:

The probability of hopping to the previous grid point in − 1 is:

**Case 2: ηn < 0** (Indicates a tendency for the particle to 
move in the negative x-direction) The probability of hopping to 
the next grid point in + 1 is:

The probability of staying at the current grid point in is:

The probability of hopping to the previous grid point in − 1 is:

**Case 3: ηn = 0** (Indicates no tendency for the particle to 
move in either x-direction based on momentum)
The probability of hopping to the next grid point in + 1 is:

The probability of staying at the current grid point in is:

The probability of hopping to the previous grid point in − 1 is:

This probabilistic update completes one time step of the 
semi-discretization methodology for the first potential function.

Analysis
Symmetry Analysis
I start with the reflection symmetry about the y-axis, where 
I consider the transformation x → −x. In the context of This 
semi-discretization, this corresponds to the discrete index i → 
−i, so xi = i∆x becomes x−i = −i∆x = −(i∆x) = −xi.

The first step is to see how the potential function behaves under 
this transformation. Can you substitute −x for x in the expression 
for V (x, y) and see if V (−x, y) is equal to V (x, y)?
The potential function is:

Substitute −x for x:

To show that the potential V(x, y) is symmetric under the reflec-
tion x → −x, I substitute −x into the potential function:
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Using the properties that sin(−z) = − sin(z) and thus 
sin2(−z) = (− sin(z))2 = sin2(z), and that(−x)4 = x4 and 
(−x)2 = x2, I get:

Thus, I can see that V (−x, y) = V(x, y), which confirms that the 
potential is symmetric under reflection about the y-axis.

Next, I analyze how the probabilistic update of the discrete 
x-coordinate behaves under the transformations in → −in and 
pxn+1 → −pxn+1. Recall that ηn = pxn+1·h. Under these transfor-
mations, ηn becomes η′ = (−pxn+1)·h = −ηn.Now, I consider the 
probabilities:
If, before transformation, ηn > 0:

After transformation, ηn < 0, and the index in becomes −in. A 
hop to in + 1 corresponds to a hop to −in − 1, and a hop to in − 1 
corresponds to a hop to −in + 1. For ηn < 0:

I see that the probability of hopping from in to in + 1 is the same 
as the probability of hopping from −in to −in − 1 = −(in + 1), 
which respects the reflection.
Now consider if, before transformation, ηn < 0:

After transformation, ηn > 0:

Here, the probability of hopping from in to in − 1 is the same as 
the probability of hopping from in  to −in  + 1 = −(in − 1), again 
respecting the reflection.

Finally, if ηn = 0, then ηn  = 0, and the particle stays at the current 
index in both cases (in +1 = in 
and in +1 = −in ).

I have shown that the potential function V(x, y) is symmetric 
under the reflection x → −x. In the semi-discretized system, this 
corresponds to the transformation of the discrete index i → −i 
and the momentum px → −px. This analysis of the probabilistic 
update rule for the x-coordinate revealed that the probabilities of 
hopping to reflected states are equal, thus the semi-discretization 
respects the reflection symmetry about the y-axis in a statistical 
sense.

To show that the potential V (x, y) is symmetric under the reflec-
tion y → −y, I substitute −y into
the potential function:

Thus, I can see that V (x, −y) = V (x, y), which confirms that the 
potential is symmetric under reflection about the x-axis.

Next, I look at the continuous evolution with the transformed 
variables y → −y and py → −py, starting from a state (in, −yn, 
pxn, −pyn) at time n.

Using the Euler update rules: For the y-coordinate:

For the y-momentum:

Since sin(−z) = − sin(z) and (−y)2 = y2, this becomes:

Now I look at −pyn+1:

I see that p=pyn+1.
For the x-momentum, the transformation y → −y does not di-
rectly affect the update rule, so
p′	 = pxn+1.
xn+1
To verify the symmetry of the continuous evolution under the 
reflection y → −y and py → −py, I
recall the Euler update rules:

Now, consider a state at time n transformed as (in, −yn, pxn, −
pyn). Applying the update rules to this transformed state yields:

Using sin(−z) = − sin(z), I have:

I also found that −pyn+1 is:

Thus, p′	 = −pyn+1. The update rule for pxn+1 remains unchanged 
as it does not depend on y or py. These results show that the con-
tinuous evolution using Euler’s method respects the reflection
symmetry about the x-axis.

n
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I have established that the potential and the continuous evolution 
are symmetric under reflection about the x-axis. Now, I consider 
the probabilistic update of the x-coordinate.

The probability of hopping in the x-direction depends on the pa-
rameter ηn, defined as:

I need to examine how pxn+1 is affected by the transformation y 
→ −y and py → −py. From the Euler update rule for px, I have:

I can observe that this equation for pxn+1 depends on:
•	 pxn: the x-momentum at the current time step.
•	 h: the time step size.
•	 a, A, B, C: parameters of the potential function related to 

the x-component.
•	 xi: the discrete x-coordinate, which is not transformed under 

y → −y.

The transformation y → −y and py → −py does not appear in 
the update rule for pxn+1. Therefore, the value of pxn+1 remains 
unchanged under this transformation.

Since ηn depends directly on pxn+1 and other constant parameters 
(h, m, ∆x), ηn will also remain unchanged. As the probabilities 
of hopping in the x-direction are determined solely by ηn, these
probabilities will also be unaffected by the transformation y → 
−y and py → −py.

Therefore, the probabilistic update for the x-coordinate respects 
the reflection symmetry about the x-axis.

To analyze the translational symmetry in x, I substitute x + ax for 
x in the potential function:

Expanding the terms involving x:

Substituting these back into the potential:

For V (x + ax, y) to be equal to V (x, y) = A sin2(ax) + B (x4 + 
Cx2) + D sin2(by) + E (y4 + Fy2) for any arbitrary ax, the follow-
ing conditions would need to hold:

The first condition requires aax = nπ for some integer n, which 
means ax cannot be arbitrary unless A = 0. The second condition 
requires all the terms involving ax to be zero for any x, which is 
only true if B = 0 and ax = 0.

Therefore, in general, V (x + ax, y) ̸= V (x, y) for an arbitrary 
constant ax. This means the potential does not exhibit transla-
tional symmetry in the x-direction.

To analyze the translational symmetry in y, I substitute y + ay for 

y in the potential function:

Expanding the terms involving y:

Substituting these back into the potential:

For V (x, y + ay) to be equal to V (x, y) = A sin2(ax) + B (x4 + 
Cx2) + D sin2(by) + E (y4 + Fy2) for any arbitrary ay, the follow-
ing conditions would need to hold:

Similar to the x-translation case, these conditions are generally 
not met for an arbitrary ay unless D = 0 and E = 0.

Therefore, in general, V (x, y + ay) ̸= V (x, y) for an arbitrary 
constant ay. This means the potential does not exhibit transla-
tional symmetry in the y-direction.

Conservation of Energy
I analyze the change in the continuous part of the Hamiltonian 
Hc over one time step. At time n, I have:

At time n + 1, using the Euler update rules, I have:

The Hamiltonian at time n + 1 is:

Substituting the update rules:

Expanding the squared terms:

By comparing Hc(n + 1) with Hc(n), it is clear that due to the 
terms proportional to h and h2 in the kinetic energy part, and 
also due to the non-linearity of the potential terms in y, Hc(n + 
1) ̸ = Hc(n) in general. The change in energy over one time step 
is of the order of h. Therefore, Euler’s method is not energy-con-
serving for this system.

The expected potential energy at time n + 1, denoted as (Vn+1), 
given the particle was at discrete position i at time n, can be ex-
pressed as a Iighted sum of the potential energies at the possible 
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next positions (i + 1, i − 1, i), with the Iights being the corre-
sponding probabilities of hopping. Let yn+1 be the y-coordinate 
after the continuous Euler update. Then:

I have the following cases for the hopping probabilities based 
on ηn = pxn+1h:
**Case 1: ηn > 0**

**Case 2: ηn < 0**

**Case 3: ηn = 0**

To analyze the conservation of average total energy, I would then 
need to look at (Hn+1) = xn+1 +p2 yn+1 + (Vn+1) and compare 
it with the energy at time n, potentially also in an average sense 
if the initial x-position was considered probabilistic. Since the 
continuous part of the energy is generally not conserved by Eul-
er’s method, and the potential energy changes due to the hop, the 
average energy is also likely not conserved in general. A more 
detailed analysis would involve substituting the specific form of 
the potential and the Euler update rules.

I delve into the detailed algebra for the conservation of average 
total energy, starting with the case where ηn > 0.
The Hamiltonian at time n is:

The average Hamiltonian at time n + 1 for ηn > 0 is:

Substitute the Euler update for pxn+1:

Substitute the Euler update for pyn+1:

Substitute the Euler update for yn+1 in the potential terms. This 
will lead to terms involving yn and poIrs of h. For instance:

and similarly for other terms in the potential.
Now, I look at (Hn+1) − Hn:

I can see terms like:

and terms arising from the difference in potential energy due to 
the hop in x and the evolution of y toyn+1.

Consider the difference in potential energy terms:

Even if yn+1 ≈ yn for small h, the terms involving xi+1 = xi + ∆x 
will generally not cancel out with the terms involving xi, unless 
the potential is translationally invariant in x, which I have shown 
is not the case.

Therefore, (Hn+1) − Hn ̸= 0 in general. The average energy is 
also not conserved by this semi- discretization method. A similar 
analysis holds for ηn < 0.

I now consider the case where ηn < 0. Recall that |ηn| = −ηn = 

−  
The Hamiltonian at time n remains the same:

The average Hamiltonian at time n + 1 for ηn < 0 is:

Substituting the Euler update terms forp2yn+1 p2yn+1 as I did be-
fore:

Now consider (Hn+1) − Hn:

Again, I have terms proportional to h arising from the kinetic 
energy updates. The difference in potential energy is now:

Similar to the ηn > 0 case, the terms involving xi−1 = xi − ∆x 
will generally not cancel out with the terms involving xi, and the 
evolution of y also contributes to energy change. Thus, even for 
ηn < 0, (Hn+1) − Hn ̸= 0 in general, and the average energy is not 
conserved.

Properties of the Probabilistic Step
The probability of transitioning from a discrete x-position i at 
time n to a position j at time n + 1 is given by:

The expected change in the discrete x-coordinate over one time 
step, (∆i) = (iin+1 − in), is (∆i) = sgn(ηn) min(1, |ηn|).
The variance in the x-position after one time step is min(1, |ηn|)
(1 − min(1, |ηn|)) if ηn ̸= 0, and 0 if ηn = 0.

m∆x
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The probabilistic step can be vieId as a biased random walk on a 
1D lattice. The bias is determined by ηn.

Conclusion
This investigation of the first potential function using the 
semi-discretization method revealed that while the potential ex-
hibits reflection symmetry about both the x and y axes, it lacks 
translational symmetry. The standard Euler method used for the 
continuous evolution did not conserve energy, and due to the 
probabilistic hopping in the x-coordinate, the average energy of 
the system was also found to be generally non-conserved. The 
probabilistic step itself introduces a biased random walk on the 
discrete x-lattice, driven by the x-momentum, which allows the 
system to explore different spatial regions.

Analysis of a Semi-Discrete System in a Potential with Expo-
nentially Damped Oscillations
Solving Methodology
For the potential with coupled trigonometric dependencies, the 
semi-discretization methodology remains the same. The analyt-
ical investigation, hoIver, requires careful handling of the cou-
pled terms when examining symmetries and deriving the change 
in energy. Finding fixed points involves solving a system of 
equations that includes these coupled terms, and the probabilis-
tic step analysis remains consistent with the previous cases [3]
The Potential Function:

Semi-Discretization Methodology
Discretization of the x-Coordinate
The semi-discretization involves considering the x-coordinate at 
discrete points xi = i∆x. The Hamiltonian becomes:

The partial derivatives calculated are:

Continuous Evolution Using Euler’s Method

The probabilistic update for i is as follows: If ηn > 0, then P(in+1 
= in + 1) = min(1, ηn), P(in+1 = in − 1) = 0, and P(in+1 = in) = 1 
− min(1, ηn). If ηn < 0, then P(in+1 = in + 1) = 0, P(in+1 = in − 1) 
= min(1, |ηn|), and P(in+1 = in) = 1 − min(1, |ηn|). If ηn = 0, then 
P(in+1 = in + 1) = 0, P(in+1 = in − 1) = 0, and P(in+1 = in) = 1.

Probabilistic Update of the Discrete x-coordinate
The probabilistic update of the discrete x-coordinate i (and hence 
xi) is based on ηn =  pxn+1h :

If ηn > 0:

If ηn < 0:

If ηn = 0:

Analysis
Symmetry Analysis
Let the potential function be

Now, I substitute x with −x:

I know that (−x)2 = x2 and sin(−ax) = − sin(ax). Therefore,

Comparing V(−x, y) with V(x, y) = e−αx2 sin(ax) + e−βy2 cos(-
by), I can see that V(−x, y) ̸= V(x, y) unless e−αx2 sin(ax) = 0 for 
all x, which is not generally true.

Therefore, the potential is not symmetric under reflection about 
the y-axis (x → −x), unless specific conditions on the parameters 
a and α are met such that e−αx2 sin(ax) = 0.
Let the potential function be

Now, I substitute y with −y:

I know that (−y)2 = y2 and cos(−by) = cos(by). Therefore,

Comparing V(x, −y) with V(x, y) = e−αx2 sin(ax) + e−βy2 
cos(by), I can see that

Therefore, the potential is symmetric under reflection 
about the x-axis (y → −y). Let the potential function 

 
Now, I substitute x with x + ax:

Expanding the terms, I get:
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For translational symmetry in the y-direction, I require 
V(x, y + ay) = V(x, y) for any arbitrary ay. This would 
mean:

Subtracting the first term from both sides, I need:

This equality does not hold for arbitrary ay and y unless β = 0 
and b = 0, in which case the second term is constant. If β = 0 
and b ̸= 0, then I would need cos(b(y + ay) = cos(by), which 
implies bay = 2nπ for some integer n. This must hold for any 
ay, which is not possible. If β ̸= 0, the exponential term breaks 

the translational symmetry as e−β(y
2 +2ayy+a2 ) ̸= e−βy2 for a ̸= 0. 

Therefore, the potential is not symmetric under translation in the 
y-direction.

Conservation of Energy
The potential energy at time n + 1 is Vn+1 = e n+1 sin(axn+1) 
+ en+1 cos(byn+1). The ex- pected potential energy (Vn+1)de-
pends on the probability of the hop in the x-direction.
Case 1: ηn > 0 The probability of hopping to i + 1 is min(1, ηn), 
and the probability of staying at i is 1 − min(1, ηn).

Case 2: ηn < 0 The probability of hopping to i − 1 is min(1, 
|ηn|), and the probability of staying at i is 1 − min(1, |ηn|).

Case 3: ηn = 0 The probability of staying at i is 

1.
In all cases, yn	 is given by the Euler update 
The Hamiltonian at time n is:

The average Hamiltonian at time n + 1 is given by:

where

and

For the case ηn=

The difference in Hamiltonians is:

 
I expand the squared momenta using the Euler update 

rules:

 

So

And

Now consider the potential energy difference:

Expanding  using Taylor series, I 
would generally find a term proportional to h.

Therefore, (Hn+1) − Hn will generally not be zero but will 
have terms of order h, indicating that

the average energy is not conserved by the Euler method 
for this semi-discrete system as Ill.

Case 1: ηn > 0 The average Hamiltonian difference is:

Substituting the expressions for the kinetic energy 
differences (up to order h):

Case 2: ηn < 0 The average Hamiltonian difference is:

Substituting the expressions for the kinetic energy 
differences (up to order h):
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In both cases, I see that (Hn+1) − Hn is generally not zero. The 
Euler method introduces errors of order h in the continuous 
part, and the probabilistic hop introduces differences in the 
potential energy at xi, xi+1, or xi−1. Therefore, the average 
energy is not conserved for this semi-discrete system using 
Euler’s method.

Properties of the Probabilistic Step

The probability of transitioning from a discrete x-position 
i at time n to a position j at time n + 1 is given by:

The expected change in the discrete x-coordinate over one 
time step, (∆i) = (in+1 − in), can be calculated as: If ηn > 0:

If ηn< 0:

If ηn< 0:

 
In summary:

The variance in the x-position after one time step can be 
expressed as ((∆i)2) − (∆i)2. I calculate ((∆i)2) = ((in+1 − 
in)2):

If ηn< 0:

If ηn< 0:

If ηn< 0:

So
 

The variance is then: If ηn > 0: min(1, ηn) − (min(1, ηn))
2 = 

min(1, ηn)(1 − min(1, ηn)) If ηn < 0: min(1, |ηn|) − (− min(1, 
|ηn|))

2 = min(1, |ηn|)(1 − min(1, |ηn|)) If ηn = 0: 0 − 02 = 0.

The probabilistic step can be vieId as a biased random walk 

on a 1D lattice. The bias is determined by the parameter ηn. 
When ηn > 0, there is a higher probability of moving to the 
right, and when ηn < 0, there is a higher probability of mov-
ing to the left. The magnitude |ηn| controls the strength of 
this bias (up to a maximum probability of 1). When ηn = 0, 
the walk has no bias in either direction (although the prob-
ability of hopping is zero in this specific implementation).

Conclusion
Investigation of the second potential function V(x, y) = A 
sin2(ax) + B sin4(ax) + C sin2(by) using the semi-discret-
ization method shoId that I could successfully apply the 
methodology. HoIver, similar to the first potential, the av-
erage energy of the semi-discrete system is generally not 
conserved when evolved using the Euler method due to the 
inherent non-conservation of Euler’s method for contin-
uous Hamiltonian systems and the probabilistic nature of 
the hopping in the x-direction. The probabilistic step itself 
functions as a biased random walk on the discrete x-lattice, 
driven by the x-momentum.

Semi-Discrete Dynamics on a 2D Lattice with a Discrete 
Cosine Potential
Solving Methodology
The methodology for this case involves a full discretization 
of the spatial coordinates, while momenta remain continu-
ous. I use finite differences to approximate the forces from 
the discrete potential and Euler’s method to update the mo-
menta. The position update is probabilistic, with hopping on 
the 2D lattice. The analytical investigation includes analyz-
ing the discrete symmetries of the lattice and potential, ex-
amining the conservation of average energy considering the 
probabilistic hops, determining conditions for a stationary 
average position on the lattice, and investigating potential 
diffusion-like behavior [4].

The Potential Function:

Semi-Discretization Methodology
Discrete Positions on the 2D Lattice
I are given the discrete cosine potential function:

I approximate the forces using finite differences:

First, I evaluate the potential at (i + 1, j) and (i − 1, j):

Now, substitute these into the expression for Fi(i, j):

I use the trigonometric identity: cos(a + b) − cos(a − b) = −2 
sin(a) sin(b). Let a = kxi∆x + kyj∆y + ϕ and b = ky∆y.
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The forces from the discrete cosine potential, using finite 
difference approximations, are:

Momentum Update Using Euler’s Method

The Euler update rules for the momenta are given by:

I found the forces to be:

Substituting these into the Euler update rules, I get:

The momenta at the next time step n + 1 are updated from the 
momenta at the current time step n according to the following 
rules:

Probabilistic Position Update (Hopping)

Let the current lattice site at time step n be (in, jn). The parameters 
influencing the hopping probabilities are:

The probabilities of transitioning to a new site (in+1, jn+1) at 
time step n + 1 are:

•	 Probability of hopping in the +i direction:

•	 Probability of hopping in the −i direction:

•	 Probability of hopping in the +j direction:

•	 Probability of hopping in the −j direction:

•	 Probability of staying at the same site:

The position on the 2D lattice is updated probabilistically at 
each time step based on the values of ηi,n and ηj,n, which depend 
on the momenta. The particle has a chance to move one step in 
the positive or negative i or j direction, or to stay at its current 
location. The maximum probability of hopping in any single 
direction is limited to 0.25.

Analysis

Discrete Symmetry Analysis

For the potential V(i, j) = A cos(kxi∆x + kyj∆y + ϕ) to be 
invariant under the lattice translations (i, j) → (i + nx, j + ny), 
where nx and ny are integers, I must have:

Substituting the potential function, this condition becomes:

This equality holds if and only if the arguments of the cosine 
functions differ by an integer multiple of 2π:

where m is an integer. Simplifying the left side, I get:

This equation must hold for all integers nx and ny.

Consider the case where ny = 0. Then I need kxnx∆x = 2πm. 
This must hold for any integer nx. The smallest non-zero 
integer is nx = 1, so I must have kx∆x = 2πmx for some integer 
mx. For this to hold for all nx, it implies that kx∆x must be an 
integer multiple of 2π.

Similarly, consider the case where nx = 0. Then I need kyny∆y 
= 2πm. For this to hold for any integer ny, it implies that ky∆y 
must be an integer multiple of 2π.

Therefore, the conditions for the potential to be invariant under 
the translational symmetries of

the lattice are:
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where mx and me are integers, and Lx = 1, Ly = 1 as I am 
considering a shift by one lattice unit. More generally, if 
I consider periodicity over Lx and Ly lattice units, then 

where mx, my, Lx, Ly are integers. For 
invariance under a shift by one lattice unit (nx = 1, ny = 1), Ineed 
kx∆x = 2πmx and ky∆y = 2πmy.

The discrete cosine potential V(i, j) = A cos(kxi∆x + kyj∆y + ϕ) 
exhibits the translational sym-

metries of the 2D lattice if and only if kx∆x is an integer multiple 
of 2π and ky∆y is an integer multiple of 2π.

Conservation of Average Energy

The expected potential energy at time step n + 1 is given by:

Substituting the probabilities I defined:

Now, I substitute the potential function V(i, j) = A cos(kxi∆x 
+ kyj∆y + ϕ): 

The expected potential energy at the next time step is a Iighted 
average of the potential evaluated at the current site and its fThis 
nearest neighbors, with the Iights given by the probabilities of 
hopping or staying.

Difference in Average Energy (Hn+1) − Hn

The difference in average energy betIen time step n + 1 and n is:

where  , and Pi = max(0, min(0.25, 
ηi,n))P+j = max(0, min(0.25, ηj,n)), P−j = max(0, min(0.25, −ηj,n)).

Expanding the squared momentum terms:

where sin(...) represents sin(kxin∆x + kyjn∆y + ϕ). Summary 
of Energy Conservation By observing this expression, I can see 
that (Hn+1) − Hn is generally not equal to zero. The terms

proportional to h arise from the Euler method, indicating that 
the continuous part of the dynamics is not energy-conserving. 
Furthermore, the expected potential energy at time n + 1 is 
generally different from the potential energy at time n due to 
the probabilistic hopping, introducing further terms that do not 
cancel out. Therefore, the average energy is not conserved for 
this semi-discrete system using this Methodology.

Conclusion Regarding Conservation of Average Energy

The average energy of the system is generally not conserved 
under the described semi- discretization methodology and the 
use of Euler’s method for updating the momenta. This lack of 
conservation arises from two primary sThisces:

1.	 Non-Conservation of Euler’s Method: The Euler method, 
being a first-order approximation, does not generally 
conserve energy for continuous-time Hamiltonian systems. 
This introduces terms proportional to the time step h in the 
energy difference. 

2.	 Probabilistic Hopping and Potential Energy Changes: The 
probabilistic movement of the particle on the lattice leads 
to the expected potential energy at the next time step being 
different from the potential energy at the current time step. 
This difference, along with the kinetic energy changes, does 
not generally sum to zero.

Therefore, while this semi-discretization method allows for 
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the evolution of the system, it does not inherently conserve the 
average energy.

Conditions for a Stationary Average Position

For a stationary average position on the lattice, I require that the 
expected change in both the i and j coordinates over one time 
step is zero:

The expected change in the i-coordinate is given by:

Substituting the expressions for P+i and P−i:

For (∆i) = 0, I must have:

This condition is satisfied if and only if ηi,n = 0.

Similarly, the expected change in the j-coordinate is given by:

Substituting the expressions for P+j and P−j:

For (∆j) = 0, I must have:

This condition is satisfied if and only if ηj,n = 0.

Recall that  Therefore, the 
conditions for a stationary average position are:

The average position on the 2D lattice remains stationary if and 
only if the momenta at the next time step in both the i and j 
directions are zero. This implies that there is no net drift of the 
particle on the lattice in either direction, on average.

Analysis of Diffusion-like Behavior

To explore diffusion-like behavior, I consider the mean squared 
displacement (MSD). The expected squared change in the i and 
j coordinates at each step are:

The MSD after N time steps is 
 assuming the 

average position starts at zero and the changes in i and j are 
uncorrelated and have zero mean on average.

The momenta evolve as:

where the forces are:

Assuming average initial momentum is zero and the average 
force over the lattice is zero, the squared momentum in the 
i-direction evolves as:

This implies that the average of the squared momentum grows 
linearly with time step n. Consequently, (2i,n) will also grow.

As (η2) increases, ((∆in)2) tends towards saturation. If ((∆in)2) 
and ((∆jn)2) reach approxi-mately constant values, then the 
MSD, (R2 ), grows linearly with N, indicating diffusion-like 
behavior.

HoIver, the periodic potential might introduce trapping or 
oscillations, complicating the simple linear growth of MSD. A 
rigorous analysis requires further investigation.

The semi-discrete dynamics on the 2D lattice with a discrete 
cosine potential can exhibit diffusion- like behavior if the mean 
squared displacement of the particle grows linearly with time. 
This is expected to occur when the average squared momentum 
increases over time due to the fluctuating forces from the 
potential, leading to a roughly constant rate of hopping. HoIver, 
the periodic nature of the potential can also lead to deviations 
from simple diffusion, such as trapping or oscillations. A detailed 
characterization of the long-time behavior would require more 
advanced analytical techniques or numerical simulations.

Summary of Observations and Results for Semi-Discrete 
Dynamics on a 2D Lattice with a Discrete Cosine Potential

•	 Semi-Discretization: I successfully applied a semi-
discretization method where the spatial coordinates are 
discrete, momenta are continuous, forces are approximated 
using finite differ- ences, momenta are updated using 
Euler’s method, and the position on the 2D lattice evolves 
probabilistically with defined hopping rules.

•	 Discrete Symmetries: The potential V(i, j) = A cos(kxi∆x 
+ kyj∆y + ϕ) exhibits the translational symmetries of the 2D 
lattice if kx∆x and ky∆y are integer multiples of 2π.

•	 Conservation of Average Energy: This analysis indicated 
that the average energy of the system is generally not 
conserved due to the inherent non-conservation of the Euler 
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method for the continuous momenta and the changes in 
potential energy arising from the probabilistic hopping on 
the lattice.

•	 Stationary Average Position: The condition for a stationary 
average position on the lattice (i.e.,no net drift) is that the 
average momenta in both the i and j directions are zero, 
leading to ηi,n = 0 and ηj,n = 0.

•	 Potential Diffusion-Like Behavior: I explored the 
possibility of diffusion-like behavior by

looking at the mean squared displacement (MSD). The analysis 
suggests that if the average squared momentum increases over 
time due to the fluctuating forces from the potential, the MSD 
could grow linearly with time, indicating diffusion. HoIver, the 
periodic nature of the cosine potential might also lead to more 
complex phenomena like trapping or oscillations, which could 
deviate from simple diffusion. A more detailed investigation 
would likely require further analytical techniques or numerical 
simulations.

Analysis of Semi-Discrete Motion in a 2D Lattice Potential 
Exhibiting Permutation Symmetry

Solving Methodology

The methodology for this case involves a full discretization 
of the spatial coordinates, while momenta remain continuous. 
I use finite differences to approximate the forces from the 
discrete potential and Euler’s method to update the momenta. 
The position update is probabilistic, with hopping on the 2D 
lattice. The analytical investigation includes analyzing the 
discrete symmetries of the lattice and potential, examining the 
conservation of average energy considering the probabilistic 
hops, determining conditions for a stationary average position 
on the lattice, and investigating potential diffusion-like behavior 
[5].

The Potential Function:

V(i, j) = A cos(ki∆x) cos(kj∆y)

Semi-discretization Methodology

Discrete Positions on the 2D Lattice

Forces from the Discrete Potential

I am given the discrete cosine potential function:

V(i, j) = A cos(ki∆x) cos(kj∆y)

I approximate the forces using finite differences:

Calculation of Fi(i, j)

First, I evaluate the potential at (i + 1, j) and (i − 1, j):

Now, substitute these into the expression for Fi(i, j):

Factor out the common term Acos(kj∆y):

I use the trigonometric identity: cos(a + b) − cos(a − b) = −2 
sin(a) sin(b). Let a = ki∆x and b = k∆x.

Calculation of Fj(i, j)

Next, I evaluate the potential at (i, j + 1) and (i, j − 1):

Now, substitute these into the expression for Fj(i, j):

Factor out the common term A cos(ki∆x):

I use the trigonometric identity: cos(a + b) − cos(a − b) = −2 
sin(a) sin(b). Let a = kj∆y and b = k∆y.

Summary of Results

The forces from the discrete cosine potential V(i, j) = A cos(ki∆x) 
cos(kj∆y), using finite differ- ence approximations, are:

Continuous Momenta Update using Euler’s Method

Momentum Update using Euler’s Method

The Euler update rules for the momenta are given by:
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I found the forces for the potential V(i, j) = A cos(ki∆x) cos(kj∆y) 
to be:

Substituting these into the Euler update rules, I get:

Summary of Momentum Update Rules

The momenta at the next time step n + 1 are updated from the 
momenta at the current time step

n according to the following rules:

Probabilistic Position Update (Hopping)

Probabilistic Position Update on the 2D Lattice

Let the current lattice site at time step n be (in, jn). The parameters 
influencing the hopping probabilities are:

The probabilities of transitioning to a new site (in+1, jn+1) at time 
step n + 1 are:

•	 Probability of hopping in the +i direction:

•	 Probability of hopping in the −i direction:

•	 Probability of hopping in the +j direction:

•	 Probability of hopping in the −j direction:

•	 Probability of staying at the same site:

where

Summary of Probabilistic Update Rule

The position on the 2D lattice is updated probabilistically at each 
time step based on the values of ηi,n and ηj,n, which depend 
on the momenta. The particle has a chance to move one step in 
the positive or negative i or j direction, or to stay at its current 
location. The maximum probability of hopping in any single 
direction is limited to 0.25.

Analysis

Permutation Symmetry Analysis

Translational Symmetry of the Potential

For the potential V(i, j) = A cos(ki∆x) cos(kj∆y) to be invariant 
under the lattice translations (i, j) → (i + nx, j + ny), where nx 
and ny are integers, I must have:

Substituting the potential function, this condition becomes:

This equality holds if and only if knx∆x is an integer multiple of 
2π and kny∆y is an integer multiple of 2π. That is:

where mx and me are integers. These conditions must hold for 
all integers nx and ny. The smallest non-zero integer is nx = 1 
and ny = 1, so for the potential to be invariant under a shift by 
one lattice unit in both directions, I require:

where mx and me are integers. More generally, if I consider the 
periodicity of the lattice, the potential will be periodic if k∆x =

 where Lx and Ly are the periods in 
terms of the number of lattice units, and mx, my are integers.

Summary of Translational Symmetry

The discrete cosine potential V(i, j) = A cos(ki∆x) cos(kj∆y) 
exhibits the translational symmetries of the 2D lattice (by one 
lattice unit in each direction) if and only if k∆x is an integer 
multiple of 2π and k∆y is an integer multiple of 2π.

Permutation Symmetry of the Potential

I will now examine the permutation symmetry of the potential 
V(i, j) = A cos(ki∆x) cos(kj∆y). Permutation symmetry requires 
that the potential is invariant under the exchange of indices i and 
j, i.e., V(i, j) = V(j, i).
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The potential function is:

Swapping the indices i and j, I get:

For permutation symmetry, I need V(i,j) = V(j,i), so:

This equality holds for all integer values of i and j if the lattice 
spacing is the same in both directions, i.e., ∆x = ∆y.

I consider a square lattice where ∆x = ∆y = a. In this case, the 
potential becomes:

V(i, j) = A cos(kia) cos(kja)

Now, if I exchange i and j:

V(j, i) = A cos(kja) cos(kia)

Since multiplication is commutative, cos(kja) cos(kia) = cos(kia) 
cos(kja), which means V(j, i) =

V(i, j).

Summary of Permutation Symmetry

The potential function V(i, j) = A cos(ki∆x) cos(kj∆y) exhibits 
permutation symmetry (V(i, j) = V(j, i)) when the lattice spacing 
is the same in both the x and y directions (∆x = ∆y), which 
corresponds to a square lattice.

Conservation of Average Energy

Expected Potential Energy at Time n + 1

The expected potential energy at time step n + 1 is given by:

Substituting the probabilities:

Now, I substitute the potential function V(i, j) = Acos(ki∆x)
cos(kj∆y):

where P+i = max(0, min(0.25, ηi,n)), P−i = max(0, min(0.25, 
−ηi,n)), P+j = max(0, min(0.25, ηj,n)),

P−j = max(0, min(0.25, −ηj,n)).

Summary of Expected Potential Energy

The expected potential energy at the next time step is a Iighted 
average of the potential evaluated at the current site and its fThis 
nearest neighbors, with the Iights determined by the probabilities 
of hopping or staying, which depend on the momenta.

Difference in Average Energy (Hn+1) − Hn

The difference in average energy betIen time step n + 1 and n is:

where

and (V(in+1, jn+1)) is:

Substituting these into the energy difference equation and 
expanding the squared momentum terms will result in a lengthy 
expression. HoIver, similar to the previous case with the single 
coupled cosine potential, I can expect that (Hn+1) − Hn will 
generally not be zero. The Euler method introduces terms of 
order h, and the probabilistic hopping leads to changes in the 
expected potential energy that will not perfectly balance the 
changes in kinetic energy.

Summary of Energy Conservation

As with the previous potential, the average energy is generally 
not conserved for this semi-discrete system when using Euler’s 
method for momentum updates and a probabilistic hopping 
rule. The approximations inherent in Euler’s method and the 
statistical nature of the position updates lead to a non-zero 
difference betIen the average energy at consecutive time steps.

Stationary Average Position on the Lattice

Conditions for a Stationary Average Position

For a stationary average position on the lattice, I require that the 
expected change in both the i

and j coordinates over one time step is zero:

The expected change in the i-coordinate is given by:
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Substituting the expressions for P+i and P−i:

For (∆i) = 0, I must have:

This condition is satisfied if and only if ηi,n = 0.

Similarly, the expected change in the j-coordinate is given by:

Substituting the expressions for P+j and P−j:

For (∆j) = 0, I must have:

This condition is satisfied if and only if ηj,n = 0. Recall that 
 Therefore, the conditions for a 

stationary average position are:

Summary of Conditions for Stationary Average Position

The average position on the 2D lattice remains stationary if and 
only if the momenta at the next time step in both the i and j 
directions are zero. This implies that there is no net drift of the 
particle on the lattice in either direction, on average.

Potential Diffusion-like BehaviThis Analysis of Potential 
Diffusion-Like Behavior

To explore diffusion-like behavior, I again consider the mean 
squared displacement (MSD). The expected squared change in 
the i and j coordinates at each step are:

The momenta evolve as:

I consider the average force over the lattice. The average of 
sin(ki∆x) cos(kj∆y) and cos(ki∆x) sin(kj∆y) over a sufficiently 
large lattice is zero (assuming k∆x and k∆y are not integer 
multiples of 2π). Thus, if the initial average momentum is zero, 
it will remain around zero.

Now, I look at the evolution of the average squared momentum 
in the i-direction:

Assuming (pi,n) = 0, the term (pi,nFi(in, jn)) might also be zero 
on average. The last term is:

Using the averages (sin2(θ)) = 1/2 and (cos2(θ)) = 1/2 over a 
cycle:

Similarly,

Thus,  and similarly for p . This 
shows that the average squared

momenta grow over time. Consequently, (η2)  and (η2 ) will 
also grow. As (η2) increases, the values of ((∆in)

2)and ((∆jn)
2)

will tend towards saturation. If these values become roughly 
constant, the MSD will grow linearly with time, indicating 
diffusion-like behavior.

Summary of Potential Diffusion-Like Behavior

Similar to the previous potential, the semi-discrete dynamics 
with V(i, j) = A cos(ki∆x) cos(kj∆y) can also exhibit diffusion-
like behavior. The fluctuating forces from the potential cause 
the average squared momenta to grow, leading to a non-zero 
probability of hopping. Over time, this can result in a linear 
growth of the mean squared displacement. The periodic nature 
of the potential can still influence the details of this diffusion, 
potentially leading to anisotropic diffusion if ∆x ̸= ∆y or if the 
parameters in the i and j directions are different.

Motion Along the Line i = j

I consider the motion along the line i = j for the potential function 
V(i, j) = A cos(ki∆x) cos(kj∆y).

I assume a square lattice where ∆x = ∆y = a, so the potential is:

Potential Along i = j

Substituting j = i, the potential along this line is:

This can also be expressed using the double angle formula for 
cosine:
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This represents a 1D periodic potential along the line i = j.

Forces Along i = j

For a square lattice, the force components are:

Along the line i = j, these become:

Thus, Fi(i, i) = Fj(i, i) along the line i = j.

The potential along the line i = j for the given 2D lattice 
potential on a square lattice is a 1D periodic potential. The 
forces in the i and j directions are equal along this line and 
depend on sin(2kia).

The motion of a particle starting on this line, under the defined 
semi-discretization with independent hopping, may or may not 
stay on this line.

Analysis of Average Drift

The average drift in the i and j directions is given by the 
expected change in position per time step:

where  and the momenta are 
updated by:

If the initial average momenta are zero, (pi,0) = 0 and (pj,0) = 0, 
the average force in the i-direction over the lattice is:

If k∆x and k∆y are not integer multiples of 2π, then (Fi) = 
0 and (Fj) = 0. This implies (pi,n+1) = 0 and (pj,n+1) = 0, and 
consequently (ηi,n) = 0 and (ηj,n) = 0 on average.Substituting 
these into the average drift equations gives:

Therefore, under the assumption of zero initial average 
momentum and that k∆x and k∆y are not integer multiples of 
2π, the average drift for this potential is zero. A non-zero average 

drift could occur with non-zero initial average momentum or if 
the average force is non-zero.

Average Drift with Non-Zero Initial Average Momentum

Suppose at the initial time n = 0, the particle has a non-zero 
average momentum (pi,0) = Pi0 and (pj,0) = Pj0. Assuming the 
average force from the potential is zero, the average momenta 
at subsequent time steps remain constant:

The average drift in the i and j directions becomes:

If Pi0 > 0, there is a positive average drift in the i-direction. If Pi0 
< 0, there is a negative average drift. The magnitude of the drift 
increases with |Pi0| until it saturates at 0.25 steps per time step. 
Similar behavior occurs for the drift in the j-direction based on 
the sign and magnitude of Pj0.

A non-zero initial average momentum leads to a constant 
average drift in the direction of the initial momentum. The speed 
of this drift depends on the magnitude of the initial momentum 
and system parameters, with a maximum drift rate of 0.25 lattice 
sites per time step in each direction.

Average Drift Due to Specific Values of Potential Parameters

The forces are given by:

For a non-zero average force over the lattice, the averages 
(sin(ki∆x) cos(kj∆y)) or (cos(ki∆x) sin(kj∆y)) must be non-
zero. If k∆x = 2πmx (integer mx), then sin(ki∆x) = 0, so Fi = 0. 
Similarly, if k∆y = 2πmy, then sin(kj∆y) = 0, so Fj = 0.

For a non-zero average of sin(ki∆x) or cos(ki∆x) over all 
integers i, k∆x would typically need to be a multiple of 2π 
(making sine zero) or zero (making sine zero).

HoIver, in a finite lattice of size Lx × Ly, averages like   
 might be non-zero for specific relationships betIen 

k∆x and Lx.Lx i=0

For the infinite lattice case, it is generally challenging to obtain 
a sustained non-zero average force with this potential through 
specific values of k, ∆x, or ∆y alone.

Achieving a sustained non-zero average force, and thus a constant 
drift, through specific choices of the potential parameters k, 
∆x, or ∆y is difficult for this potential over an infinite lattice. 
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Such a drift might be possible in finite lattices or with specific 
relationships betIen these parameters and the lattice dimensions.

Effects of Boundaries on Average Drift

In a finite lattice with boundaries, the probabilistic hopping 
rule needs to be modified when the particle reaches an edge. 
I consider two common types of boundaries: reflecting and 
absorbing.

Reflecting Boundaries

Consider a lattice bounded by 0 ≤ i < Lx and 0 ≤ j < Ly.

•	 If the particle is at ηi,n  and ηi,n < 0 (attempting a hop to i 
= −1), a reflecting boundary would prevent this. A simple 
rule might be that the probability P+i is redistributed to the 
probability of staying at i = 0 or hopping in the +i direction. 
This would create a net average drift away from the 
boundary at i = 0.

•	 Similarly, at iin = Lx − 1 with ηi,n > 0 (attempting a hop to 
i = Lx), the hop would be prevented, and the probability 
P+i would be redistributed, leading to an average drift away 
from the boundary at i = Lx − 1.

•	 The same logic applies to the boundaries in the j direction at 
j = 0 and j = Ly − 1 based on the sign of ηj,n.

In general, reflecting boundaries in a finite lattice with a 
symmetric potential tend to cause an average drift away from 
the boundaries.

Absorbing Boundaries

Again, consider a lattice bounded by 0 ≤ i < Lx and 0 ≤ j < Ly.

•	 If the particle reaches any of the boundaries (e.g., i = 0, i = 
Lx − 1, j = 0, j = Ly − 1), it is absorbed and removed from 
the system.

•	 If I consider an ensemble of particles, the total number of 
particles within the lattice will decrease over time.

•	 The average position of the particles that remain in the 
lattice might shift depending on the poten- tial and the 
initial distribution. For a symmetric potential and a 
symmetric initial distribution, the average position of the 
surviving particles might stay roughly at the center, but the 
probability distribution will narrow as particles at the edges 
are absorbed.

Absorbing boundaries do not directly create a drift of the average 
position if the potential and initial conditions are symmetric. 
HoIver, they do change the overall distribution and lead to a loss 
of particles from the system.

Summary

Reflecting boundaries typically induce an average drift away 
from the boundaries due to the prevention and redistribution 
of hopping probabilities that would lead outside the lattice. 
Absorbing boundaries lead to the removal of particles upon 
reaching them, which changes the overall distribution but may 
not cause a net drift in the average position of the remaining 
particles in cases of symmetry.

Symmetries of the Forces

The force components are given by:

Permutation Symmetry

Under the exchange of indices i ↔ j and lattice spacings ∆x ↔ 
∆y, the forces transform as:

If ∆x = ∆y = a, then Fi(j, i) = Fj(i, j) and Fj(j, i) = Fi(i, j). 
The forces are interchanged under permutation of indices 
on a square lattice.

Reflection Symmetry

Reflection about the i-axis (j ↔ −j):

Reflection about the j-axis (i ↔ −i):

Rotational Symmetry (for ∆x = ∆y = a)

Rotation by 90 degrees ((i, j) → (−j, i)):

Symmetries of the Forces

The force components are given by:

Permutation Symmetry
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Under the exchange of indices i ↔ j and lattice spacings ∆x ↔ ∆y, 
the forces transform as:

If ∆x = ∆y = a, then Fi(j, i) = Fj(i, j) and Fj(j, i) = Fi(i, j). 
The forces are interchanged under permutation of indices 
on a square lattice.

Reflection Symmetry

Reflection about the i-axis (j ↔ −j):

Reflection about the j-axis (i ↔ −i):

Rotational Symmetry (for ∆x = ∆y = a)

Rotation by 90 degrees ((i, j) → (−j, i)):

Summary of Force Symmetries

The forces exhibit specific symmetry properties under permutation 
and reflection of the lattice indices. On a square lattice, the force 
components are interchanged upon swapping i and j. Reflections 
about the axes invert the sign of the force component along the 
other axis. Rotational symmetry is more complex and involves a 
relationship betIen the components at the rotated points.

Symmetries of the Motion

The motion of the particle is governed by the momentum update 
rules and the probabilistic hopping on the lattice. I consider how 
these behave under the discrete symmetries.

Reflection Symmetry

Reflection about the i-axis (j ↔ −j): The potential V(i, −j) = V(i, 
j). The forces transform as

Fi(i, −j) = Fi(i, j) and Fj(i, −j) = −Fj(i, j). The momentum update 
rules become:

The η parameters transform as η′= ηi,n and η′= −ηj,n. This leads to 
a swap in the hopping probabilities in the j direction: P′ = P−j and 
P′ = P+j, while the probabilities in the i direction

remain the same. If the initial distribution of j and pj is symmetric, 
the average motion will respect

This Reflection Symmetry.

Reflection about the j-axis (i ↔ −i): The potential V(−i, j) = V(i, 
j). The forces transform as Fi(−i, j) = −Fi(i, j) and Fj(−i, j) = Fj(i, 
j). Similar to the previous case, if pi,n changes sign, then pi,n+1 
changes sign, and the hopping probabilities in the i direction are 
swapped. The motion respects reflection about the j-axis on average 
with symmetric initial conditions.

Rotational Symmetry (for ∆x = ∆y = a)

Under a 90-degree rotation (i, j) → (−j, i), the potential is invariant. 
The forces transform, and

if the momenta also transform as pi′ = −pj and p j′ = pi, a more 
complex analysis shows that the dynamics should respect the 
rotational symmetry on average if the initial state is also rotationally 
symmetric.

Summary of Motion Symmetries

The semi-discrete motion exhibits the discrete symmetries of the 
underlying potential on average, provided that the initial conditions 
of the system are also symmetric with respect to the transformations 
considered. Reflections about the axes lead to corresponding 
reflections in the average motion, and rotational symmetry of the 
potential and initial state implies rotational symmetry in the average 
dynamics.

Conclusion

Summary of Observations and Results for Semi-Discrete Motion 
with Permutation Symmetry Potential

•	 Semi-Discretization: I applied the same semi-discretization 
methodology as before.

•	 Forces: I calculated the forces Fi(i, j) and Fj(i, j) using finite 
difference approximations.

•	 Momentum Update: I used Euler’s method to update the 
momenta based on these forces.

•	 Probabilistic Hopping: The position on the lattice evolves 
probabilistically based on the updated momenta.

•	 Discrete Symmetries: The potential V(i, j) = A cos(ki∆x) 
cos(kj∆y) exhibits translational sym- metry under certain 
conditions on k∆x and k∆y, permutation symmetry when ∆x 
= ∆y, and also possesses reflection and rotational symmetries 
(for a square lattice).
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•	 Conservation of Average Energy: The average energy is 
generally not conserved for similar reasons as with the previous 
potential.

•	 Stationary Average Position: The average position is 
stationary if the average momenta are zero.

•	 Potential Diffusion-Like Behavior: The system has the 
potential for diffusion-like behavior, with the mean squared 
displacement growing over time due to the fluctuating 
momenta.

•	 Motion Along i = j: For a square lattice with lattice spacing a, 
the potential along this line is A cos2(kia), and the forces Fi and 
Fj are equal to  A sin(2kia) sin(ka).

•	 Average Drift: The average drift is zero if the initial average 
momentum and average force are zero. A non-zero initial 
average momentum leads to a constant average drift. The 
average force from this potential is typically zero over an 
infinite lattice.

•	 Variance of the Position: The variance of the position grows 
over time, indicating diffusion, even when the average drift is 
zero.

•	 Symmetries of the Forces: The forces exhibit specific 
symmetries under permutation and reflec- tion of indices.

•	 Symmetries of the Motion: The motion respects the 
symmetries of the potential and forces on average, provided 
the initial conditions are also symmetric.

Results

Thorough Comparison and Contrast of the Two Analyzed 
Potentials

I have analyzed two potential functions using the semi-discretization 
methodology:

1.	 V1(i, j) = A cos(kxi∆x + kyj∆y + ϕ)

2.	 V2(i, j) = A cos(ki∆x) cos(kj∆y)

I.      Comparison and Contrast of Properties within Each 
Potential:

For both potential functions:

•	 Semi-Discretization Methodology: The same methodology 
was applied to both.

•	 Conservation of Average Energy: Average energy is 
generally not conserved for both due to the Euler method and 
probabilistic hopping.

•	 Stationary Average Position: Requires zero average momenta 
in both i and j directions for both.

•	 Potential Diffusion-Like Behavior: Both potentials show 
the potential for diffusion-like behavior driven by fluctuating 
momenta.

•	 Average Drift: For both, average drift is zero under zero 
initial average momentum and average force. Non-zero initial 
average momentum leads to drift.

II.   Pairwise Comparison and Contrast of the Two Potentials 
Across Analyzed Properties:

•	 Discrete Symmetries:

–       V1: Translational, rotational (if square lattice and kx = ky), and 
reflection symmetries.

–      V2: Translational, permutation (if ∆x = ∆y), rotational (if square 
lattice), and reflection

symmetries.

–    Contrast: V2 possesses permutation symmetry on a square 
lattice, which is not a general symmetry of V1.

•	 Forces:

–      V1: Coupled forces where each component depends on both i 
and j through the argument kxi∆x + kyj∆y + ϕ.

–       V2: Separable forces:

–   Contrast: V1 produces coupled forces, while V2 produces 
separable forces.

•	 Motion Along i = j (Square Lattice, ∆x = ∆y = a):

–      V1: V1(i, i) = A cos((kx + ky)ia + ϕ).

–      V2: V2(i, i) = A cos2(kia) =  A (1 + cos(2kia)).

–      Contrast: Different forms of 1D periodic potentials along the 
line i = j.

•	 Symmetries of the Forces:

–   The specific symmetry properties under permutation and 
reflection differed betIen the two potentials, reflecting the forms of 
their respective force expressions.

•	 Symmetries of the Motion:

–         Both potentials resulted in motion that respects the symmetries 
of the potential and forces on average, given symmetric initial 
conditions.
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Group-wise Comparison and Contrast Across All Analyzed 
Properties

The semi-discretization methodology established a common 
framework, leading to similarities in high-level behaviors such as 
energy non-conservation, conditions for stationary average position, 
and the potential for diffusion. The key differences observed in This 
analysis stem from the distinct mathematical structures of the two 
potential functions, particularly regarding their symmetries and the 
nature of the forces they produce (coupled vs. separable).

References

1.	 Goldstein, H., Poole, C., & Safko, J. (2002). Classical 
mechanics (3rd ed.). Addison-Wesley.

2.	 Hairer, E., Lubich, C., & Wanner, G. (2006). Geometric 
numerical integration: Structure-preserving algorithms for 
ordinary differential equations. Springer.

3.	 Hairer, E., & Wanner, G. (1993). Solving ordinary differential 
equations II: Stiff and differential-algebraic problems. Springer.

4.	 Tuckerman, M. E. (2010). Statistical mechanics: Theory and 
molecular simulation. Oxford University Press.

5.	 Strogatz, S. H. (2015). Nonlinear dynamics and chaos: With 
applications to physics, biology, chemistry, and engineering. 
Westview Press.


