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Abstract

We say that G=AB is the mutually permutable product of the subgroups A and B if A permutes with every subgroup
of B and B permutes with every subgroup of A. We say that the product is totally permutable if every subgroup of
A permutes with every subgroup of B. In this paper we prove the following theorem Let G=AB be the mutually
permutable product of the supersoluble subgroups A and B. If CoreG(ANB)=1, then G is supersoluble.
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Introduction

mutually permutable, supersoluble subgroup, product All groups
considered in this paper are finite. It is known that a group which
is the product of two super soluble groups is not necessarily su-
per soluble, even if the two factors are normal subgroups of the
group. Baer proved in that if a group G is the product of two
normal supersoluble groups and G’ is nilpotent, then G is super
soluble [1-3]. The search for generalisations of Baer’s result has
been a fruitful topic of investigation recently. Most of the gen-
eralisations centre around replacing normality of the factors by
different permutability conditions [5-7]. In, Asaad and Shaalan
considered products satisfying one of the following conditions
[2]. We will follow Carocca, and say that G=AB is the mutually
permutable product of the subgroups A and B if A permutes with
every subgroup of B and B permutes with every subgroup of A
[6]. We say that the product is totally permutable if every sub-
group of A permutes with every subgroup of B. Essentially, the
results by Asaad and Shaalan are devoted to obtaining sufficient
conditions for a mutually permutable product of two supersolu-
ble subgroups to be supersoluble.

They prove in [2, Theorem 3.8] the following generalisation of
Baer’s theorem: Let G be the mutually permutable product of
the supersoluble subgroups A and B. If G' is nilpotent, then G
is supersoluble.They also show that the result remains true if
“G’ nilpotent” is replaced by “Bnilpotent”[2, Theorem 3.2]. In
addition, they prove [2, Theorem 3.1]: If G is the totally per-
mutable product of the supersoluble subgroups A and B, then
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G is supersoluble. It is well known that if G=AB is a mutual-
ly permutable product of two supersoluble subgroups A and B
such that ANB=1, then the product is in fact totally permutable
[6,Proposition 3.5], and therefore G is supersoluble. Our main
Theorem is a generalisation of this last property.

Theorem 1.

Let G=AB be the mutually permutable product of the supersolu-
ble subgroups A and B. If CoreG(ANB)=1, then G is supersolu-
ble. The second aim of the present paper has been to obtain more
complete information about the structure of mutually permu-
table products of two supersoluble groups. As a straight forward
consequence of Theorem 1, we have that, in the notation used
above, G/CoreG(ANB) is always supersoluble. Therefore, every
mutually permutable product of two supersoluble subgroups is
metasupersoluble. It is possible to obtain more precise informa-
tion about its structure, as our second main theorem shows.

Theorem 2.

Let G=AB be the mutually permutable product of the super-
soluble subgroups A and B. Then G/F (G)is supersoluble and
metabelian. This last theorem cannot be improved easily, as the
following example shows.

Example. Let S3 be the symmetric group of degree 3, given
by S3=0Ua, B:02=p3=1;Ba=P2[] and let T7 be the non-abe-
lian group of order 73 and exponent 7. Write T7=[]a,b[ Iwith
a7=b7=[a,b]7=1 and let c=[a,b]. We have that S3 acts on T7 in
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the following way: ao=b, ba=a, ca=c—1, afj=a2, bp=b4, cp=c.
Thus, we can consider the semidirect product G=[T7] S3. Take
now the subgroups A=T7[ I land B=T7[]al]of G. Clearly both
A and B are supersoluble, and it is easy to check that G=AB is
the mutually permutable product of A and B. Finally, we show
that Theorem 1 provides elementary proofs for the results of
Asaad and Shaalan about mutually permutable products.2. Main
results the following four lemmas are needed to prove Theorem
1.

Lemma 1. [4, Theorem 2]. If G=AB is the mutually permutable
product of the supersoluble subgroups A and B, then G is solu-
ble.

Lemma 2. Let G=AB be the mutually permutable product of the
supersoluble subgroups A and B. Then, either G is supersoluble
or NA < G and NB < G for every minimal normal subgroup N
of G.

Proof. Assume that G is not supersoluble. Then both A and B
are proper subgroups of G. Let N be a minimal normal subgroup
of G and for contradiction assume that NA=G. Then, as N is
abelian, NNA is a normal subgroup of [IN,A[J=G. Since N is a
minimal normal subgroup of G and A<G, we have that NNA=1
and consequently A is a maximal subgroup of G. Clearly, we can
also assume that B is not contained in A. It is not difficult to ar-
gue that we can choose an element b of B\A such that bq[ A for
some prime . Since the product G=AB is mutually permutable,
Allbl]is a subgroup of G and the maximality of A implies that
G=A[1bl]. We now take orders to reach our final contradiction:
|A|INI=IGIHA||Db AN Tbj=q|A]. Consequently, we have that
IN|=q and then G is supersoluble, a contradiction.

Lemma 3. Let G=AB be the mutually permutable product of the
subgroups A and B and let N be any minimal normal subgroup of
G. Then either NNA=NNB=1 or N=(NNA)(NNB).

Proof. Let N be a minimal normal subgroup of G. Clearly
A(NNB) and (NNA)B are both subgroups of G. Note that A
normalizes NN(ANNB))=(NNA)(NNB) and B normalizes
NN((ANN)B)= (NNA)(NNB). Therefore (NNA)(NNB) is a
normal subgroup of G and the minimality of N yields the result.
Lemma 4. Let G be a group, and N a minimal normal subgroup
of G such that [N|=pn, where p is a prime and n>1. Denote C=C-
G(N) and assume that G/Cis supersoluble. Then, if Q/Cis a sub-
group of G/C containing Op'(G/C), we have that Q is normal
in G and N=[]ti=INi, where Ni are non-cyclic minimal normal
subgroups of NQ for i=1,....t.

Proof. Since by [8, Lemma A.13.6], we have that Op(G/C)=1
and the commutator subgroup (G/C)’ of G/C is nilpotent because
e G/C is supersoluble, it follows that (G/C)'is a p'-group. There-
fore (G/C)'is contained in Op’(G/C) and thus Op'(G/C)is a Hall
p’-subgroup of G/C. Consequently, Q/Cis a normal subgroup of
G/C and hence Q is normal in G. Consider now N as a G-mod-
ule over GF (p)by conjugation. Then, by Clifford’s Theorem
[8, Theorem B.7.3], N viewed as a Q-module is a direct sum
N=[]ti=1Ni, where Ni are irreducible Q-modules for i=1,...,t.
Suppose that there exists i(1{1,...,t}such that [Ni|=p. Then clear-
ly INj|= p for all j. Therefore Q/CQ(Ni) is abelian of exponent
dividing p—1, and the same is true for Q/C. In particular, Q/
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C=0p'(G/C) is a Hall p’-subgroup of G/C. Since N is not cy-
clic, it follows that Q = G and thus p divides |G/C|. Hence p
is the largest prime dividing |G/C|. From the supersolubility of
G/C, we obtain that 1= Op(G/C) is a Sylow subgroup of G/C, a
contradiction. Consequently, Ni is a non-cyclic minimal normal
subgroup of NQ for all il]{1,...,t},as we wanted to prove.

Proof of Theorem 1. Let G=AB be the mutually permu-
table product of the supersoluble subgroups A and B, with
CoreG(ANB)=1, and suppose that G has been chosen minimal
such that its supersoluble residual GU is non-trivial. Let N be a
minimal normal subgroup of G contained in GU. Note that N
is an elementary abelian p-group for some prime p. Applying
Lemma 2, we have that both NA and NB are proper subgroups
of G. Moreover, using Lemma 3, we have that either N=(NNA)
(NNB ) or NNA=NNB=1. Assume first that N=(NNA)(NNB).

(1) If NNA=1, then N is cyclic. Assume that NNA=1. It follows
that N is contained in B. Let NO be a non-trivial cyclic subgroup
of N. Since ANO is a subgroup of G, we have that NO =ANONN
is anormal subgroup of ANO. Hence every cyclic subgroup of N
is normalised by A. Now let N1 be a minimal normal subgroup
of B contained in N. Since B is supersoluble, it follows That
NI is cyclic and thus normalised by A. Hence N1 is a normal
subgroup of G. The minimality of N implies that N=N1 and con-
sequently N is cyclic.

(i) NNA=1 and NNB=1.0n the contrary, assume that NNA=1.
From (i), we know that N is cyclic. Moreover, Nis contained
in B. Hence ANNB= (ANB)N. Let L=CoreG(ANB)N). Clear-
ly, N is contained in Land L=LN((ANB)N)=(LNANB)N. It is
clear that G/L=(AL/L)(BL/L)is a mutually permutable prod-
uct of AL/L and BL/L suchthat CoreG/L((AL/L)N(BL/L))=I.
By the minimality of G, it follows that G/L is supersoluble.
On the other hand, since N is cyclic, we have that G/CG(N)
is abelian. Hence G/CL(N) is supersoluble and GUCL(N)=C.
Note that C=Nx(CNANB). Therefore CNANB contains a Hall
p’-subgroup of C. Since CoreG(ANB)=1 and Op’(C) is a normal
subgroup of G contained in CNANB, we have that Op’(C)=1.
Moreover, C'=(CNANB)’" is a normal subgroup of G contained
in ANB. Consequently, C'=1 and C is an abelian p-group. In par-
ticular, GU is abelian and thus GU is complemented in G by a
supersoluble normalizer D which is also a supersoluble projector
of G, by [8, Theorems V.4.2 and V.5.18]. Since N is cyclic, we
know that N is central with respect to the saturated formation of
all supersoluble groups. By [8,Theorem V.3.2.e], Dcovers N and
thus N is contained in D. It follows NDNGU=1, a contradiction.

(iii)) Either N=NNA or N=NNB. If we have N=NNA=NNB,
then N is contained in ANB, contradicting the factthat
CoreG(ANB)=1. We may assume without loss of generality that
NNA=N.

(iv) AN and BN are both supersoluble. Since N=(NNA)(NNB)
and N=NNA, it follows that NNB is not contained in NNA. Let
n be any element of NNB such that n/[INNA, and write NO =
[Inl[]. Note that ANO is a subgroup of G, and ANONN=(NNA)
NO. Therefore NO(NNA) is a normal subgroup of ANO, and con-
sequently A normalizes (ANN)NO. This yields that A/CA(N/
NNA) acts as a power automorphism group on N/NNA. This
means that AN is supersoluble. If NNB=N, then BN=B is su-
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persoluble. On the contrary, if NNB=N, we can argue as above
and we obtain that BN is supersoluble. Consequently, ACG(N)/
CG(N) and BCG(N)/CG(N) are both abelian groups of exponent
dividing p—1. But then G/CG(N)=(ACG(N)/CG(N))(BCG(N)/
CG(N)) is a m-group for some set of primes 7 such that if qln,
then q divides p—1.

(v) Let BO be a Hall n-subgroup of B. Then ABONN=ANN.
This follows just by observing that ABONNis contained in each
Hall n'-subgroup of ABO and every Hall n’-subgroup of A is a
Hall n’-subgroup of ABO. Note that |G/CG(N)| is a m-number
and ABO contains a Hall n-subgroup of G. Therefore G=(ABO0)
CG(N). But then ANN is a normal subgroup of G. The mini-
mality of G yields either ANN= lor ANN= N. This contradicts
our assumption 1=NNA=N, and so we cannot have N=(ANN)
(BNN). Thus, by Lemma 3, we may assume NNA=NNB=I1. Let
M= CoreG(ANNBN). Then NNM= N and G/M is supersoluble
by the minimality of G. Again, we reach a contradiction after
several steps.

(vi) M=N. Suppose that M=N. Since G/M is supersoluble, we
know that N cannot be cyclic. Let us write C=CG(N), and con-
sider the quotient group G/C. It is clear that G/C is supersoluble.
Let Q/C=0p(G/C). Since Op(G/C)=1 and (G/C)'is nilpotent, it
follows that Q/C is a normal Hall p'-subgroup of G/C. Let Bp’
be a Hall p’-subgroup of B. Since |N| divides [B:ANB|, we have
that (ANB)Bp’ is a proper subgroup of B. Let T be a maximal
subgroup of B containing (ANB)Bp'. Then AT is a maximal sub-
group of G and |G:AT|= p= |B:T|. If N is not contained in AT,
we have G=(AT )N and ATNN=I. Then |N|=p, a contradiction.
Therefore N is contained in AT. In particular, the family S={X:X
is a proper subgroup of B, (ANB)Bp'X and NAX} is non-empty.
Let R be an element of S of minimal order. Observe that AR
has p-power index in G and thus ARC/C contains Op'(G/C).
Regarding N as a AR-module over GF (p), we know, by Lem-
ma 4, that N is a direct sum N=[[ti=1Ni, where Ni is an irre-
ducible AR-module whose dimension is greater than 1, for all
101{1,...,t}. Assume that (ANB)Bp'=R. Then AR=ABp’ and thus
N is contained in A, a contradiction. Therefore ABp’MB=(ANB)
Bp' is a proper subgroup of R. Let S be a maximal subgroup of
R containing (ANB)Bp'. From the minimality of R, we know
that N is not contained in AS. Consequently, there exists some
ill{1,...,t} such that Ni is not contained in AS, which is a max-
imal subgroup of AR. Hence AR=(AS)Ni. Since Ni is a mini-
mal normal subgroup of AR, it follows that ASNNi= land |Ni|=
|AR:AS|= [R:S|= p, a contradiction.

(vi) M is an elementary abelian p-group. Note that
M=N(MNA)=N(MNB) and IMNA|=]MNB=M|/|N|. Moreover,
A(MNB)is a subgroup of G such that AIMMNB)NM= (MNA)
(MNB). Hence (MNA)(MNB) is also a subgroup of G. If MNA=
MNB, then MNA is a normal subgroup of G contained in ANB.
This implies that MNA=1 and consequently M=N, a contradic-
tion. It yields that MNA=MMNB. Next we see that (MNA)(MNB)
is a normal subgroup of G. Since (MNA)(MNB)=MNA(MNB),
we have that A normalizes (MNA)(MNB). Similarly, B nor-
malizes (MNA)(MNB) since (MNA)(MNB)= MNB(MNA).
This implies normality of (MNA)(MNB) in G. Let X=(MNA)
(MNB). Since we cannot have MNA= MNB, MNA must be
strictly contained in X. Thus X=XNM=(XNN)(MNA) > MNA
gives us XMNN=1. But then XNN=N, giving NX. Suppose that
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Q is a Hall p'-subgroup of MNB. Then QA is a subgroup and
so QANM=Q(MNA) is also a subgroup which contains Q.
Hence, as IM:MNA|=pk for some k, we have that QMNANB.
Thus QBNMMNANB and similarly QANMMNANB. Con-
sequently, QM is contained in MNANB. Since QM=0p(M),
it follows that Op( M) is a normal subgroup of G contained
in ANB. Hence Op(M)=1, a contradiction, and consequent-
ly Q=IlandMis a p-group. Hence N is contained in Z(M) and
M=Nx(MNA)=Nx(MNB). Thus ¢(M)=p(MNA)=p(MNB) is
a normal subgroup of G contained in ANB. This implies that
¢(M)=1 and M is an elementary abelian p-group, as claimed.
(viii) Final contradiction. We have from the previous steps that
MNA is not contained in MNB and that MNB is not contained
in MNA because otherwise, since [MNA|=|MNB], it follows that
MNA=MMNB is a normal subgroup of G contained in ANB. This
would imply MNA=MNB=1, and M=(MNA)N=N. This fact
contradicts step (vi) [7].

Let x be an element of MNB such that x/[IMNA. Then AlIx[]
is a subgroup of G, and so is MO=AlIx[INM=(ANM)[Ix[].
Therefore MO is an A-invariant subgroup of G. In particular,
since M=(MNA)(MNB), we have that every subgroup of M/
MNA is A-invariant; that is, A/CA(M/MNA) acts as a group of
power automorphisms on M/MNA. It is clear that M/MNA is
A-isomorphic to N. Consequently, A/CA(N) acts as a group of
power automorphisms on N. This implies that A normalises each
subgroup of N. A nalogously, B normalises each subgroup of N.
It follows that N is a cyclic group. We argue as in step (ii) above
to reach a final contradiction. We have that G/M is supersoluble
and M is abelian. Therefore GUM and thus GU is abelian and
complemented in G by a supersoluble normaliser, D say, by [8,
Theorem V.5.18]. Since N is cyclic, we know that D covers N
and thus NGUND=1, a contradiction. Proof of Theorem 2.

Let M=GU denote the supersoluble residual of G. Theorem
lyields that G/CoreG(ANB) is supersoluble. Therefore, M is
contained in CoreG(ANB). In particular, M is supersoluble. Let
F(M) be the Fitting subgroup of M. Since A and Bare supersolu-
ble, we have that [M,A]F(A)NMF(M) and [M,B]F(B)NMF(M).
Consequently, [M,G] is contained in F(M). Note now that the
chief factors of G between F(M) and Mare cyclic,and recall that
G/M is supersoluble. Therefore, we have that G/F (M) is su-
persoluble. This implies that M=F(M) and thus M is nilpotent.
Consequently, G/F (G) is supersoluble. We now show that G/F
(G) is metabelian. We prove first that A" and B’ both centralise
every chief factor of G. Let H/K be a chief factor of G. If H/K
is cyclic, then as G’ centralizes H/K, so do A’ an dB’. Hence,
we may assume that H/K is a non-cyclic p-chief factor of G for
some prime p. Note that we may assume that H is contained in M
because G/M is supersoluble and H/K is non-cyclic. To simpli-
fy notation, we can consider K=1. Since F(G) centralizes H [8,
Theorem A.13.8.b], G/CG(H ) is supersoluble. Let Ap’ be a Hall
p'-subgroup of A. By Maschke’s theorem [8, Theorem A.11.5],H
is a completely reducible Ap’-module and HAp' is supersoluble
because H is contained in A. Therefore Ap’/CAp'(H ) is abelian
of exponent dividing p—1. This implies that the primes involved
in |A/CA(H )| can only be p or divisors of p—1.The same is true
for |B/CB(H )|. This implies that if p divides |G/CG(H )|, then p
is the largest prime dividing |G/CG(H )|. But since Op(G/CG(H
))=1 and G/CG(H ) is supersoluble, it follows that G/CG(H )
must be a p’-group. Consider H as A-module over GF (p). Since
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ACG(H )/CG(H ) is a p'-group, we have that H is a completely
reducible A-module and every irreducible A-submodule of His
cyclic. Consequently A’ centralizes H, and the same is true for
B'. Let now U/V be a chief factor of G. Then G/CG(U/V )is
the product of the abelian subgroups ACG(U/V )/CG(U/V ) and
BCG(U/V )/CG(U/V ). By Ito’s theorem [9], we have that G/
CG(U/V )is metabelian. Since F(G)is the intersection of the cen-
tralisers of all chief factors (again by [8, Theorem A.13.8.b]), we
can conclude that G/F (G) is metabelian.3. Final remarks Final-
ly, Theorem 1 enables us to give succinct proofs of earlier results
on mutually permutable products [8].

Corollary 1[2, Theorem 3.2]. Let G=AB be the mutually permu-
table product of the subgroups A and B. If A is supersoluble and
B is nilpotent, then G is supersoluble.

Proof. Assume that the assertion is false, and let G be a minimal
counterexample. We have that G is a primitive group, and so G
has a unique minimal normal subgroup, N say, with N=CG(N)
a p-group for some prime p. Since G is not supersoluble, ap-
plying Theorem 1, we know that CoreG(ANB)=1. This yields
that N is contained in ANB. Now, since N is contained in B,
which is nilpotent, it follows that any p'-element of B must cen-
tralize N. Since CG(N)=N, we have that B itself is a p-group.
Consequently, A must contain a Hall p’-subgroup of G. Now let
T/N=Op'(G/N). The previous argument yields that T/N is con-
tained in A/N. Note that if B=N, then G =AN= A is supersoluble,
a contradiction. Thus, N is a proper subgroup of B. This implies
that p must divide |G:T|. Since G/N is supersoluble, p must di-
videq—1 for some prime q[m(T/N). It is clear then that q cannot
divide p—1. Therefore, there exists a Sylow q-subgroup Aq of A
which centralizes N. Using that CG(N)=N, it yields that Aq=1
and thus q does not divide |G|,a contradiction.

Corollary 2 [2, Theorem 3.8]. Let G=AB be the mutually permu-
table product of thes upersoluble subgroups A and B. If G’ is nil-
potent, then G is supersoluble. Proof. We assume the result to be
false, and choose a minimal counterexample G. Thus G is a prim-
itive group with unique minimal normal subgroup N. We also
have that G=NM, where M is a maximal subgroup of G,NNM=1

Copyright: ©

and N=F(G)=Op(G) for some prime p. Now G’ is nilpotent and
thus G'=F(G)=N. Therefore M is an abelian group. Since N is
self-centralising, arguing as we did in the previous corollary, we
have that N is contained in ANB. Note that M[]=G/N, and thus
Op(M)=1. Since M is abelian, this yields that M is a p'-group.
Thus M is in fact a Hall p’-subgroup of G. Applying [1, Theorem
1.3.2], wehave that there exist a Hall p’-subgroup Ap’ of A and a
Hall p’-subgroup Bp’ of B suchthat M=Ap'Bp’. Since NANB, it
follows that both Ap" and Bp' must have exponent dividing p—1.
Regarding N as a M-module, it is easy to see that M must be a
cyclic group [9]. Now, since M=Ap'Bp’ has exponent dividing
p—L, it follows that N is a cyclic group as well. This implies that
G is supersoluble, a contradiction.
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