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Abstract
We say that G=AB is the mutually permutable product of the subgroups A and B if A permutes with every subgroup 
of B and B permutes with every subgroup of A. We say that the product is totally permutable if every subgroup of 
A permutes with every subgroup of B. In this paper we prove the following theorem Let G=AB be the mutually 
permutable product of the supersoluble subgroups A and B. If CoreG(A∩B)=1, then G is supersoluble.

Introduction
mutually permutable, supersoluble subgroup, product All groups 
considered in this paper are finite. It is known that a group which 
is the product of two super soluble groups is not necessarily su-
per soluble, even if the two factors are normal subgroups of the 
group. Baer proved in that if a group G is the product of two 
normal supersoluble groups and G′ is nilpotent, then G is super 
soluble [1-3]. The search for generalisations of Baer’s result has 
been a fruitful topic of investigation recently. Most of the gen-
eralisations centre around replacing normality of the factors by 
different permutability conditions [5-7]. In, Asaad and Shaalan 
considered products satisfying one of the following conditions 
[2]. We will follow Carocca, and say that G=AB is the mutually 
permutable product of the subgroups A and B if A permutes with 
every subgroup of B and B permutes with every subgroup of A 
[6]. We say that the product is totally permutable if every sub-
group of A permutes with every subgroup of B. Essentially, the 
results by Asaad and Shaalan are devoted to obtaining sufficient 
conditions for a mutually permutable product of two supersolu-
ble subgroups to be  supersoluble. 

They prove in [2, Theorem 3.8] the following generalisation of 
Baer’s theorem: Let G be the mutually permutable product of 
the supersoluble subgroups A and B. If G′ is nilpotent, then G 
is supersoluble.They also show that the result remains true if 
“G′ nilpotent” is replaced by “Bnilpotent”[2, Theorem 3.2]. In 
addition, they prove [2, Theorem 3.1]: If G is the totally per-
mutable product of the supersoluble subgroups A and B, then 

G is supersoluble. It is well known that if G=AB is a mutual-
ly permutable product of two supersoluble subgroups A and B 
such that A∩B=1, then the product is in fact totally permutable 
[6,Proposition 3.5], and therefore G is supersoluble. Our main 
Theorem is a generalisation of this last property.

Theorem 1.
Let G=AB be the mutually permutable product of the supersolu-
ble subgroups A and B. If CoreG(A∩B)=1, then G is supersolu-
ble. The second aim of the present paper has been to obtain more 
complete information about the structure of mutually permu-
table products of two supersoluble groups. As a straight forward 
consequence of Theorem 1, we have that, in the notation used 
above, G/CoreG(A∩B) is always supersoluble. Therefore, every 
mutually permutable product of two supersoluble subgroups is 
metasupersoluble. It is possible to obtain more precise informa-
tion about its structure, as our second main theorem shows.

Theorem 2. 
Let G=AB be the mutually permutable product of the super-
soluble subgroups A and B. Then G/F (G)is supersoluble and 
metabelian.This last theorem cannot be improved easily, as the 
following example shows.

Example. Let S3 be the symmetric group of degree 3, given 
by S3=〈α, β:α2=β3=1;βα=β2〉 and let T7 be the non-abe-
lian group of order 73 and exponent 7. Write T7=〈a,b〉with 
a7=b7=[a,b]7=1 and let c=[a,b]. We have that S3 acts on T7 in 
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the following way: aα=b, bα=a, cα=c−1,  aβ=a2, bβ=b4, cβ=c. 
Thus, we can consider the semidirect product G=[T7] S3. Take 
now the subgroups A= T7〈β〉and B=T7〈α〉of G. Clearly both 
A and B are supersoluble, and it is easy to check that G=AB is 
the mutually permutable product of A and B. Finally, we show 
that Theorem 1 provides elementary proofs for the results of 
Asaad and Shaalan about mutually permutable products.2. Main 
results the following four lemmas are needed to prove Theorem 
1.

Lemma 1. [4, Theorem 2]. If G=AB is the mutually permutable 
product of the supersoluble subgroups A and B, then G is solu-
ble.

Lemma 2. Let G=AB be the mutually permutable product of the 
supersoluble subgroups A and B. Then, either G is supersoluble 
or NA < G and NB < G for every minimal normal subgroup N 
of G.

Proof.  Assume that G is not supersoluble. Then both A and B 
are proper subgroups of G. Let N be a minimal normal subgroup 
of G and for contradiction assume that NA=G. Then, as N is 
abelian, N∩A is a normal subgroup of 〈N,A〉= G. Since N is a 
minimal normal subgroup of G and A<G, we have that N∩A=1 
and consequently A is a maximal subgroup of G. Clearly, we can 
also assume that B is not contained in A. It is not difficult to ar-
gue that we can choose an element b of B\A such that bq∈A for 
some prime q. Since the product G=AB is mutually permutable, 
A〈b〉is a subgroup of G and the maximality of A implies that 
G=A〈b〉. We now take orders to reach our final contradiction: 
|A||N|=|G|=|A||〈b〉||A∩〈b〉|=q|A|. Consequently, we have that 
|N|=q and then G is supersoluble, a contradiction.

Lemma 3.  Let G=AB be the mutually permutable product of the 
subgroups A and B and let N be any minimal normal subgroup of 
G. Then either  N∩A=N∩B=1 or N=(N∩A)(N∩B).

Proof.  Let N be a minimal normal subgroup of G. Clearly 
A(N∩B) and (N∩A)B are both subgroups of G. Note that A 
normalizes N∩(A(N∩B))=(N∩A)(N∩B) and B normalizes 
N∩((A∩N)B)= (N∩A)(N∩B). Therefore (N∩A)(N∩B) is a 
normal subgroup of G and the minimality of N yields the result.
Lemma 4.  Let G be a group, and N a minimal normal subgroup 
of G such that |N|=pn, where p is a prime and n>1. Denote C=C-
G(N) and assume that G/Cis supersoluble. Then, if Q/Cis a sub-
group of G/C containing Op′(G/C), we have that Q is normal 
in G and N=∏ti=1Ni, where Ni are non-cyclic minimal normal 
subgroups of NQ for i=1,...,t. 

Proof.  Since by [8, Lemma A.13.6], we have that Op(G/C)=1 
and the commutator subgroup (G/C)′ of G/C is nilpotent because 
e G/C is supersoluble, it follows that (G/C)′is a p′-group. There-
fore (G/C)′is contained in Op′(G/C) and thus Op′(G/C)is a Hall 
p′-subgroup of G/C. Consequently, Q/Cis a normal subgroup of 
G/C and hence Q is normal in G. Consider now N as a G-mod-
ule over GF (p)by conjugation. Then, by Clifford’s Theorem 
[8, Theorem B.7.3], N viewed as a Q-module is a direct sum 
N=∏ti=1Ni, where Ni are irreducible Q-modules for  i=1,...,t. 
Suppose that there exists i∈{1,...,t}such that |Ni|=p. Then clear-
ly |Nj|= p for all j. Therefore Q/CQ(Ni) is abelian of exponent 
dividing p−1, and the same is true for Q/C. In particular, Q/

C=Op′(G/C) is a Hall p′-subgroup of G/C. Since N is not cy-
clic, it follows that Q = G and thus p divides |G/C|. Hence p 
is the largest prime dividing |G/C|. From the supersolubility of 
G/C, we obtain that 1= Op(G/C) is a Sylow subgroup of G/C, a 
contradiction. Consequently, Ni is a non-cyclic minimal normal 
subgroup of NQ for all i∈{1,...,t},as we wanted to prove.

Proof of Theorem 1.  Let G=AB be the mutually permu-
table product of the supersoluble subgroups A and B, with 
CoreG(A∩B)=1, and suppose that G has been chosen minimal 
such that its supersoluble residual GU is non-trivial. Let N be a 
minimal normal subgroup of G contained in GU. Note that N 
is an elementary abelian p-group for some prime p. Applying 
Lemma 2, we have that both NA and NB are proper subgroups 
of G. Moreover, using Lemma 3, we have that either N=(N∩A)
(N∩B ) or N∩A=N∩B=1. Assume first that N=(N∩A)(N∩B). 

(i) If N∩A=1, then N is cyclic. Assume that N∩A=1. It follows 
that N is contained in B. Let N0 be a non-trivial cyclic subgroup 
of N. Since AN0 is a subgroup of G, we have that N0 =AN0∩N 
is anormal subgroup of AN0. Hence every cyclic subgroup of N 
is normalised by A. Now let N1 be a minimal normal subgroup 
of B contained in N. Since B is supersoluble, it follows That 
N1 is cyclic and thus normalised by A. Hence N1 is a normal 
subgroup of G. The minimality of N implies that N=N1 and con-
sequently N is cyclic.

(ii) N∩A=1 and N∩B=1.On the contrary, assume that N∩A=1. 
From (i), we know that N is cyclic. Moreover, Nis contained 
in B. Hence AN∩B= (A∩B)N. Let L=CoreG(A∩B)N). Clear-
ly, N is contained in Land L=L∩((A∩B)N)=(L∩A∩B)N. It is 
clear that G/L=(AL/L)(BL/L)is a mutually permutable prod-
uct of AL/L and BL/L suchthat CoreG/L((AL/L)∩(BL/L))=1. 
By the minimality of G, it follows that G/L is supersoluble. 
On the other hand, since N is cyclic, we have that G/CG(N) 
is abelian. Hence G/CL(N) is supersoluble and GUCL(N)=C. 
Note that C=N×(C∩A∩B). Therefore C∩A∩B contains a Hall 
p′-subgroup of C. Since CoreG(A∩B)=1 and Op′(C) is a normal 
subgroup of G contained in C∩A∩B, we have that Op′(C)=1. 
Moreover, C′=(C∩A∩B)′ is a normal subgroup of G contained 
in A∩B. Consequently, C′=1 and C is an abelian p-group. In par-
ticular, GU is abelian and thus GU is complemented in G by a 
supersoluble normalizer D which is also a supersoluble projector 
of G, by [8, Theorems V.4.2 and V.5.18]. Since N is cyclic, we 
know that N is central with respect to the saturated formation of 
all supersoluble groups. By [8,Theorem V.3.2.e], Dcovers N and 
thus N is contained in D. It follows ND∩GU=1, a contradiction.

(iii)  Either N=N∩A or N=N∩B. If we have N=N∩A=N∩B, 
then N is contained in A∩B, contradicting the factthat 
CoreG(A∩B)=1. We may assume without loss of generality that 
N∩A=N.

(iv)  AN and BN are both supersoluble. Since N=(N∩A)(N∩B) 
and N=N∩A, it follows that N∩B is not contained in N∩A. Let 
n be any element of N∩B such that n/∈N∩A,  and write N0 =
〈n〉. Note that AN0 is a subgroup of G, and AN0∩N=(N∩A)
N0. Therefore N0(N∩A) is a normal subgroup of AN0, and con-
sequently A normalizes (A∩N)N0. This yields that A/CA(N/
N∩A) acts as a power automorphism group on N/N∩A. This 
means that AN is supersoluble. If N∩B=N, then BN=B is su-
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persoluble. On the contrary, if  N∩B=N, we can argue as above 
and we obtain that BN is supersoluble. Consequently, ACG(N)/
CG(N) and BCG(N)/CG(N) are both abelian groups of exponent 
dividing p−1. But then G/CG(N)=(ACG(N)/CG(N))(BCG(N)/
CG(N)) is a π-group for some set of primes π such that if q∈π, 
then q divides p−1.

(v)  Let B0 be a Hall π-subgroup of B. Then AB0∩N= A∩N.
This follows just by observing that AB0∩Nis contained in each 
Hall π′-subgroup of AB0 and every Hall π′-subgroup of A is a 
Hall π′-subgroup of AB0. Note that |G/CG(N)| is a π-number 
and AB0 contains a Hall π-subgroup of G. Therefore G=(AB0)
CG(N). But then A∩N is a normal subgroup of G. The mini-
mality of G yields either A∩N= 1or A∩N= N. This contradicts 
our assumption 1=N∩A=N, and so we cannot have N=(A∩N)
(B∩N). Thus, by Lemma 3, we may assume N∩A=N∩B=1.  Let 
M= CoreG(AN∩BN). Then N∩M= N and G/M is supersoluble 
by the minimality of G. Again, we reach a contradiction after 
several steps.

 (vi)  M=N. Suppose that M=N. Since G/M is supersoluble, we 
know that N cannot be cyclic. Let us write C=CG(N), and con-
sider the quotient group G/C. It is clear that G/C is supersoluble. 
Let Q/C=Op(G/C). Since Op(G/C)=1 and (G/C)′is nilpotent, it 
follows that Q/C is a normal Hall p′-subgroup of G/C.  Let Bp′ 
be a Hall p′-subgroup of B. Since |N| divides |B:A∩B|, we have 
that (A∩B)Bp′ is a proper subgroup of B. Let T be a maximal 
subgroup of B containing (A∩B)Bp′. Then AT is a maximal sub-
group of G and |G:AT|= p= |B:T|. If N is not contained in AT, 
we have G=(AT )N and AT∩N=1. Then |N|=p, a contradiction. 
Therefore N is contained in AT. In particular, the family S={X:X 
is a proper subgroup of B, (A∩B)Bp′X and NAX} is non-empty. 
Let R be an element of S of minimal order. Observe that AR 
has p-power index in G and thus ARC/C contains Op′(G/C). 
Regarding N as a AR-module over GF (p), we know, by Lem-
ma 4, that N is a direct sum N=∏ti=1Ni, where Ni is an irre-
ducible AR-module whose dimension is greater than 1, for all 
i∈{1,...,t}. Assume that (A∩B)Bp′=R. Then AR=ABp′ and thus 
N is contained in A, a contradiction. Therefore ABp′∩B=(A∩B)
Bp′ is a proper subgroup of R. Let S be a maximal subgroup of 
R containing (A∩B)Bp′. From the minimality of R, we know 
that N is not contained in AS. Consequently, there exists some 
i∈{1,...,t} such that Ni is not contained in AS, which is a max-
imal subgroup of AR. Hence AR=(AS)Ni. Since Ni is a mini-
mal normal subgroup of AR, it follows that AS∩Ni= 1and |Ni|= 
|AR:AS|= |R:S|= p, a contradiction. 

(vii) M is an elementary abelian p-group. Note that 
M=N(M∩A)=N(M∩B) and |M∩A|=|M∩B|=|M|/|N|. Moreover, 
A(M∩B)is a subgroup of G such that A(M∩B)∩M= (M∩A)
(M∩B). Hence (M∩A)(M∩B) is also a subgroup of G. If M∩A= 
M∩B, then M∩A is a normal subgroup of G contained in A∩B. 
This implies that M∩A=1 and consequently M=N, a contradic-
tion. It yields that M∩A=M∩B. Next we see that (M∩A)(M∩B) 
is a normal subgroup of G. Since (M∩A)(M∩B)= M∩A(M∩B), 
we have that A normalizes (M∩A)(M∩B). Similarly, B nor-
malizes (M∩A)(M∩B) since (M∩A)(M∩B)= M∩B(M∩A). 
This implies normality of (M∩A)(M∩B) in G. Let X=(M∩A)
(M∩B). Since we cannot have M∩A= M∩B, M∩A must be 
strictly contained in X. Thus X=X∩M=(X∩N)(M∩A) > M∩A 
gives us X∩N=1. But then X∩N=N, giving NX. Suppose that 

Q is a Hall p′-subgroup of M∩B. Then QA is a subgroup and 
so QA∩M=Q(M∩A) is also a subgroup which contains Q. 
Hence, as |M:M∩A|=pk for some k, we have that  QM∩A∩B. 
Thus QB∩MM∩A∩B and similarly  QA∩MM∩A∩B. Con-
sequently, QM is contained in M∩A∩B. Since QM=Op(M), 
it follows that Op( M) is a normal subgroup of G  contained 
in A∩B. Hence Op(M)=1, a contradiction, and consequent-
ly Q=1andMis a p-group. Hence N is contained in Z(M) and 
M=N×(M∩A)=N×(M∩B). Thus φ(M)=φ(M∩A)=φ(M∩B) is 
a normal subgroup of G contained in A∩B. This implies that 
φ(M)=1 and M is an elementary abelian p-group, as claimed.
(viii) Final contradiction. We have from the previous steps that 
M∩A is not contained in M∩B and that M∩B is not contained 
in M∩A because otherwise, since |M∩A|=|M∩B|, it follows that 
M∩A=M∩B is a normal subgroup of G contained in A∩B. This 
would imply M∩A=M∩B=1, and M=(M∩A)N=N. This fact 
contradicts step (vi) [7]. 

Let x be an element of M∩B such that x/∈M∩A. Then A〈x〉
is a subgroup of G, and so is M0=A〈x〉∩M=(A∩M)〈x〉.  
Therefore M0 is an A-invariant subgroup of G.  In particular, 
since M=(M∩A)(M∩B), we have that every subgroup of  M/
M∩A is A-invariant;  that is, A/CA(M/M∩A) acts as a group of 
power automorphisms on M/M∩A. It is clear that M/M∩A is 
A-isomorphic to N. Consequently, A/CA(N) acts as a group of 
power automorphisms on N. This implies that A normalises each 
subgroup of  N.  A nalogously, B normalises each subgroup of N. 
It follows that N is a cyclic group. We argue as in step (ii) above 
to reach a final contradiction. We have that G/M is supersoluble  
and M is abelian. Therefore GUM and thus GU is abelian  and 
complemented in G by a supersoluble normaliser, D say, by [8, 
Theorem V.5.18]. Since N is cyclic, we know that D covers N 
and thus NGU∩D=1, a contradiction. Proof of Theorem 2. 

Let M=GU denote the supersoluble residual of G. Theorem 
1yields that G/CoreG(A∩B) is supersoluble. Therefore, M is 
contained in CoreG(A∩B). In particular, M is supersoluble. Let 
F(M) be the Fitting subgroup of M. Since A and Bare supersolu-
ble, we have that [M,A]F(A)∩MF(M) and [M,B]F(B)∩MF(M). 
Consequently, [M,G] is contained in F(M). Note now that the 
chief factors of G between F(M) and Mare cyclic,and recall that 
G/M is supersoluble. Therefore, we have that G/F (M) is su-
persoluble. This implies that M=F(M) and thus M is nilpotent. 
Consequently, G/F (G) is supersoluble. We now show that G/F 
(G) is metabelian. We prove first that A′ and B′ both centralise 
every chief factor of G. Let H/K be a chief factor of G. If H/K 
is cyclic, then as G′ centralizes H/K, so do A′ an dB′. Hence, 
we may assume that H/K is a non-cyclic p-chief factor of G for 
some prime p. Note that we may assume that H is contained in M 
because G/M is supersoluble and H/K is non-cyclic. To simpli-
fy notation, we can consider K=1. Since F(G) centralizes H [8, 
Theorem A.13.8.b], G/CG(H ) is supersoluble. Let Ap′ be a Hall 
p′-subgroup of A. By Maschke’s theorem [8, Theorem A.11.5],H 
is a completely reducible Ap′-module and HAp′ is supersoluble 
because H is contained in A. Therefore Ap′/CAp′(H ) is abelian 
of exponent dividing p−1. This implies that the primes involved 
in |A/CA(H )| can only be p or divisors of p−1.The same is true 
for |B/CB(H )|. This implies that if p divides |G/CG(H )|, then p 
is the largest prime dividing |G/CG(H )|. But since Op(G/CG(H 
))=1 and G/CG(H ) is supersoluble, it follows that G/CG(H ) 
must be a p′-group. Consider H as A-module over GF (p). Since 
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ACG(H )/CG(H ) is a p′-group, we have that H is a completely 
reducible A-module and every irreducible  A-submodule of His 
cyclic. Consequently A′ centralizes H, and the same is true for 
B′. Let now U/V be a chief factor of G. Then G/CG(U/V )is 
the product of the abelian subgroups ACG(U/V )/CG(U/V ) and 
BCG(U/V )/CG(U/V ). By Itô’s theorem [9], we have that G/
CG(U/V )is metabelian. Since F(G)is the intersection of the cen-
tralisers of all chief factors (again by [8, Theorem A.13.8.b]), we 
can conclude that G/F (G) is metabelian.3. Final remarks Final-
ly, Theorem 1 enables us to give succinct proofs of earlier results 
on mutually permutable products [8]. 

Corollary 1[2, Theorem 3.2]. Let G=AB be the mutually permu-
table product of the subgroups A and B. If A is supersoluble and 
B is nilpotent, then G is supersoluble.

Proof. Assume that the assertion is false, and let G be a minimal 
counterexample. We have that G is a primitive group, and so G 
has a unique minimal normal subgroup, N say, with N=CG(N) 
a p-group for some prime p. Since G is not supersoluble, ap-
plying Theorem 1, we know that CoreG(A∩B)=1. This yields 
that N is contained in A∩B. Now, since N is contained in B, 
which is nilpotent, it follows that any p′-element of B must cen-
tralize N. Since CG(N)=N, we have that B itself is a p-group. 
Consequently, A must contain a Hall p′-subgroup of G. Now let 
T/N=Op′(G/N). The previous argument yields that T/N is con-
tained in A/N. Note that if B=N, then G =AN= A is supersoluble, 
a contradiction. Thus, N is a proper subgroup of B. This implies 
that p must divide |G:T|. Since G/N is supersoluble, p must di-
videq−1 for some prime q∈π(T/N). It is clear then that q cannot 
divide p−1. Therefore, there exists a Sylow q-subgroup Aq of A 
which centralizes N. Using that CG(N)=N, it yields that Aq=1 
and thus q does not divide |G|,a contradiction.

Corollary 2 [2, Theorem 3.8]. Let G=AB be the mutually permu-
table product of thes upersoluble subgroups A and B. If G′ is nil-
potent, then G is supersoluble. Proof. We assume the result to be 
false, and choose a minimal counterexample G. Thus G is a prim-
itive group with unique minimal normal subgroup N. We also 
have that G=NM, where M is a maximal subgroup of G,N∩M=1 

and N=F(G)=Op(G) for some prime p. Now G′ is nilpotent and 
thus G′=F(G)=N. Therefore M is an abelian group. Since N is 
self-centralising, arguing as we did in the previous corollary, we 
have that N is contained in A∩B. Note that M∼=G/N, and thus 
Op(M)=1. Since M is abelian, this yields that M is a p′-group. 
Thus M is in fact a Hall p′-subgroup of G. Applying [1, Theorem 
1.3.2], wehave that there exist a Hall p′-subgroup Ap′ of A and a 
Hall p′-subgroup Bp′ of B suchthat M=Ap′Bp′. Since NA∩B, it 
follows that both Ap′ and Bp′ must have exponent dividing p−1.
Regarding N as a M-module, it is easy to see that M must be a 
cyclic group [9]. Now, since M=Ap′Bp′ has exponent dividing 
p−1, it follows that N is a cyclic group as well. This implies that 
G is supersoluble, a contradiction.

References
1.	 Amberg, B., Franciosi, S., & de Giovanni, F. (1992). Prod-

ucts of groups. Clarendon Press.
2.	 Asaad, M., & Shaalan, A. (1989). On the supersolvability of 

finite groups. Archiv der Mathematik, 53, 318–326.
3.	 Baer, R. (1957). Classes of finite groups and their proper-

ties. Illinois Journal of Mathematics, 1, 115–187.
4.	 Ballester-Bolinches, A., Cossey, J., & Pedraza-Aguilera, M. 

C. (2001). On products of finite supersoluble groups. Com-
munications in Algebra, 29(7), 3145–3152.

5.	 Ballester-Bolinches, A., Pérez Ramos, M. D., & Pedra-
za-Aguilera, M. C. (1999). Totally and mutually permutable 
products of finite groups. In Groups St. Andrews 1997 in 
Bath I (London Mathematical Society Lecture Note Series, 
Vol. 260, pp. 65–68). Cambridge University Press.

6.	 Carocca, A. (1992). p-supersolvability of factorized finite 
groups. Hokkaido Mathematical Journal, 21, 395–403.

7.	 Carocca, A., & Maier, R. (1999). Theorems of Kegel–
Wielandt type. In Groups St. Andrews 1997 in Bath I (Lon-
don Mathematical Society Lecture Note Series, Vol. 260, 
pp. 195–201). Cambridge University Press.

8.	 Doerk, K., & Hawkes, T. O. (1992). Finite soluble groups 
(de Gruyter Expositions in Mathematics, Vol. 4). de Gruy-
ter.

9.	 Itô, N. (1955). Über das Produkt von zwei abelschen Grup-
pen. Mathematische Zeitschrift, 62, 400–401.

Copyright: ©2025 Behnam Razzaghmanesshi. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


