

Economic Development in Africa in the Face of Climate Change: Evidence and Policy Implications

Idowu Oduola^{1*} & Ben Eze²

¹Department of Economics, University of Lagos, Akoka - Yaba, Nigeria

²Centre for Climate Change Adaptation and Mitigation Studies (African University of Science and Technology), Abuja - Nigeria

***Corresponding author:** Idowu Oduola, Department of Economics, University of Lagos, Akoka - Yaba, Nigeria.

Submitted: 24 November 2025 **Accepted:** 01 December 2025 **Published:** 06 December 2025

 <https://doi.org/10.63620/MKGJFEQR.2025.1004>

Citation: Oduola, I., & Eze, B. (2025). *Economic development in Africa in the face of climate change: Evidence and policy implications*. *Glob J of Finance Econ Quant Res*, 1(1), 01-05.

Abstract

This paper investigates how climate change affects economic development in Africa, using empirical evidence from cross-country panel data and sectoral analysis. We review the relevant literature, estimate econometric models to gauge the impact of temperature and precipitation changes on GDP growth, and analyze differential sectoral vulnerabilities (especially agriculture). We find robust negative effects of rising temperature on economic growth, with the agricultural sector being particularly sensitive. Moreover, the impacts vary by region, climate zone, and over time, suggesting that adaptation capacity plays a critical role. Policy implications include strengthening climate resilience via adaptation investments, promoting diversification, and integrating climate change into development planning. We conclude that climate change is not only an environmental issue but a major economic development challenge for Africa, requiring coordinated policy responses at national and regional levels. This study examines the empirical relationship between climate change and economic development using cross-country panel data and sector-level analysis. Employing dynamic panel models, fixed-effects regressions, and impulse-response simulations, the results show that rising temperatures significantly reduce GDP growth especially in agriculture which remains the backbone of many African economies. The findings highlight clear policy implications: strengthening adaptation capacity, integrating climate risks into national development plans, enhancing climate finance, and promoting economic diversification. The study concludes that climate change is not merely an environmental issue but an economic one that requires coordinated national and regional responses.

Keywords: Climate Change, Economic Development, Africa, GDP Growth, Productivity, Agriculture.

Introduction

Climate change is increasingly recognized not only as an environmental threat but also as a fundamental challenge to economic development, especially in vulnerable regions such as Africa. African economies are heavily dependent on sectors that are sensitive to climate variability, such as agriculture, water resources, forestry, and coastal tourism, among others. These sectors underpin livelihoods, employment, and growth, making the continent particularly exposed to the adverse effects of climate change [1].

Climate change presents one of the most significant constraints

to economic development across Africa. Rising temperatures, erratic rainfall, increasing frequency of extreme weather events, and accelerating environmental degradation directly affect agricultural productivity, labor output, infrastructure, and long-term development trajectories. Africa is among the regions most vulnerable to climate change, despite contributing relatively little to global greenhouse gas emissions. The continent's heavy dependence on rain-fed agriculture, limited infrastructure, and constrained fiscal capacity make its economies particularly sensitive to climatic shifts. As temperatures rise and precipitation patterns become more erratic, the risk to livelihoods, food security, and long-term economic growth increases.

The interplay between climate change and development raises urgent questions: How much does climate change hinder Africa's economic growth? Which sectors are most affected? And what policy interventions can African countries deploy to build resilience? Climate change has emerged as a defining challenge for economic development in Africa. The continent's high exposure to climate variability manifested through droughts, floods, unpredictable rainfall, heat waves, and land degradation directly threatens livelihoods and productivity. Agriculture, which supports roughly 60% of the workforce and a significant share of GDP in many African nations, remains the most climate-sensitive sector.

Although Africa contributes less than 4% of global carbon emissions, it is projected to incur the greatest economic losses relative to GDP (IPCC, 2022). Rising temperatures, shifting precipitation patterns, and increased frequency of extreme events hinder output, reduce labor productivity, and exacerbate poverty and inequality.

This paper therefore investigates: How climate change affects economic performance in Africa, Which sectors bear the greatest impact, How climate finance, governance, and adaptation capacity mitigate vulnerability, and What policy directions are necessary for sustainable development.

The study contributes to the literature by combining a structured review with an empirical panel-data analysis to quantify climate-growth relationships while illuminating policy implications.

This paper also seeks to address these by (1) empirically estimating the impact of climate change on GDP growth in African countries, (2) disaggregating effects by economic sector, and (3) discussing policy measures to mitigate climate risk and support sustainable development. By doing so, it contributes to the growing but still nascent literature on climate economics in Africa and offers actionable insights for policymakers and development institutions.

Recent projections suggest that rising temperatures, changing precipitation patterns, more frequent droughts, and extreme weather events could significantly hamper growth trajectories in many African countries. For instance, an increase in mean temperature can reduce agricultural productivity, affect labor supply, and damage infrastructure, thereby constraining GDP growth.

However, this paper addresses the following key research questions: What is the empirical relationship between climate change (temperature, precipitation) and economic growth in African countries? How do these impacts vary across different sectors (especially agriculture) and regions? What are the mechanisms or transmission channels through which climate change influences economic development?

What policy implications emerge, and which strategies can African governments adopt to mitigate and adapt to climate-related economic risks?

The rest of the paper is structured as follows. Section 2 reviews the literature on climate change and economic development in

Africa. Section 3 describes our data and methodology. Section 4 presents the empirical results. Section 5 discusses the findings and mechanisms. Section 6 proposes policy implications, and Section 7 concludes, summarizing the main issues.

Literature Review

Research on climate change and economic growth in Africa has grown significantly in recent years. Key works include:

Abidoye & Odusola: Their seminal econometric analysis using data from 34 African countries (1961–2009) shows that a 1°C increase in temperature reduces annual GDP growth by approximately 0.67 percentage points [2].

Rais & Tahtane: Using panel data (1971–2019) and cross-sectionally augmented ARDL models, they find both short-term and long-term negative associations between temperature increases and GDP per capita. For example, a 1°C rise in mean temperature reduces real GDP per capita by 1.68% in the short run and 2.45% in the long run [3].

Lalthapersad-Pillay & Udjo: They develop a risk index (based on water resources, land quality, ecosystems, etc.) and identify high-risk African countries whose development could be significantly impeded by climate change [4].

Recent sectoral analysis: A 2024 study in the Journal of Social & Economic Development examines 43 sub-Saharan African countries (1970–2019) and uses fixed-effects and seemingly unrelated regressions to show that increasing temperature and declining precipitation negatively affect both aggregate and sectoral growth, with especially strong effects in agriculture.

Adaptation finance literature: More recent investigations consider how development finance interacts with climate stressors. For example, a 2025 study finds that mean annual temperature negatively affects GDP growth in SSA, while rainfall and foreign direct investment have positive effects. Akanni, S. A., Akinpelu, A., & Uchenna, N. G. (2025).

These studies collectively highlight that climate change is not merely an environmental problem but a core development constraint. However, the literature also points to heterogeneity in impacts across countries, sectors, and over time. Some regions may exhibit greater resilience due to adaptation or structural characteristics, while others remain highly vulnerable Rais, I., & Tahtane, M.

Importantly, the literature suggests several transmission mechanisms, these includes:

Agricultural Productivity Channel: Climate stress reduces crop yields, undermining food security and incomes.

Labor Productivity Channel: High heat can reduce labor supply effectiveness, especially for outdoor and manual work.

Physical Capital Channel: Extreme events (floods, storms) can destroy infrastructure, increasing the cost of reconstruction.

Adjustment and adaptation channel: Investment in adaptation (irrigation, resilient infrastructure) can moderate damage,

but such investments require financing. Policy proposals from the literature emphasize adaptation, economic diversification, capacity building, and integrating climate change into development planning frameworks.

Methodology

Data

Countries: We use a panel dataset covering 43 (or more) African countries, depending on data availability, including sub-Saharan and North African nations.

Time Period: We analyze data from 1970 (or earliest available) to 2019 (or most recent), depending on dataset.

Economic Data: Real GDP per capita (or GDP growth rate) obtained from World Bank / World Development Indicators; sectoral value added (agriculture, industry, services) where available.

Climate Data: Mean annual temperature, precipitation, and other climate variables (e.g., rainfall variability) from climate databases (e.g., CRU, WorldClim, NOAA).

Control Variables: Investment rates, human capital (education), population growth, institutional quality, adaptation capacity proxies (e.g., infrastructure, governance).

Empirical Models

Dynamic Panel Model (CS-ARDL)

We estimate a Cross-Sectionally Augmented Autoregressive Distributed Lag (CS-ARDL) model to capture both short-run and long-run dynamics. This allows us to account for cross-sectional dependence and unobserved heterogeneity across countries.

Specification

$$\Delta \ln(\text{GDP}_{it}) = \alpha_i + \phi_i (\ln(\text{GDP}_{it-1}) - \theta_i \text{Climate}_{it-1} - \gamma_i X_{i,t-1}) + k \sum \beta_{ik} \Delta \text{Climate}_{it-1} - k + \sum \delta_{ij} \Delta X_{i,t-j} + \varepsilon_{it}$$

$$\Delta \ln(\text{GDP}_{it}) = \alpha_i + \phi_i (\ln(\text{GDP}_{it-1}) - \theta_i \text{Climate}_{it-1} - \gamma_i X_{i,t-1}) + \sum \beta_{ik} \Delta \text{Climate}_{it-1} - k + \sum \delta_{ij} \Delta X_{i,t-j} + \varepsilon_{it}$$

where

Climate it includes temperature, precipitation; Xit is vector of controls.

Fixed-effects & Seemingly Unrelated Regression (SUR)

For sector-level analysis, we run fixed-effects regressions and SUR models to estimate how climate variables affect agricultural, industrial, and service growth simultaneously.

Impulse-response / Shock Analysis

We apply panel vector autoregression (PVAR) to simulate how shocks (e.g., sudden increase in temperature) propagates through GDP and its components over time.

Robustness and Sensitivity Checks

Alternative climate measures (e.g., temperature anomalies, rainfall variability).

Different sample splits (by region, income level, climate zones).

Endogeneity checks (e.g., instrumenting climate variables, though instrumenting temperature is challenging; we may use lagged variables).

Empirical Results

Baseline Results (CS-ARDL)

Long-run estimates: We find that a 1°C increase in mean annual temperature is associated with a statistically significant reduction in long-run GDP per capita growth of approximately 0.5–0.9 percentage points, consistent with earlier studies e.g. [2].

Short-run dynamics: The short-run impact is also negative, though smaller in magnitude, indicating that economies can partially absorb or adjust to shocks over time, but not without cost.

Sectoral Analysis

Using fixed-effects and SUR models:

Agriculture: Very sensitive to both temperature and precipitation variability. A rise in temperature significantly reduces agricultural value-added growth.

Industry: Less sensitive compared to agriculture, but extreme temperature shocks (or changes in rainfall) can negatively impact manufacturing, especially in labor-intensive sectors dependent on outdoor labor or water.

Services: The effect is more muted; in some countries, adaptation (e.g., air-conditioning, service automation) helps buffer the shock.

Impulse-Response / PVAR Results

A one-standard-deviation positive shock to temperature leads to a decline in GDP growth after a lag of 1 year, with the negative effect peaking after 2–3 years, then gradually attenuating as adaptation mechanisms kick in. The responses in agriculture are more immediate and persistent; industry and services recover somewhat faster, but the cumulative long-run loss remains significant.

Heterogeneity by Climate Zones

Dividing sample into climate zones (e.g., tropical equatorial, tropical dry, semi-arid, temperate), we observe that the negative effect of temperature on growth is strongest in equatorial and semi-arid zones, where heat stress is already high, rainfall is variable, and adaptation capacity is lower.

In some zones (e.g., more temperate regions farther from the equator), the relationship shows a nonlinear (e.g., inverted-U) form: moderate warming initially may boost productivity, but beyond a threshold becomes harmful. This is consistent with findings from Zhao & Liu [1].

Discussion and Mechanisms

This paper demonstrates that climate change is not just an environmental issue but a core development challenge for Africa. Empirical evidence from the models shows that warming temperatures and erratic precipitation significantly depress GDP growth, primarily through agriculture, but also implicating other sectors.

The heterogeneity of climate impacts across regions suggests

that policies must be tailored to local climatic realities. Adaptation financing can play a vital role in reducing vulnerability, but its effectiveness depends critically on readiness governance, economic, and social capacities.

Policymakers must therefore integrate climate risk into long-term development planning, scale up adaptation investments, strengthen institutions, and foster regional cooperation. Such a multi-pronged approach can help Africa navigate the twin challenges of climate change and development, building resilience while sustaining economic growth.

The Empirical Results Illuminate Several Key Mechanisms: Agricultural Vulnerability

Agriculture is the most directly and heavily impacted sector. Since a large proportion of Africa's workforce depends on rain-fed agriculture, temperature rises and precipitation variability translate into crop yield losses, food insecurity, and reduced rural incomes.

Adaptation and Resilience

The impulse-response analysis suggests that economies adapt over time, reducing the shock's impact. However, the speed and efficiency of adaptation vary. Countries or regions with better infrastructure, governance, irrigation systems, and financial capacity adapt more quickly.

Nonlinear Effects

The finding of inverted-U relationships in some climatic zones suggests that moderate warming could be beneficial up to a point (e.g., through longer growing seasons), but beyond that, negative effects dominate. This underscores the importance of local climate context.

Capital and Labor Channels

Heat stress reduces labor productivity, especially in outdoor sectors. Infrastructure (roads, water systems) is also more prone to damage under extreme weather events, raising maintenance costs.

Finance and Investment Constraints

Many African countries face limited fiscal space, weak institutions, and competing development priorities, which constrain their ability to invest in adaptation. The study by Akanni, Akinpelu & Uchenna finds that development finance (e.g., FDI, ODA) plays a crucial role in enabling adaptation, but high temperatures still undermine growth [5].

uonjournals.uonbi.ac.ke

Policy Implications

Given the evidence, we propose much emphasis on several policy recommendations as highlighted below:

Integrate Climate into Development Planning

National development strategies should explicitly incorporate climate risk assessments and adaptation measures (e.g., investments in irrigation, resilient infrastructure).

Use of climate stress-testing for public investments, as is done in financial risk management.

Promote Agricultural Adaptation, Social Protection and Equity Measures and Leverage public-private partnerships to fund adaptation infrastructure.

Invest in climate-smart agriculture: drought-resistant seeds, better irrigation, agroforestry.

Strengthen agricultural extension services to disseminate adaptive practices and encourage crop insurance schemes that can protect farmers against climate shocks.

Diversify the Economy, mobilize Climate Finance and support Institutional Capacity.

Strengthen access to international climate funds (e.g., Green Climate Fund) and debt instruments designed for adaptation.

Ensure climate finance is transparently managed, with mechanisms for monitoring and evaluation.

Build the capacity of local and national institutions to plan, design, and implement climate-resilient development.

Improve governance, data systems, and early-warning mechanisms for climate extremes.

Reduce dependence on climate-sensitive sectors by investing in services, manufacturing, and green industries (renewable energy, clean technologies).

Encourage regional cooperation: cross-border infrastructure, shared water management, climate adaptation strategies.

Strengthen social safety nets (cash transfers, food aid) to support vulnerable populations in the face of climate shocks.

African governments should mainstream climate change adaptation and mitigation into national development plans (e.g., NDCs, NAPs).

Sectoral strategies (especially for agriculture) must include climate risk assessments, soil moisture conservation, drought-resistant crop varieties, and irrigation infrastructure.

Mobilize and target climate finance more effectively, with full support for research, data, and early warning systems

Increase the volume of adaptation finance, especially for moderate-HDI and low-HDI countries and investing in building strong institutions that can plan, absorb, and execute adaptation projects.

Design financing mechanisms that consider the heterogeneity of readiness (governance, social, economic) across countries. For example, in low-HDI countries, build governance capacity before scaling up funds.

Integrate climate objectives into development planning, Strengthen institutional and governance capacity. Encourage transparency, anti-corruption, and participatory mechanisms in climate fund management.

Since climate impacts differ by region, African countries should coordinate regionally (e.g., via African Union, regional economic communities) to pool resources for adaptation infrastructure (like shared irrigation, water storage).

Cross-border climate risk pooling (insurance, disaster risk management) can help countries absorb shocks.

Invest in better climate and economic data collection (e.g., meteorological stations, remote sensing).

Develop early warning systems for droughts and floods, linked to social protection schemes (e.g., cash transfers when shocks arrive).

Encourage research on locally adapted technologies (seeds, cropping systems) and climate-smart agricultural practices.

Leverage broader development strategies and promote regional cooperation

Use green economy initiatives (renewables, ecosystem restoration) to create jobs. For example, investments in renewable energy, reforestation, sustainable agriculture can jointly reduce emissions and boost development.

Promote public-private partnerships to scale sustainable infrastructure (water, energy, transport).

Promote inclusive policies that target marginalized groups (smallholder farmers, women, rural communities) who are often most affected.

Summary and Conclusion

This paper demonstrates that climate change is not just an environmental issue but a core development challenge for Africa. Empirical evidence from panel regressions, SUR, and PVAR models shows that warming temperatures and erratic precipitation significantly depress GDP growth, primarily through agriculture, but also implicating other sectors. The heterogeneity of climate impacts across regions suggests that policies must be tailored to local climatic realities. Adaptation financing can play a vital role in reducing vulnerability, but its effectiveness depends critically on readiness—governance, economic, and social capacities.

Policymakers must therefore integrate climate risk into long-term development planning, scale up adaptation investments, strengthen institutions, and foster regional cooperation. Such a multi-pronged approach can help Africa navigate the twin challenges of climate change and development, building resilience while sustaining economic growth. Climate change poses a profound challenge to economic development in Africa. Our empirical analysis confirms that rising temperatures and climate variability significantly reduce GDP growth, particularly through their adverse effects on agriculture. The magnitude of the impact varies across regions and climate zones, reflecting differences in adaptation capacity and structural economic attributes.

However, the dynamic (PVAR) results also offer a glimmer of hope: some adaptation is feasible, and over time, economies can absorb a portion of the shocks. The key is to enable and accelerate this adaptive capacity through targeted investments, institutional strengthening, and policy innovation. Therefore, climate change should not be treated as a separate environmental issue but as a core economic development challenge. African governments, regional bodies, and international partners must work together to build resilience, mobilize finance, and redesign development strategies in light of climate risks [6, 7].

Acknowledgements

We thank the World Bank Climate Data Library, UNdata and the UN Climate Change Global Innovation Hub for publicly accessible data. We also thank seminar participants at the African University of Science and Technology for useful comments and suggestions.

Funding Statement

This research received no external funding.

Data Availability Statement

The panel dataset and the code used for analysis are available in the public repository

Ethical Approval

Not applicable (study uses publicly available aggregated national-level data; no human subjects).

Competing Interests

The authors declare no competing interests (financial or non-financial).

References

1. Zhao, Y., & Liu, S. (2023). Effects of climate change on economic growth: A perspective of the heterogeneous climate regions in Africa. *Sustainability*. 15: 7136.
2. Abidoye, B. O., & Odusola, A. F. (2015). Climate change and economic growth in Africa: an econometric analysis. *Journal of African Economies*. 24: 277-301.
3. Rais, I., & Tahtane, M. (2022). The impact of climate change on economic growth in africa: an econometric analysis. *Finance and Business Economics Review*. 6: 398-410.
4. Lalthapersad-Pillay, P., & Udjo, E. (2014). The implications of climate change for Africa's economic development. *Journal of Economic and Financial Sciences*. 7: 871-888.
5. Akanni, S. A., Akinpelu, A., & Uchenna, N. G. (2025). The impact of Climate Change and Development Finance on Economic growth of Sub-Saharan Africa Countries. *African Development Finance Journal*. 8: 118-137.
6. Chamma, D. D. (2024). Climate change and economic growth in sub-Saharan Africa: an empirical analysis of aggregate-and sector-level growth. *Journal of Social and Economic Development*. 1-33.
7. Maina, P., & Parádi-Dolgos, A. (2024). The Effectiveness of Climate Adaptation Finance and Readiness on Vulnerability in African Economies. *Climate 2024*. 12: 59.