

World Journal of Applied Mathematics and Statistics

The Embedding Theorems for Lorentz-Morrey Spaces of Many Groups of Variables

Rena Eldar kizi Kerbalayeva

Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan

*Corresponding author: Rena Eldar kizi Kerbalayeva, Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan.

Submitted: 11 February 2025 Accepted: 17 February 2025 Published: 24 February 2025

Citation: Kerbalayeva, R. E. (2025). The Embedding Theorems for Lorentz–Morrey Spaces of Many Groups of Variables Wor Jour of Appl Math and Sta, 1(1), 01-08.

Abstract

In present paper, I intend to introduce our study of new normed function space type of Lorentz-Morrey $\mathcal{L}<1>(s,G)$ associated parameters of many groups of variables started in works by A.Dj. Djabrailov. I must note that, this space belongs to spaces type of Lebesgue-Morrey type. As an application, we give some properties for these spaces again. In addition, I have given two needing lemmas and they have been proved. In view of the embedding theorems we study some properties of the functions, which are belonging to these spaces. Although I have dealt with a lot of measurable cases, differentiable function spaces are very difficult in general. The most important cases are Lebesgue-Morrey type spaces with many groups of variables. I begin with the general theory of Mathematical Analysis, I have constructed new normed spaces type of Lorentz-Morrey, gave and proved some characterization of these type of spaces. In addition, specific techniques for introducing some embedding theorems will be given late.

Keywords: Lorentz-Morrey Spaces, Many Groups of Variables, Integral Representation, Embedding Theorems.

Introduction

Let $1 \le s \le n$; s, n – are positive integers and $n_1 + \cdots + n_s = n$. Assume that

$$x = (x_1, ..., x_s) \in \mathbb{R}^n \ x_k = (x_{k,1}; ...; x_{k,n_k}) \in \mathbb{R}^{n_k} \ (k \in e_s = \{1, 2, ..., s\})$$

and we are given a Lebesgue measurable functions f(x). More precisely, $R^n = R^{n_1} \times R^{n_2} \times \cdots \times R^{n_s}$. Thus we consider the fixed, non-negative and integer vectors $l = (l_1, \dots, l_s)$, such that, $l_k = (l_{k,1}; \dots; l_{k,n_k})$, $(k \in e_s)$. That is, $l_{k,j} > 0$, $(j = 1, \dots, n_k)$, for all $k \in e_s$. Here we denote by Q the set of the vectors $i = (i_1, \dots, i_s)$, where $i_k = 1, 2, \dots, n_k$ and $k \in e_s$. The number of elements of the set Q is equal to $|Q| = \prod_{k=1}^s (1 + n_k)$. Therefore, to each vector $i = (i_1, \dots, i_s) \in Q$ we correspond the vector $l^i = (l_1^{i_1}; \dots; l_s^{i_s})$ associated with the fixed "positive vector" $l = (l_1, \dots, l_s)$ by the following way $l^0 = (0, 0, \dots, 0)$, $l_k^1 = (l_{k,1}, 0, \dots, 0)$, ..., $l_k^{i_k} = (0, 0, \dots, l_{k,n_k})$, for all $k \in e_s$. Then to the vectors e^i , we correspond the vectors $\bar{l}^i = (\bar{l}_1^{i_1}, \bar{l}_1^{i_2}, \dots, \bar{l}_1^{i_s})$, where $\bar{l}_k^{i_k} = (\bar{l}_{k,1}^{i_1}, \bar{l}_{k,2}^{i_2}, \dots, \bar{l}_{k,n_k}^{i_s})$ ($k \in e_s$). Here for every $k \in e_s$, $\bar{l}_{k,j}^{i_k}$ is the greatest integer less than $l_{k,j}^{i_k}$ if $l_{k,j}^{i_k} > 0$, and $\bar{l}_{k,j}^{i_k} = 0$, if $l_{k,j}^{i_k} = 0$. [13, 14, 15, 17, 19]

Materials and Methods

In this paper we introduce and study the new function space

$$\mathcal{L}_{\mathbf{p},\theta,\mathbf{a},\kappa,\tau}^{< l>}(\mathbf{s},\mathbf{G})$$
 (1)

of several groups of variables of Lorentz-Morrey type, where the analysis is based on a setting space, related methods of the integral representation and differential properties of some classes of such function.

Definition 1. We denote by $\mathcal{L}_{p,\theta,a,\varkappa,\tau}^{< l>}(s,G)$ Lorentz-Morrey space type of locally summable function f on $G \subset \mathbb{R}^n$, with finite norm ($1 \le p < \infty, 1 \le \theta \le \infty$)

$$||f||_{p,a,\varkappa,\tau:G} = ||f||_{\mathcal{L}_{p,a,\varkappa,\tau}(G)} =$$

$$\begin{cases}
\left\{ \int_{0}^{\infty} \left[\prod_{k \in e_{s}} [t_{k}]_{1}^{\frac{|\varkappa_{k}|a}{p}} \times \|f^{*}\|_{p,G_{t^{\varkappa}}(x)} \right]^{\tau} \prod_{k \in e_{s}} \frac{dt_{k}}{t_{k}} \right\}^{1/\tau} \\
sup_{0 < t < \infty} \left(\prod_{k \in e_{s}} [t_{k}]_{1}^{\frac{|\varkappa_{k}|a}{p}} \times \|f^{*}\|_{p,G_{t^{\varkappa}}(x)} \right)
\end{cases}, \tag{2}$$

$$\begin{split} &D^{\bar{l}^i}f = D_1^{\bar{l}_1^{i_1}} \cdots D_s^{\bar{l}_s^{i_s}}f, \quad D_k^{\bar{l}_k^{i_k}}f = D_{k,1}^{\bar{l}_k^{i_k}} \cdots D_{k,n_k}^{\bar{l}_k^{i_k}}f; \quad G_{t^{\varkappa}} = G \cap I_t(x); \qquad I_{t^{\varkappa}}(x) = I_{t_1^{\varkappa_1}} \times I_{t_2^{\varkappa_2}} \times \cdots \times I_{t_s^{\varkappa_s}}; \\ &I_{t_k^{\varkappa_k}}(x_k) = &\left\{y_k : |y_k - x_k| < \frac{1}{2}t_k^{|\varkappa_k|}, \ k \in e_s\right\}, \text{ where } |\beta_k| = \sum_{j=1}^{n_k} \beta_{k,j}^{i_k}, \\ &\frac{dt_k}{t_k} = \prod_{j \in e_k^i} \frac{dt_{k,j}}{t_{k,j}} \text{ and } 0 < \beta_{k,j}^{i_k} = l_{k,j}^{i_k} - l_{k,j}^{i_k} - l_{k,j}^{i_k} \leq 1 \text{ for } l_k^{i_k} > 0, \text{ and } \beta_{k,j}^{i_k} = 0 \text{ , if } l_{k,j}^{i_k} = 0, \ t = (t_1, \dots, t_s), \ t_k = \left(t_{k,1}; \dots; t_{k,n_k}\right), \ \omega = (\omega_1, \dots, \omega_s), \ \omega_k = \left(\omega_{k,1}; \dots; \omega_{k,n_k}\right). \text{ When } \omega_{k,j} = 1 \text{ for } k \in e^i, \text{ then } \omega_{k,j} = 0, \ k \in e_s / e^i; \ e^i = \sup \bar{l}^i = \sup \bar{l}^i = \sup \beta_k - l_k^{i_k} - l_k^{i_k}$$

Let us give some characterization of $\mathcal{L}_{p,a,\varkappa,\tau}(G)$:

- 1) $\|\cdot\|_{p,a,\varkappa,\tau:G}$ is a qiasi-norm.
- 2) We must note that, for every $\tau > 0$

$$\mathcal{L}_{n,q,\kappa,\tau}(G) = \mathcal{L}_{n,q,\kappa}(G)$$

- The space L_{p,α,κ,τ}(G) is complete.
- 4) For c>0 we have

$$||f||_{p,a,c\varkappa,\tau:G} = \frac{1}{c^{\frac{s}{\tau}}} ||f||_{p,a,\varkappa,\tau:G}.$$

- 5) For any $\varkappa = (\varkappa_1, ..., \varkappa_n) > 0$ we get:
- a) $||f||_{p,0,\varkappa,\infty;G} = ||f||_{p,G}$;
- b) $||f||_{p,1,\varkappa,\tau:G} \ge ||f||_{\infty,G}$.
- 6) If $p \le q$, $\frac{1-b}{a} \le \frac{1-a}{p}$, $1 \le \tau_1 \le \tau_2 \le \infty$ then

$$\mathcal{L}_{q,b,\varkappa,\tau_1}(G) \subset_{>} \mathcal{L}_{p,a,\varkappa,\tau_2}(G)$$

and

$$||f||_{p,a,\varkappa,\tau_2:G} \le ||f||_{q,b,\varkappa,\tau_1:G}.$$
 (3)

Results and Discussion

Theorem 1: Let f and g be two functions in $\mathcal{L}_{p,a,\varkappa,\tau}(G)$. Then for all $\lambda_1,\lambda_2,\lambda_3\geq 0$, we have:

- a) D_f is decreasing and continuous from the right;
- b) $|g| \le |f|$ then $D_g(\lambda) \le D_f(\lambda)$;
- c) $D_{cf}(\lambda_1) = D_f\left(\frac{\lambda}{|c|}\right)$ for all $c \in C \setminus \{0\}$;
- d) $D_{f+g}(\lambda_1 + \lambda_2) \leq D_f(\lambda_1) + D_g(\lambda_2)$;
- e) D_{f a}(λ₁λ₂) ≤ D_f(λ₁) × D_a(λ₂);
- f) If |f| ≤ lim inf |f_n|, implies that D_{fn}(λ) for any λ ≥ 0;
- g) If $|f_n| \uparrow |f|$, then $\lim_{n \to \infty} D_{f_n}(\lambda) = D_f(\lambda)$.

Proof:

a) Let $0 \le \lambda_1 \le \lambda_2$. Then

$$\left\{t,|f(t)|>\prod_{k\in e_s}[\lambda_{2,k}]_1\right\}\subseteq \left\{t,|f(t)|>\prod_{k\in e_s}[\lambda_{1,k}]_1\right\}.$$

Then by the monotonicity of the measure we get

$$D_f(\lambda_1) \ge D_f(\lambda_2)$$
.

It means that, the function D_f is decreasing. Let us proof continuous from the right. Let be $\lambda_0 > 0$ and we have to choose $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ such that $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \lambda_4 \geq \cdots$ and let us define $E_f(\lambda)$ for each

$$E_f(\lambda) = \left\{ t, \quad |f(t)| > \prod_{k \in e_s} [\lambda_k]_1 \right\}.$$

Hence, $E_f(\lambda_1) \subseteq E_f(\lambda_2) \subseteq E_f(\lambda_3) \subseteq \cdots$, and by the monotone convergence theorem we get

$$\lim_{n\to\infty} D_f\left(\lambda_0 + \frac{1}{n}\right) = \lim_{n\to\infty} \mu\left(E_f\left(\lambda_0 + \frac{1}{n}\right)\right) =$$

$$\mu\left(\bigcup_{n=1}^{\infty} E_f\left(\lambda_0 + \frac{1}{n}\right)\right) = \mu\left(E_f(\lambda_0)\right) = D_f(\lambda_0).$$

Since $E_f(\lambda_1) \subseteq E_f(\lambda_2) \subseteq E_f(\lambda_3) \subseteq \cdots$, and $\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \lambda_4 \ge \cdots$. This establishes the right continuity.

b) Suppose that, f and g are two functions in $\mathcal{L}_{p,a,\varkappa,\tau}(G)$ and $|g| \leq |f|$. Following

$$\left\{t, |g(t)| > \prod_{k \in e_s} [\lambda_k]_1 \right\} \subseteq \left\{t, |f(t)| > \prod_{k \in e_s} [\lambda_k]_1 \right\}.$$

According to the monotonicity of a measure we hold following

$$\mu\left\{t,|g(t)|>\prod_{k\in e_{s}}[\lambda_{k}]_{1}\right\}\leq\mu\left\{t,|f(t)|>\prod_{k\in e_{s}}[\lambda_{k}]_{1}\right\}.$$

It means that, $D_g(\lambda) \leq D_f(\lambda)$.

c) Let f ∈ L_{p,a,κ,τ}(G) and c ∈ C\{0}. Following

$$\left\{t, |f(ct)| > \prod_{k \in e_s} [\lambda_k]_1\right\} =$$

$$\left\{t, |c||f(t)| > \prod_{k \in e_s} [\lambda_k]_1\right\} =$$

$$\left\{t, |f(t)| > \frac{1}{|c|} \prod_{k \in e_s} [\lambda_k]_1\right\}.$$

It implies, that

$$\mu\left\{t, |cf(t)| > \prod_{k \in e_s} [\lambda_k]_1\right\} = \mu\left\{t, |f(t)| > \prod_{k \in e_s} \frac{1}{|c|} [\lambda_k]_1\right\}$$

Moreover, we get $D_{cf}(\lambda_1) = D_f(\frac{\lambda}{|c|})$.

d) Let $f, g \in \mathcal{L}_{p,a,\varkappa,\tau}(G)$ and $\lambda_1, \lambda_2 \geq 0$. Then we have

$$\left\{ t, |f(t) + g(t)| > \prod_{k \in e_s} [\lambda_{1,k}]_1 + \prod_{k \in e_s} [\lambda_{2,k}]_1 \right\} \subseteq$$

$$\left\{ t, |f(t)| + |g(t)| > \prod_{k \in e_s} [\lambda_{1,k}]_1 + \prod_{k \in e_s} [\lambda_{2,k}]_1 \right\} \subseteq$$

$$\left\{ t, |f(t) + g(t)| > \prod_{k \in e_s} [\lambda_{1,k}]_1 + \prod_{k \in e_s} [\lambda_{2,k}]_1 \right\} \subseteq$$

$$\left\{ t, |f(t)| > \prod_{k \in e_s} [\lambda_{1,k}]_1 \right\} \cup \left\{ t, |g(t)| > \prod_{k \in e_s} [\lambda_{2,k}]_1 \right\}.$$

That is,

$$\mu\left\{t,|f(t)+g(t)|>\prod_{k\in e_s}[\lambda_{1,k}]_1+\prod\nolimits_{k\in e_s}\bigl[\lambda_{2,k}\bigr]_1\right\}\leq$$

$$\mu\left\{t,|f(t)|>\prod_{k\in e_s}[\lambda_{1,k}]_1\right\}+\mu\left\{t,|g(t)|>\prod_{k\in e_s}[\lambda_{2,k}]_1\right\}.$$

Thus, $D_{f+g}(\lambda_1 + \lambda_2) \le D_f(\lambda_1) + D_g(\lambda_2)$.

e) Let f, g ∈ L_{p,a,κ,τ}(G) and λ₁, λ₂ ≥ 0. Then we have

$$\left\{ t, |f(t)g(t)| > \prod_{k \in e_s} [\lambda_{1,k}]_1 \cdot \prod_{k \in e_s} [\lambda_{2,k}]_1 \right\} =$$

$$\left\{ t, |f(t)||g(t)| > \prod_{k \in e_s} [\lambda_{1,k}]_1 \cdot \prod_{k \in e_s} [\lambda_{2,k}]_1 \right\} \subseteq$$

$$\left\{ t, |f(t)| > \prod_{k \in e_s} [\lambda_{1,k}]_1 \right\} \cup \left\{ t, |g(t)| > \prod_{k \in e_s} [\lambda_{2,k}]_1 \right\}.$$

It means that, $D_{f+g}(\lambda_1\lambda_2) \leq D_f(\lambda_1) + D_g(\lambda_2)$.

According to [4] one can easy proof f and g. [1, 2, 4, 7, 18]

Remark: (Completeness). The normed space $\mathcal{L}_{p,a,\varkappa,\tau}(G)$ is a complete.

Proof. Let $||f_n||_{m,n\in\mathbb{N}}$ be an arbitrary Cauchy sequence in $\mathcal{L}_{p,a,\varkappa,\tau}(G)$. Then we hold

$$||f_{m-}f_{n}||_{n,q,\kappa,\tau:G} \to 0$$
, as $m,n\to\infty$

and according to corollary 2.16 [4] we get

$$\|f_{m-}f_n\|_{(p,\infty)} \leq \left(\prod_{k \in e_{\mathcal{S}}} [t_k]_1^{-\frac{|\varkappa_k|a}{p}} \times \|f_{m-}f_n\|\right) \to \infty, \text{ as } m, n \to \infty.$$

Thus

$$sup_{0<\lambda<\infty}\left(\prod_{k\in e_s}[\lambda_k]_1^{-\frac{|\varkappa_k|a}{p}}\times D_{f_m-f_n}(\lambda)\right)^{1/\tau}=$$

$$sup_{0 < t < \infty} \left(\prod_{k \in e_s} [t_k]_1 \frac{|\kappa_k| a}{p} \times (f_m - f_n)^*(t) \right)^{1/\tau} \to 0, \text{ as } m, n \to \infty.$$

It follows now by theorem 1.6(g) in [4] that

$$(f - f_0)^*(t) \le \lim_{k \to \infty} \inf (f_{n_k} - f_{n_0})^*(t)$$
, for all t>0.

Due to Fatou Lemma, we have

$$(f - f_0)^{**}(t) \le \lim_{k \to \infty} \inf (f_{n_k} - f_{n_0})^{**}(t)$$
, for all t>0.

Once again by Fatou's Lemma we hold

$$\begin{split} \left\|f-f_{n_0}\right\|_{p,a,\varkappa,\tau} &= \\ \left\{\int\limits_0^\infty \left[\prod_{k\in e_S} [t_k]_1^{\frac{|\varkappa_k|a}{p}} \times \left(f-f_{n_0}\right)^{**}(t)\right]^{\tau} \prod_{k\in e_S} \frac{dt_k}{t_k} \right\}^{1/\tau} &\leq \\ \left\{\int\limits_0^\infty \left[\prod_{k\in e_S} [t_k]_1^{\frac{|\varkappa_k|a}{p}} \times \lim_{k\to\infty} \inf\left(f_{n_k}-f_{n_0}\right)^{**}(t)\right]^{\tau} \prod_{k\in e_S} \frac{dt_k}{t_k} \right\}^{1/\tau} &\leq \end{split}$$

$$\lim_{k\to\infty}\inf\left\{\int\limits_0^\infty\left[\prod_{k\in e_s}[t_k]_1^{-\frac{|\varkappa_k|a}{p}}\times\left(f_{n_k}-f_{n_0}\right)^{**}(t)\right]^\tau\prod_{k\in e_s}\frac{dt_k}{t_k}\right\}^{1/\tau}\leq$$

$$\lim_{k\to\infty}\inf\left\|f_{n_k}-f_{n_0}\right\|_{p,a,\varkappa,\tau}\leq \varepsilon\text{, for }n_k>n_0.$$

Since $f = (f - f_{n_0}) + f_{n_0} \in \mathcal{L}_{p,a,\varkappa,\tau}(G)$. This implies that $\mathcal{L}_{p,a,\varkappa,\tau}(G)$ is complete.

$$sup_{0 < t < \infty} \left(\prod_{k \in e_s} [t_k]_1^{-\frac{|\varkappa_k|a}{p}} \times \left\{ t \colon |f_m(t) - f_n(t)| > \prod_{k \in e_s} [t_k]_1 \right\} \right)^{1/\tau} =$$

$$sup_{0 < t < \infty} \left(\prod_{k \in e_s} [t_k]_1^{\frac{-|\varkappa_k|a}{p}} \times D_{f_m(t) - f_n(t)} \right)^{1/\tau} \to 0, \ m, n \to \infty.$$

It proves that $\{t: |f_m(t)-f_n(t)| > \prod_{k \in e_s} [t_k]_1\} \to 0$, $m,n \to \infty$, for any t>0. We proved that given $||f_n||_{n,n \in \mathbb{N}}$ sequence is a Cauchy sequence.

Let be $\varepsilon>0$ arbitrary, since $\|f_n\|_{n,n\in\mathbb{N}}$ is a Cauchy sequence, then there exits $n_0\in\mathbb{N}$ such that

$$\left\|f_n - f_{n_0}\right\|_{p,a,\varkappa,\tau} < \varepsilon, (n > n_0)$$

and $(f_{n_k} - f_{n_0})$ convergence to $(f - f_0)$.

$$min_G \left[\left(f_j - f_k \right)_n^* \right]^{-\frac{|x_k|a}{p}} \le \left[\left(f_j - f_k \right)_n^* (y) \right]^{-\frac{|x_k|a}{p}}, y \in G \Rightarrow$$

$$\left[\left(f_{j}-f_{k}\right)_{n}^{*}\right]^{-\frac{|x_{k}|a}{p}} \leq \left[\left(f_{j}-f_{k}\right)_{n}^{*}(y)\right]^{-\frac{|x_{k}|a}{p}}, y \in G \Rightarrow$$

$$\left[\left(f_{j}-f_{k}\right)_{n}^{*}(t)\right]^{-\frac{|\varkappa_{k}|a}{p}}\gamma(t)\leq\left[\left(f_{j}-f_{k}\right)_{n}^{*}(y)\right]^{-\frac{|\varkappa_{k}|a}{p}}\gamma(y)\Rightarrow$$

$$\int_{0}^{\infty} \left\{ \left[\left(f_{j} - f_{k} \right)^{**}(t) \right]^{\tau} \gamma(y) \right\} \prod_{k \in e_{s}} \frac{dt_{k}}{t_{k}} \leq \int_{0}^{\infty} \left\{ \left[\left(f_{j} - f_{k} \right)^{**}(y) \right]^{\tau} \gamma(y) \right\} \prod_{k \in e_{s}} \frac{dt_{k}}{t_{k}} \Rightarrow$$

$$\left[\left(f_{j}-f_{k}\right)^{**}(t)\right]^{\tau}\int\limits_{0}^{\infty}\left\{\gamma(y)\right\}\prod_{k\in e_{s}}\frac{dt_{k}}{t_{k}}\leq$$

$$\int_{\mathbb{R}^n} \left\{ \left[\left(f_j - f_k \right)_n^{**}(y) \right]^{\tau} \gamma(y) \right\} \prod_{k \in e_s} \frac{dt_k}{t_k}.$$

This way we hold

$$\left[\left(f_{j}-f_{k}\right)^{**}(t)\right]^{\tau} \int_{G} \gamma(y) \prod_{k \in e_{s}} \frac{dt_{k}}{t_{k}} \leq \left\|f_{j}-f_{k}\right\|_{\mathcal{L}_{n,q,\kappa,T}(G)}^{\tau}.$$

Hence

$$(f_j - f_k)_n^* \to 0 \Rightarrow D_{(f_j - f_k)_n^*} \to 0 \Rightarrow D_{(f_j - f_k)} \to 0.$$

That means $(f_k)_k$ is Cauchy in measure. Then there exists a subsequence (f_{k_j}) that converges pointwise to a measurable function f. According to Property 3.15(e) in [4] and Fatou's lemma we are able to finish that $f \in \mathcal{L}_{p,a,\kappa,\tau}(G)$. Moreover

$$f = \lim_{j \to \infty} f_{k_j} \Rightarrow f_n^* = \lim_{j \to \infty} \left(f_{k_j} \right)_n^* \Rightarrow \text{(Property 3.15(e))}$$

$$\int\limits_{R^n}\{[f_n^*(t)]^{\tau}\gamma(t)\}\prod_{k\in e_s}\frac{dt_k}{t_k}\leq$$

$$\lim_{j\to\infty}\inf\int_{R^n}\{[f_n^*(t)]^{\tau}\gamma(t)\}\prod_{k\in e_s}\frac{dt_k}{t_k}$$

(Fatou's lemma) $\leq c < \infty \Rightarrow f \in \mathcal{L}_{p,a,\varkappa,\tau}(G)$.

Besides

$$\lim_{j\to\infty} \left| f_{k_j}(t) - f_j(t) \right| = \left| f(t) - f_j(t) \right|, t \in \mathbb{R}^n.$$

Taking Fatou's lemma and the fact that $(f_k)_k$ is a Cauchy sequence, we obtain following

$$\begin{split} &\|f-f_i\|_{\mathcal{L}_{p,a,\varkappa,\tau}(G)} = \left\|f-f_{k_j}+f_{k_j}-f_i\right\|_{\mathcal{L}_{p,a,\varkappa,\tau}(G)} \leq \\ &c\left(\left\|f-f_{k_j}\right\|_{\mathcal{L}_{p,a,\varkappa,\tau}(G)} + \left\|f_{k_j}-f_i\right\|_{\mathcal{L}_{p,a,\varkappa,\tau}(G)}\right) = \\ &c\left(\left\|f-f_{k_j}\right\|_{\mathcal{L}_{p,a,\varkappa,\tau}(G)} + \left\|f_i-f_{k_j}\right\|_{\mathcal{L}_{p,a,\varkappa,\tau}(G)}\right) \to 0. \end{split}$$

Conclusions and Recommendations

In present paper, I intent to introduce my study of new normed function space type of Lorentz-Morrey, associated parameters of many groups of variables started in works by Allahveran Djabrailov. As an application, I give some properties for these spaces again. In addition, I have given two needing lemmas and they have been proved. In view of the embedding theorems, I study some properties of the functions, which are belonging to these spaces. Although I have dealt with a lot of measurable cases, differentiable function spaces are very difficult in general. The most important cases are Lebesgue-Morrey type spaces with many groups of variables. I begin with the general theory of Mathematical Analysis, I have constructed new normed spaces type of Lorentz-Morrey, gave and proved some characterization of these type of spaces. In addition, specific techniques for introducing some embedding theorems will be given late.

Acknowledgement

Rena E. Kerbalayeva acknowledgement the support of her grandfather A. Aliyev. The author is grateful to the referees for numerous comments that improved the quality of the paper.

References

- Ahn, J., & Cho, Y. (2005). Lorentz space extension of Strichartz estimates. Proceedings of the American Mathematical Society, 133(12), 3497-3503.
- Besov, O. V., Ilin, V. P., & Nikolskii, S. M. (1996). Integral representations of functions and embedding theorems. Nauka.

- 3. Burenkov, V. I., & Guliyev, H. V. (2004). Necessary and sufficient condition for boundedness of the maximal operator in the local space Morrey type spaces. Studia Mathematica, 163(2), 157–176.
- 4. Castillo, R. E., & Chaparro, H. C. (2021). Classical and multidimensional Lorentz spaces. De Gruyter. https://doi.org/10.1515/9783110750355
- 5. Duyar, C., & Gürkanlı, A. T. (2007). Multipliers and the relative completion in weighed Lorentz space. Acta Mathematica Scientia, 23(B-4), 467-476.
- 6. Guliyev, V. S. (2012). Generalized weighted Morrey spaces and higher order commutators of sublinear operators. Eurasian Mathematical Journal, 3(3), 33-61.
- 7. Kawazoe, T., & Mejjaoli, H. (2012). Generalized Besov spaces and their applications. Tokyo Journal of Mathematics, 35(2), 297-320.
- 8. Kerbalayeva, R. E. (2021). Some characterization of the function space type of Lebesgue–Morrey. American Journal of Information Science and Technology, 5(12), 25-29.
- Kerbalayeva, R. E. (2023). Some characterization of the function space type of Lorentz–Morrey with many groups of variables. Manchester Modern Science: Experience, Traditions, and Innovations. Proceedings of the International Scientific and Practical Conference, UK, 31 January–01 February, 42-50.
- Kokilasvili, V., Meskhi, A., & Rafeiro, H. (2012). Boundedness of commutators of singular and potential operators in generalized grand Morrey spaces and some applications. Studia Mathematica. https://doi.org/10.4064/sm217-224

- 11. Kokilasvili, V., Meskhi, A., & Rafeiro, H. (2012). Riesz type potential operators in generalized grand Morrey spaces. Georgian Mathematical Journal, 20(1).
- Mazzucato, A. I. (2002). Besov-Morrey spaces. Function space theory and applications to non-linear PDEs. Transactions of the American Mathematical Society, 355(4), 1297-1364.
- 13. Maksudov, F. Q., & Djabrailov, A. Dj. (2000). The method of integral representation on the theory of spaces. Baku.
- Najafov, A. M. (2005). Some properties of functions from the intersection of Besov-Morrey type space with dominant mixed derivatives. Proceedings of A. Razmadze Mathematical Institute, 139, 71-82.
- 15. Najafov, A. M., & Kerbalayeva, R. E. (2019). The embedding theorems for Besov-Morrey spaces of many groups of variables. Proceedings of A. Razmadze Institute Mathematics, Georgian Academy of Sciences, 26(1), 125-131.
- 16. Netrusov, Y. V. (1984). Some embedding theorems of the space type of Besov-Morrey. Proceedings of A. Razmadze Mathematical Institute, 139, 139-147.
- 17. Ross, J. (1980). A Morrey-Nikolskii inequality. Proceedings of the American Mathematical Society, 78, 97-102.
- 18. Sawano, Y. (2009). Identification of the image of Morrey spaces by the fractional integral operators. Proceedings of A. Razmadze Mathematical Institute, 149, 87-93.
- 19. Vershik, A. M. (2002). Classification of measurable functions of several arguments, and invariantly distributed random matrices. Functional Analysis and Its Applications, 36(2).

Copyright: ©2025 Rena Eldar kizi Kerbalayeva. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.