

Corrosion Prevention and Control in Marine Environments

Moses Adondua Abah^{1*}, Amalaghya Nengimote Godwin^{2,3}, Micheal Abimbola Oladosu¹, and Nathan Rimamsanati Yohanna¹

¹ResearchHub Nexus Institute, Nigeria

²University of Chester, Parkgate Road, Chester CH1 4BJ, UK

³Department of Marine Engineering, Faculty of Engineering, Niger Delta University, Nigeria

***Corresponding author:** Moses Adondua Abah, ResearchHub Nexus Institute, Nigeria.

Submitted: 26 November 2025 **Accepted:** 02 December 2025 **Published:** 06 December 2025

 <https://doi.org/10.63620/MKAMSR.2025.1027>

Citation: Abah, M. A., Godwin, A. N., Oladosu, M. A., & Yohanna, N. R. (2025). Corrosion Prevention and Control in Marine Environments. *A of Marine Science Research*, 2(6), 01-07.

Abstract

Corrosion is a significant concern in marine environments, affecting the durability and safety of ships, offshore platforms, and coastal infrastructure. The harsh conditions, including seawater, salt spray, and high humidity, accelerate corrosion, leading to costly repairs, downtime, and environmental risks. Effective corrosion prevention and control measures are crucial to mitigate these impacts. The current review explores corrosion prevention and control in marine environments. Research has identified several effective corrosion prevention and control strategies for marine environments. Coatings, such as epoxy and polyurethane-based systems, provide a protective barrier against corrosion. Cathodic protection, including sacrificial anodes and impressed current systems, has also proven effective. Additionally, corrosion-resistant materials, like stainless steel and titanium, are increasingly used in marine applications. Regular maintenance, inspection, and monitoring are essential to detect and address corrosion early. Advanced technologies, such as nanocoatings and smart coatings, offer promising solutions for enhanced corrosion protection. Corrosion prevention and control are critical in marine environments. Implementing effective strategies, including coatings, cathodic protection, and corrosion-resistant materials, can mitigate corrosion impacts. Regular maintenance and advanced technologies can further enhance corrosion protection, reducing costs and environmental risks.

Keywords: Marine Environment, Corrosion, Advanced Technology, Coatings, and Environmental Risk.

Introduction

In marine environments, corrosion represents a ubiquitous and complex form of material degradation, driven by the synergistic action of chloride-rich seawater, dissolved oxygen, fluctuating temperatures, and microbial activity. When metallic structures ranging from ship hulls and offshore platforms to submerged pipelines are exposed to saline conditions, electrochemical reactions at anodic and cathodic sites lead to metal dissolution, oxide formation, and localized attack such as pitting and crevice corrosion [1, 2]. The presence of biofilms and sulfate-reducing bacteria further exacerbates degradation through microbiologically influenced corrosion, while mechanical stresses and galvanic coupling introduce avenues for stress corrosion cracking and accelerated material loss [3]. As a result, corrosion control in

marine settings necessitates a multidisciplinary understanding of both fundamental electrochemical processes and environmental interactions.

The economic and safety implications of marine corrosion are immense. Koch, Brongers, Thompson, Virmani, and Payer (2002) estimated that the annual global cost of corrosion exceeds USD 2.5 trillion, equivalent to approximately 3–4 percent of world gross domestic product. A significant portion of this expenditure up to 20 percent is attributable to marine applications, reflecting the high failure rates and maintenance burdens of maritime and offshore infrastructure. Structural failures due to undetected corrosion can trigger catastrophic environmental disasters, such as oil spills from corroded pipelines, and pose

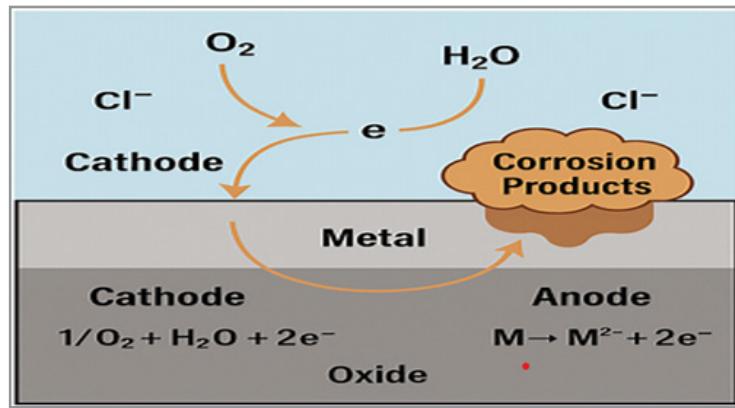
severe risks to human life through vessel instability or platform collapse [4]. The cumulative impact on global trade, energy security, and ecological integrity underscores the urgency of developing robust prevention and control measures tailored to the harsh realities of saline exposure.

Harsh saline conditions present a formidable challenge to conventional materials and protection strategies. Chloride ions penetrate passive oxide films on metals like carbon steel and stainless steel, initiating localized breakdown and aggressive pitting even at low concentrations [1]. Dynamic tidal cycles and wave action promote oxygen replenishment, sustaining cathodic reactions and continuous anodic dissolution. Furthermore, fluctuating temperatures and varying salinities influence corrosion kinetics, while crevices and weld seams act as microenvironments that accelerate attack [2]. In pipelines, internal corrosion is aggravated by transported fluids containing water, CO₂, and H₂S, leading to metal loss, leaks, and premature failure. These multifaceted degradation pathways demand integrated prevention and monitoring approaches that address both bulk corrosion and localized forms of attack.

This review aims to comprehensively examine the mechanisms underlying marine corrosion and to evaluate the array of prevention and control strategies employed across coastal, offshore, and subsea applications. We seek to elucidate how electrochemical processes interact with environmental variables to drive material deterioration, and how targeted interventions can mitigate these effects. Emphasis will be placed on the selection of corrosion-resistant metals and alloys, the formulation and application of protective coatings, the deployment of chemical inhibitors, and the optimization of cathodic protection systems. Additionally, we will explore emerging advances in nanomaterials such as nanostructured barrier coatings and nanoparticle-enhanced inhibitor carriers that promise to redefine corrosion control through improved adhesion, self-healing capabilities, and multifunctional performance.

The scope of this review encompasses both traditional and innovative approaches to marine corrosion management. We will begin by characterizing the marine corrosive environment and detailing the electrochemical and biological pathways that govern metal degradation. Subsequent sections will survey metallic substrates from carbon steels to duplex and super-austenitic stainless steels highlighting their intrinsic corrosion resistance and alloy design principles. We will then assess organic and inorganic coating systems, including epoxy, polyurethane, and zinc-rich formulations, as well as emerging smart coatings with self-diagnostic and self-repair functionalities. Chemical inhibitors ranging from film-forming amines to environmentally benign organic compounds will be evaluated for their mechanisms of action and field performance. The review will also cover cathodic protection techniques, both galvanic and impressed-current, and discuss their design parameters, monitoring strategies, and limitations.

Finally, we will examine the potential of nanotechnology to enhance corrosion prevention, illustrating how nanoparticle addi-


tives and nanostructured surfaces can improve barrier properties and active protection. Through this integrated analysis, we aim to provide a roadmap for researchers, engineers, and decision-makers to advance corrosion prevention and control in the demanding context of marine environments.

Corrosion in Marine Environments: Nature and Mechanisms

Marine corrosion arises from the interplay of saline water chemistry, dissolved oxygen, temperature fluctuations, and microbial colonization, creating aggressive conditions that accelerate material degradation. Seawater's salinity, typically around 3.5 percent NaCl by weight, supplies chloride ions that disrupt protective oxide films on metals such as carbon steel and stainless steel, initiating localized attack. Dissolved oxygen, replenished by wave action and tide cycles, acts as an electron acceptor at cathodic sites, sustaining electrochemical reactions. Elevated temperatures increase corrosion rates by enhancing ionic mobility and reaction kinetics, while biofilms and sulfate-reducing bacteria foster microbiologically influenced corrosion (MIC) through metabolic activities that produce corrosive byproducts like hydrogen sulfide [3, 2].

Electrochemical corrosion dominates in marine environments, proceeding via anodic metal dissolution ($M \rightarrow M^{n+} + ne^-$) and cathodic oxygen reduction ($\frac{1}{2}O_2 + H_2O + 2e^- \rightarrow 2OH^-$). Chloride ions migrate to anodic sites, forming soluble metal chlorides that accelerate pit growth and undermine passive films, leading to rapid pitting corrosion. Crevice corrosion occurs in shielded regions such as under deposits or gasket interfaces where oxygen depletion and acidification drive localized attack. Galvanic corrosion emerges when dissimilar metals couple in seawater, with the more anodic metal corroding preferentially. MIC represents another insidious mechanism: sulfate-reducing bacteria colonize surfaces, consume organic substrates, and reduce sulfate to sulfide, generating acidic microenvironments and promoting under film corrosion [5].

Case examples underscore the pervasiveness and consequences of marine corrosion. Offshore oilrigs suffer pitting and crevice corrosion in splash zones, compromising structural integrity and necessitating frequent maintenance shutdowns. Submarines and naval vessels grapple with hull corrosion that increases drag, reduces fuel efficiency, and jeopardizes stealth capabilities. Subsea pipelines transporting oil and gas face internal corrosion from water, CO₂, and H₂S contamination, leading to leaks and environmental disasters, while external corrosion under coatings degrades pipeline walls, risking catastrophic failure [1]. Figure 1 illustrates the electrochemical cell mechanism of corrosion in saline water. The diagram depicts a metal surface with distinct anodic and cathodic regions immersed in seawater. Chloride ions penetrate the oxide layer at anodic sites, facilitating metal oxidation and electron release. Electrons traverse the metal to cathodic sites, where dissolved oxygen is reduced to hydroxide ions. The interplay of these anodic and cathodic processes, driven by salinity and oxygen, results in the formation of rust (iron oxides/hydroxides) and progressive metal loss.

Figure 1: Electrochemical Cell Mechanism of Corrosion in Saline Water

Source: Adapted from Fontana (1987); Shreir et al. (2010)

Economic, Structural, and Environmental Impacts

Marine corrosion imposes staggering economic burdens on global industries. The total annual cost of corrosion across all sectors is estimated at USD 2.5 trillion, with approximately 20 percent around USD 500 billion attributable to marine applications [4]. Within this marine portfolio, shipping, offshore oil and

gas, naval, and coastal infrastructure incur the highest expenditures for maintenance, replacement, and downtime due to metal loss, coating failures, and structural degradation. Table 1 presents estimated annual costs by sector, drawing on published data and proportional allocations of the marine corrosion burden.

Table 1: Estimated annual cost of marine corrosion in different sectors

Sector	Annual Cost (USD billion)	Source
Shipping	150	Estimated 30 % of marine cost (Koch et al., 2002)
Offshore oil & gas	1.37	Mark Tool (2022)
Naval (U.S. Department of Navy)	7	Thomas (2012)
Coastal infrastructure	100	Estimated 20 % of marine cost (Koch et al., 2002)

Sources: Koch et al.; Thomas

Beyond financial losses, corrosion poses grave safety risks. Pipeline failures in subsea oil and gas networks can trigger catastrophic oil spillages, endangering marine ecosystems and coastal communities [3]. Similarly, pitting and crevice corrosion on ship hulls increase structural fatigue, compromising seaworthiness and elevating the likelihood of capsizing or collisions. Offshore platforms plagued by chloride-induced cracking face unplanned shutdowns that threaten both personnel safety and energy security.

Environmental impacts compound these structural and economic damages. As metals corrode, ions such as iron, copper, and zinc leach into seawater and sediments, altering local geochemistry and impairing marine life. Elevated metal concentrations disrupt planktonic communities, bioaccumulate in food webs, and reduce biodiversity [5]. Corrosion byproducts also accelerate the breakdown of protective coatings, creating a feedback loop of accelerated degradation and pollutant release.

Global policies and regulations have evolved to mitigate these risks by enforcing material standards, corrosion control practices, and environmental safeguards. The International Convention for the Prevention of Pollution from Ships (MARPOL Annex I) prohibits deliberate oil discharges and mandates double-hull designs to reduce spill volumes in the event of hull breaches [6]. ISO 12944 specifies performance requirements for protective paint systems on marine structures, driving harmonization of coating selection and application procedures [7].

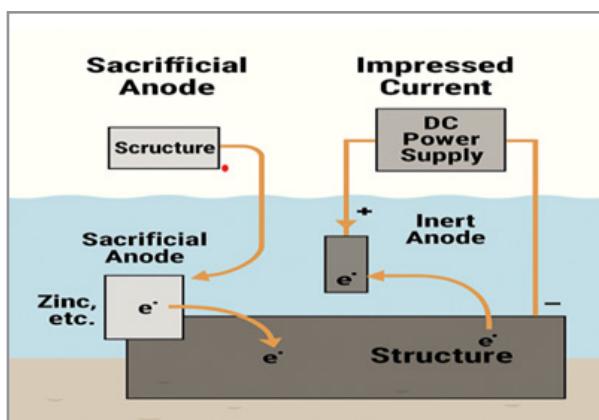
NACE International's SP0108 standard provides guidelines for

cathodic protection of ship hulls and offshore installations, detailing criteria for current density, anode placement, and monitoring protocols [8]. In the United States, the Department of Defense Corrosion Prevention and Mitigation Strategic Plan integrates risk-based inspection, materials evaluation, and lifecycle costing to extend asset service life and reduce sustainment costs [9]. While these frameworks offer robust tools for corrosion management, their effectiveness hinges on consistent enforcement, cross-border collaboration, and investment in emerging technologies.

Addressing the economic, structural, and environmental toll of marine corrosion demands a multifaceted approach that unites materials science, engineering controls, and regulatory oversight. Subsequent sections of this review will delve into corrosion mechanisms in saline environments, evaluate preventive coatings and inhibitors, assess cathodic protection strategies, and explore novel nanomaterials poised to revolutionize marine corrosion control.

Prevention and Control Strategies: Traditional Approaches

Protective coatings remain the first line of defense against marine corrosion, forming a physical barrier that isolates metal substrates from seawater. Conventional systems employ multi-layer formulations of primers, intermediate coats, and topcoats based on epoxy, polyurethane, or alkyd chemistries [2].


Epoxy primers provide excellent adhesion and chemical resistance, while polyurethane topcoats impart flexibility and UV stability. Despite these advantages, coatings in harsh marine

settings are prone to mechanical damage, osmotic blistering, and cracking due to cyclic stresses from waves and temperature fluctuations. Once compromised, coating defects become focal points for underfilm corrosion and coating delamination, necessitating frequent inspection and maintenance (Elias, 2014) [1].

Cathodic protection (CP) complements coatings by suppressing the electrochemical reactions that drive metal dissolution. Sacrificial-anode CP employs more active metals commonly zinc, aluminum, or magnesium as anodes electrically connected to steel structures. In seawater, the sacrificial anode corrodes preferentially, supplying electrons that polarize the protected structure

to cathodic potentials, thereby halting iron oxidation [3].

Impressed-current cathodic protection (ICCP) systems use an external DC power source to maintain cathodic polarization, with inert anodes (e.g., mixed metal oxide coatings on titanium) delivering controlled current to the steel substrate. Figure 2 illustrates these two CP approaches, showing electron flow from zinc anodes in a sacrificial system versus current distribution from a DC power supply in ICCP. Both methods are widely applied on ship hulls, offshore platforms, and subsea pipelines, often in tandem with coatings to provide redundant protection [2].

Figure 2: Cathodic protection with sacrificial anode vs impressed current.

Source: Shreir et al.; Melchers

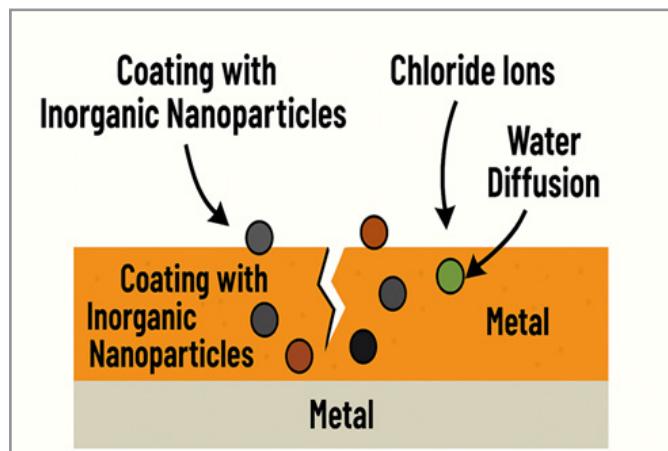
The selection and performance of CP systems are influenced by water resistivity, anode placement, and environmental conditions. On naval vessels, sacrificial-anode arrays are optimized to minimize drag while ensuring uniform protection across complex geometries (Loto & Loto, 2015). Offshore platforms typically employ ICCP to deliver higher current densities over large submerged surfaces, with remote monitoring and automated controls to adjust for seasonal variations in seawater conductivity [3]. Despite their efficacy, CP systems require periodic anode replacement, power source maintenance, and careful monitoring to prevent overprotection, which can induce hydrogen embrittlement in high-strength steels.

Corrosion inhibitors offer a chemical means of protection by forming adsorbed films or complexes that impede anodic and cathodic reactions. Organic inhibitors such as amines, imidazolines, and phosphonates adsorb onto metal surfaces via heteroatoms (N, O, P, or S), creating hydrophobic barriers, while inorganic inhibitors (e.g., chromates, molybdates, and phosphates) precipitate as protective layers within coating pores or crevices

(Revie & Uhlig, 2008). In marine applications, film-forming amine inhibitors are often introduced into ballast water or injected into pipeline fluids to mitigate internal corrosion. However, environmental toxicity and bioaccumulation concern particularly for chromate-based inhibitors have prompted the industry to pursue “green” alternatives, such as amino acid-derived surfactants and biodegradable phosphate esters (Jones, 1996; Cao et al., 2013).

Table 2 summarizes the mechanisms, effectiveness, and limitations of these traditional corrosion control strategies. While coatings, CP, and inhibitors each play vital roles, their performance is interdependent: coatings reduce CP current demand and inhibitor consumption, CP extends coating service life, and inhibitors protect uncoated crevices that CP may not reach. The trade-offs among cost, maintenance frequency, and environmental impact drive the ongoing development of hybrid and multifunctional systems incorporating nanomaterials, self-healing resins, and smart inhibitors to address the shortcomings of conventional methods.

Table 2: Comparison of traditional corrosion control methods


Method	Mechanism	Effectiveness	Limitations
Protective Coatings	Physical barrier; isolating metal from seawater	High when intact; broad usage	Prone to damage; underfilm corrosion
Sacrificial CP	Anode oxidation; structure polarization	Reliable for small systems	Anode consumption; drag increase on hulls
Impressed Current CP	External DC; controlled cathodic polarization	Scalable for large structures	Power requirement; risk of overprotection
Chemical Inhibitors	Adsorption; film formation or precipitation	Targets localized corrosion	Environmental toxicity; dosing control

Sources: Revie and Uhlig; Shreir et al

Emerging and Advanced Approaches

The relentless assault of seawater on metallic structures has spurred the development of coatings that do more than merely isolate steel from its corrosive surroundings. Nanostructured and smart coatings now incorporate micro- or nano-containers of healing agents, corrosion inhibitors, and barrier nanoparticles into multilayer films that actively respond to damage. When a scratch or crack breaches the topcoat, embedded microcapsules

rupture and release healing monomers that polymerize to seal defects, as depicted in Figure 3. In parallel, inorganic nanoparticles such as silica, alumina, or graphene oxide can be dispersed within epoxy or polyurethane matrices to create tortuous pathways that impede chloride ingress and water diffusion, thereby extending coating lifetimes under dynamic marine conditions [10].

Figure 3: Schematic of a self-healing smart coating

Source: Li et al. (2022)

Advanced Materials

Advances in materials science have also produced metal alloys and composites tailored for corrosive environments. High-performance stainless steels with increased chromium, molybdenum, and nitrogen content form robust passive films that resist pitting and crevice attack in chloride-rich waters. Titanium and its alloys deliver exceptional corrosion resistance at the expense of higher material cost, making them suitable for critical offshore connectors and heat exchangers. Meanwhile, polymer–metal composites combine a corrosion-resistant metal substrate with a structurally supportive polymer layer or interlayer, yielding lightweight panels and fittings that balance mechanical strength with environmental durability [2].

Biodegradable and Green Inhibitors

Biodegradable and green inhibitors are emerging as environmentally benign alternatives to chromate and other toxic compounds. Plant-derived extracts such as tannins, alkaloids, and flavonoids adsorb onto steel surfaces to form protective films that reduce corrosion rates by 60–85 percent in laboratory evaluations [11]. Chitosan, obtained from crustacean shells, has demonstrated over 70 percent inhibition efficiency in seawater immersion tests, while amino acid–based inhibitors offer low toxicity and high biodegradability. Table 3 summarizes selected green inhibitors and their effectiveness in marine environments, underscoring the shift toward sustainable chemistries [12].

Table 3: Green inhibitors tested in marine environments

Inhibitor	Source	Corrosion Rate Reduction (%)
Tannin extract	Tea leaves	75
Chitosan derivative	Crustacean shells	72
Polyaspartic acid	Synthetic amino acid	65
Vegetable oil surfactant	Rapeseed oil	60

Sources: Aydinsoy et al.; Lee

Monitoring and Predictive Technologies

The digital revolution now extends into corrosion management through sensors, machine learning, and artificial intelligence. Embedded electrochemical noise and linear polarization resistance sensors provide real-time data on localized corrosion events, while fiber-optic probes monitor strain and pH at coating defects. These data streams feed into predictive models that leverage machine learning algorithms such as random forests and neural networks to forecast corrosion rates and identify high-risk zones before failure occurs [13]. Remote monitoring platforms integrate satellite communications and cloud analytics to deliver continuous health assessments of offshore structures,

enabling condition-based maintenance that optimizes inspection intervals and reduces downtime.

Challenges and Limitations

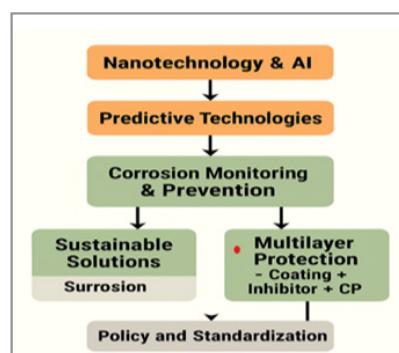
Despite significant advances in corrosion prevention and control, the marine environment remains one of the most unforgiving arenas for metallic structures. Protective coatings, cathodic protection systems, and chemical inhibitors are continually challenged by the dynamic interplay of salinity, temperature fluctuations, mechanical abrasion from waves and biofouling, and ultraviolet exposure. Even the most robust epoxy or polyurethane coatings suffer microcracking and osmotic blistering under cy-

clic loading, providing entry points for chloride ions that rapidly undermine barrier integrity and accelerate under film corrosion [1, 2]. Similarly, cathodic protection systems whether sacrificial-anode or impressed-current struggle to maintain uniform polarization on complex geometries, and anode consumption or electrical system failures can leave critical areas unprotected, leading to localized pitting and stress corrosion cracking [3].

The adoption of advanced nanostructured and self-healing coatings has demonstrated impressive laboratory performance, but their transition to field deployment is hindered by high material and application costs. Nanoparticle-enhanced barrier layers and microcapsule-based healing agents require specialized synthesis, stringent quality control, and often proprietary installation techniques, contributing to initial capital outlays that can exceed those of conventional coatings by two- to three-fold [10]. While life-cycle cost analyses suggest long-term savings through reduced maintenance cycles, the upfront investment remains a barrier for many ship operators, offshore platform owners, and public infrastructure managers who operate under tight budget constraints and competing capital priorities [4].

Biodegradable and plant-derived “green” corrosion inhibitors offer a promising alternative to chromates and other toxic chemistries, yet their large-scale adoption is limited by supply chain constraints, variability in extract composition, and inconsistent performance under real-world conditions. Although extracts of tannins, flavonoids, and chitosan derivatives have achieved inhibition efficiencies above 70 percent in seawater immersion tests, standardization of active constituents and regulatory approval for maritime use remain significant hurdles [12, 11]. Furthermore, the ecological safety of these biopolymers under long-term exposure has not been fully assessed, raising questions about potential impacts on marine microbiota and food webs.

Predictive modeling and real-time monitoring technologies promise to revolutionize corrosion management through early detection and data-driven maintenance. However, their predictive accuracy is often constrained by sparse sensor networks, noise in electrochemical measurements, and the complex coupling of mechanical, chemical, and biological degradation pathways. Machine learning models trained on limited datasets can suffer from overfitting and poor generalizability, particularly when applied to diverse marine environments with varying temperatures, salinities, and microbial communities [13]. Data integration across platforms remains a challenge, as legacy assets may lack the telemetry infrastructure required to feed centralized analytics, and standard protocols for data sharing and model validation are still emerging.


Future Perspectives and Opportunities

The integration of nanotechnology and artificial intelligence (AI) promises a paradigm shift in marine corrosion prevention, enabling predictive maintenance and self-regenerating barrier systems. Nanostructured coatings infused with smart nanoparticles can respond autonomously to mechanical damage, while AI-driven analytics leveraging sensor networks and machine learning algorithms forecast corrosion hotspots before significant metal loss occurs [13]. By combining real-time data streams with digital twins of marine assets, stakeholders can optimize intervention schedules, allocate resources efficiently, and extend service life.

Sustainability imperatives drive the development of eco-friendly inhibitors and coatings sourced from renewable feedstocks. Biodegradable polymers and plant-derived extracts such as tannins, amino acids, and flavonoids offer low-toxicity alternatives to heavy-metal-based treatments, with demonstrated corrosion inhibition efficiencies above 60 percent in seawater tests [12]. Future research will focus on standardizing extraction methods, evaluating long-term ecological impacts, and ensuring compatibility with advanced coating matrices and cathodic protection systems.

Multi-layer hybrid approaches that synergistically combine protective coatings, chemical inhibitors, and cathodic protection systems represent an emerging best practice for comprehensive corrosion defense. As shown in Figure 5, integrated strategies leverage each method’s strengths: coatings provide initial barrier protection, inhibitors seal defects and protect crevices, and cathodic protection maintains global electrochemical safety. Feedback loops from real-time monitoring inform dynamic adjustments such as modulating ICCP current densities or deploying targeted inhibitor dosages to address localized degradation events.

Global policy frameworks and standardization efforts will be pivotal in accelerating the adoption of advanced corrosion control technologies. International standards such as ISO 20340 for protective paints and NACE SP0108 for cathodic protection must evolve to include criteria for smart coatings and green inhibitors. Coordinated policy incentives, including subsidies for sustainable materials and R&D tax credits for predictive maintenance platforms, can lower barriers to entry. Harmonized regulations across flag states, shipyards, and offshore jurisdictions will ensure uniform safety, environmental, and economic outcomes.

Figure 5: Integrated Corrosion Control Strategies for Marine Environments

Conclusion

Marine corrosion inflicts multi-billion dollar losses, compromises structural integrity, and endangers ecosystems and human lives. Traditional defenses protective coatings, cathodic protection, and chemical inhibitors remain foundational yet face limitations under harsh saline conditions and increasing regulatory scrutiny over toxic treatments. Emerging solutions harness nanotechnology, AI-driven monitoring, sustainable chemistries, and hybrid system designs to address these challenges comprehensively. However, realizing their full potential requires interdisciplinary collaboration across materials science, marine engineering, data analytics, and policy-making. By uniting innovation with robust standardization and environmental stewardship, the maritime community can chart a course toward corrosion-resilient assets and sustainable ocean industries [14, 15].

Acknowledgement

We thank all the researchers who contributed to the success of this research work.

Conflict of Interest

The authors declared that there are no conflicts of interest.

Funding

No funding was received for this research work.

References

1. Fontana, M. G. (1987). Corrosion engineering (3rd ed.). McGraw-Hill.
2. Shreir, L. L., Jarman, R. A., & Burstein, G. T. (2010). Corrosion (3rd ed.). Elsevier.
3. Melchers, R. E. (2017). Marine corrosion: Modelling experience and challenges. *Corrosion Science*. 110: 146-157.
4. Koch, G. H., Brongers, M. P., Thompson, N. G., Virmani, Y. P., & Payer, J. H. (2002). Corrosion cost and preventive strategies in the United States (No. FHWA-RD-01-156, R315-01). United States. Federal Highway Administration.
5. Beech, I. B., & Sunner, J. (2004). Biocorrosion: towards understanding interactions between biofilms and metals. *Current opinion in Biotechnology*. 15: 181-186.
6. International Maritime Organization. (2023). International Convention for the Prevention of Pollution from Ships (MARPOL). Retrieved from <https://www.imo.org>.
7. International Organization for Standardization. (2018). ISO 12944-5: Paints and varnishesCorrosion protection of steel structures by protective paint systems. <https://www.iso.org/standard/68142.html>.
8. NACE International. (2017). Cathodic Protection of Hull of Ships and Floating Offshore Structures (SP0108). NACE International.
9. U.S. Department of Defense. (2015). Corrosion Prevention and Mitigation Strategic Plan. Retrieved from https://www.acq.osd.mil/cp/initiative/docs/Corrosion_Strategic_Plan_Dec_2015.pdf.
10. Li, X., Chen, J., & Zhang, Y. (2022). Nanostructured self-healing coatings for marine corrosion protection. *Corrosion Science*. 200: 110-123.
11. Lee, S. (2025). Green corrosion inhibitors in marine. NumberAnalytics. <https://www.numberanalytics.com/blog/green-corrosion-inhibitors-marine>.
12. Aydinsoy, E. A., Aghamaliyev, Z. Z., Aghamaliyeva, D. B., & Abbasov, V. B. (2024). A systematic review of corrosion inhibitors in marine environments: insights from the last 5 years. *Processes of Petrochemistry and Oil Refining*. 25.
13. Patel, R., Smith, L., & Liu, X. (2024). Machine learning-driven predictive corrosion monitoring for offshore platforms. *Journal of Marine Engineering & Technology*. 23: 45-58.
14. The High Cost of Corrosion in the Offshore Oil & Gas Industry. (2022). Mark Tool. Retrieved from <https://www.marktool.com/the-high-cost-of-corrosion-in-the-offshore-oil-gas-industry/>.
15. Thomas, E. D. (2012). Cost of corrosion for ships, submarines and naval aviation [Presentation]. SAE Corrosion Prevention & Control Conference.