

Journal of Clinical Surgery Care Research

Advancements in Acl Reconstruction: Surgical Techniques, Graft Choices, and Rehabilitation Strategies

Hamza, N*, Almonajjed, B. M, Hussain, M. Z, & Moustafa, M. Y. M

Iuliu Hatieaganu University of Medicine and Pharmacy, Cluj Napoca, Romania.

*Corresponding author: Hamza, N, Iuliu Hatieaganu University of Medicine and Pharmacy, ClujNapoca, Romania.

Submitted: 06 March 2025 Accepted: 18 March 2025 Published: 25 March 2025

di https://doi.org/10.63620/MKJCSCR.2025.1022

Citation: Hamza, N*., Almonajjed, B. M., Hussain, M. Z & Moustafa, M. Y. M (2025). Advancements in Acl Reconstruction: Surgical Techniques, Graft Choices, and Rehabilitation Strategies. J of Clin surg Care Res, 4(2), 01-08.

Abstract

Anterior cruciate ligament (ACL) injuries are one of the most common and prevalent injuries in adults, particularly in athletes. This review explores the evolution of ACL reconstruction techniques, focusing on advancements in surgical methods, graft choices, and rehabilitation strategies. Traditional approaches, such as hamstring autografts and bone-patellar tendon-bone (BTB) grafts, remain widely used, but emerging techniques like double-bundle reconstruction and bio-enhanced ACL repair show promise in improving outcomes. Biological enhancements, including platelet-rich plasma (PRP) and mesenchymal stem cells (MSCs), have demonstrated potential in accelerating graft healing and improving long-term results. Minimally invasive and arthroscopic techniques have reduced surgical trauma, enabling faster recovery and better functional outcomes. Rehabilitation techniques and protocols have also evolved, with accelerated programs and aquatic therapy showing significant benefits in improving the range of motion and strength and compatibility Despite many advancements and achievements in the field, challenges such as graft failure, re-injury, and the need for personalized treatment plans persist. Future directions include the integration of artificial intelligence (AI) and wearable technology to optimize rehabilitation and monitor recovery. This review highlights the importance of a multidisciplinary approach, combining surgical innovation, biological enhancements, and tailored rehabilitation, to improve outcomes and reduce re-injury rates in ACL reconstruction.

Keywords: Anterior Cruciate Ligament, Knee Injury, Reconstruction, Post-Surgical Rehabilitation

Introduction

The knee joint is stabilized by a complex network of ligaments, with the anterior cruciate ligaments (ACL) being one of the most critical structures. Located within the knee's synovial cavity, ACL originates from the posteromedial aspect of the lateral femoral condyle and inserts into the anterior condylar regions of the tibia. It consists of two functional bundles—the anteromedial and posterolateral—that work synergistically to resist anterior tibial translation and rotational forces during dynamic activities. Alongside the ACL, the posterior cruciate ligament (PCL), medial collateral ligament (MCL), and lateral collateral ligament (LCL) provide multidirectional stability. The ACL's limited vascular supply and reliance on synovial fluid diffusion contribute to its poor intrinsic healing capacity, making it prone to rupture under excessive mechanical stress [1].

Injuries to the ACL are more common among athletes, especially young females and can lead to many complications such as meniscal damage and early joint degeneration. The risk factors for ACL injuries include posterior tibial slope, thigh atrophy, anterior knee laxity, and early return to sports. Surgical reconstruction is one of the primary treatment cares. However re-injury rates remain high in the people with ACL injuries [1].

ACL injuries are prevalent, with an annual incidence of about 68.6 per 100,000 person-years. Notably, males have a higher incidence rate (81.7 per 100,000) compared to females (55.3 per 100,000) [2]. The mechanism of injury differs from men and women sports with non-contact injuries being more prevalent in women and contact injuries in men [3].

Page No: 01 www.mkscienceset.com J Clin Surg Care Res 2025

Importance of ACL Reconstruction

ACL reconstruction is crucial to maintain and restore the knee stability and the function after an ACL tear. It has been shown to restore the native kinetics and the rotational stability of the knee joint effectively reducing the anterior tibial translation (ATT) and improving the overall knee stability [4]. Moreover, techniques like anterolateral ligament (ALL) reconstruction alongside ACL reconstruction can further increase the knee stability. Postoperative assessments indicate significant improvements in functional scores, such as the International Knee Documentation Committee (IKDC) score, with patients experiencing better knee function and fewer limitations in daily activities. Structured rehabilitation program after surgery is also crucial in the recovery of the knee stability and outcomes. Overall, ACL reconstruction plays a crucial role in addressing mechanical instability and improving functional outcomes through advanced surgical and rehabilitation strategies. The integration of additional stabilizing techniques further optimizes results, ensuring patients can effectively regain their pre-injury capabilities [5].

Evolution in the Treatment Modalities

Early ACL reconstruction relied on autografts (patient's tissue) and allografts (donor tissue) to restore knee stability. Common graft choices included bone tendon-bone (BTB) and hamstring grafts, selected for their biomechanical properties and ease of harvesting. The ideal graft closely mimics the native ligament while minimizing donor site complications. Methods like anteromedial posterior drilling have replaced traditional trans tibial technique leading to anatomical placement in the femoral tunnel. A combined approach integrating both ACL reconstruction and repair of the remaining ligament has emerged which helps in preserving more native tissue and reducing the extent of the graft harvesting and potentially improving the biomechanics of the joint. Special techniques, like iliotibial band (ITB) and all-epiphyseal (AE) reconstructions, have been developed for pediatric patients to prevent growth disturbances while ensuring knee stability [6]. [7]. Currently the trend of research is being focused on the graft materials to better replicate native ligament properties, incorporating bioengineering principles to enhance the healing and the overall joint health [8].

Graft Choices and their Evolutions Autograft

Autografts employing a 4 stranded ipsilateral hamstring tendon has proven significant improvement in the long-term outcomes such as stability, activity level, function, symptoms, and patient satisfaction. It provides dependable fixation with bioabsorbable or titanium interference screws, enabling faster recovery and lower risk of re- rupture compared to allografts, especially in younger and more active patients. However, metallic interference screws can cause graft damage, interfere with MRI imaging due to their ferromagnetic properties, and may need to be removed during revision surgeries [9]. Autograft ACL reconstruction, particularly with hamstring tendon (HT) grafts, is associated with a significant failure risk in young, active people. The MOON risk calculator, which includes age, gender, body mass index, preoperative knee laxity, and sport type, has been proven to predict graft rupture risk and assist in selecting the best autograft. The STABILITY 1 experiment found that combining bone-patellar tendon-bone (BPTB) grafts and lateral extra-articular tenodesis (LET) with HT grafts reduces the risk of rupture

compared to using HT autografts separately. These data indicate that HT autografts alone may not be appropriate for young, high-risk patients undergoing ACL restoration [10].

Allografts

Allografts offer advantages such as reduced donor site morbidity and shorter operative times, making it an option for some patients. However, they come with many disadvantages such as a higher failure rate compared to autografts which is seen in long term studies. At a minimum of 10-year follow-up, allografts demonstrated a significantly higher failure rate (26.5%) compared to autografts (8.3%). Additionally, an increased posterior tibial slope was identified as a contributing factor to graft failure, regardless of graft type. Another potential concern with allografts is the risk of immune response, as they are sourced from donors [11]. Allografts have a unique maturation pattern which is seen as more reactive in the early postoperative period. At the 6-month follow-up, the SNQ value, which measures graft maturation, was lower in the allograft group than in the autograft group, indicating poorer early integration. However, by 12 months, the SNQ values in both groups were equivalent, indicating that the graft developed similarly over time. Despite initial disparities in maturation, clinical and functional outcomes at long-term follow-up revealed no significant differences between allografts and autografts [12].

Allograft and autograft maturation in ACL reconstruction have variations in healing times but no long-term effects. At 6 months, MRI-based SNQ scores were considerably higher in autografts (12.9) than in allografts (7.9), indicating that allografts matured slowly at first. However, after 12 months, the SNQ values were similar (9.8 vs. 10.4), indicating that allografts eventually catch up in graft maturation [12].

The emergence of personalized medicine is very critical in the role of ACL reconstruction, particularly for young and active populations who are at a higher risk of graft rupture. The MOON knee group created a risk calculator that forecasts the likelihood of graft failure based on patient parameters such as age, gender, BMI, preoperative knee laxity, sport played, and activity level. By using this technology to customize graft selection, surgeons can engage in collaborative decision-making with patients to improve outcomes and lower the likelihood of ACLR failure. The STABILITY 1 randomized clinical study validated the risk calculator with a broad sample of similar young, active participants. Age, high-grade preoperative knee laxity, and graft type were found to be significant predictors of graft rupture, confirming the model's accuracy. The study also discovered that bone-patellar tendon-bone (BPTB) grafts and the addition of lateral extraarticular tenodesis (LET) to hamstring tendon (HT) grafts were more effective at preventing rupture than using an isolated HT autograft. These findings support a more personalized approach to graft selection in ACLR [10].

Advances in Surgical Techniques

A comparison study between anatomic double-bundle (DB) ACL reconstruction using a 4-tunnel method with two interference screws and single-bundle (SB) techniques showed better results for the DB approach. In the DB group, 27 patients received reconstruction utilizing double-strand hamstring tendon grafts secured in two femoral tunnels with the help of interference screws.

Page No: 02 www.mkscienceset.com J Clin Surg Care Res 2025

Tibial fixation was accomplished by tightening sutures across a bony bridge with the knee flexed at 20° . follow up assessments conducted at 6 months and 2 years indicated that 92% of DB patients attained normal anterior knee laxity $(1.3 \pm 0.5 \text{ mm})$ and rotational stability, showing no notable differences between sides in range of motion, muscle strength, or function. Both IKDC and Lysholm scores demonstrated normal knee function in every patient, without any complications reported, including graft failure, infections, or donor site issues. These results indicate that although DB reconstruction is technically more intricate, it offers superior knee stability, strength, and functional recovery when compared to SB methods [13].

Different approaches to improving the results of the ACL have been examined, encompassing graft creation and mechanical characteristics. A single approach to bone- patellar tendon- bone. The goal of the Bone tendon bone (BTB) graft is to imitate the anteromedial and posterolateral bundles of the ACL. An additional method is to solve the discrepancy in the graft- bone tunnel sizes by constructing rectangular tunnels and aligning. It replaces them with matching bone blocks but overlooks the importance of the graft's cross- sectional area. The enlargement of the cross- section has been examined in the longitudinal slicing. Tabularization is a recognized graft preparation technique that encompasses stitching the central third of the femoral bone block shaped into a tube, significantly increasing the cross-sectional area of the graft [14].

A prospective, blinded, randomized controlled trial with a follow-up period of five years evaluated the efficacy of bioabsorbable poly-L-lactic acid with hydroxyapatite (PLLA-HA) screws in comparison to titanium screws for anterior cruciate ligament restoration (ACLR) using hamstring tendon grafts. The findings indicated no significant differences in clinical scores or tunnel width between the two groups. MRI assessments revealed a gradual resorption and ossification of the PLLA-HA screws, whereas the titanium screws exhibited no changes. Both types of screws provided similar levels of knee stability, graft integration, and functional outcomes over the study period. Additionally, there were no reports of infections, screw failures, or serious complications in either group. The gradual resorption and ossification of the PLLA-HA screws suggest they may be a viable alternative, potentially offering advantages for revision surgeries and minimizing MRI abnormalities. These results underscore the long-term effectiveness and safety of bioabsorbable screws in ACLR procedures [9].

A study focused on anatomic ACL repair utilizing a bone-patellar tendon-bone (BTB) autograft, paying special attention to

graft tunnel placement to mimic the ACL's natural attachment locations. The femoral tunnel was located between the ACL's two bundles, while the tibial tunnel was put at a 55-degree angle. Bio composite interference screws were used to repair both the tibia and the femur. In cases where the bone plug extended outside the tibial tunnel, two number 8 staples were used for further security. The study used adipose-derived regenerative cells (ADRCs) to enhance transplant recovery. Before closure, the ADRCs were prepared and infused into the BTB graft via arthroscopy. Pain ratings, functional scores (Lequesne, Tegner, Lysholm, IKDC), and MRI monitoring of graft remodeling were used to assess outcomes at two, four, six, and twelve months after surgery [15]. The study examined the long-term outcomes of anterior cruciate ligament repair (ACLR) using hamstring autografts and fixation with poly-L-lactic acid with hydroxyapatite (PLLA-HA) or titanium screws. The hypothesis was that there would be no significant difference in clinical scores or tunnel width after 13 years, assuming high-grade resorption and ossification of the PLLA-HA screws. The study was designed as a randomized controlled trial with 40 patients, and outcomes were measured at 2, 5, and 13 years using clinical assessments and imaging. Clinical outcomes at each follow-up time point showed no significant differences between the two groups, with both groups scoring similarly on the International Knee Documentation Committee score, Lysholm knee score, and KT-1000 arthrometer. Tunnel volumes, graft integration, and cyst formation were evaluated by MRI at 2 or 5 years, as well as 13 years [9].

Minimally Invasive and Arthroscopic Techniques

Minimally invasive and arthroscopic techniques have made substantial advancements in anterior cruciate ligament (ACL) reconstruction, lowering surgical trauma and enhancing recuperation. In this study, the treatment was carried out arthroscopically under spinal or general anesthesia, with patients lying supine and their legs stabilized on an arthroscopic holder. The application of a tourniquet created a bloodless environment, allowing for precise visibility and surgical manipulation. While the knee was flexed, a vertical incision was made from the patella to the tibial tubercle to harvest the patellar tendon transplant. After exposing the paratenon and patellar tendon, the middle third of the patellar ligament and its associated bone blocks were meticulously removed. An oscillating saw was utilized to precisely shape the bone blocks, ensuring an ideal match for graft attachment. Arthroscopic procedures provided precise graft insertion and tunnel construction while minimizing soft tissue disruption. This procedure, which uses small incisions and direct visualization, reduces postoperative pain, accelerates rehabilitation, and lowers the risk of complications as compared to typical open techniques [14].

Page No: 03 www.mkscienceset.com J Clin Surg Care Res 2025

Table 1: Explains the Different Materials Used in Acl Repair with the Clinical Trials.

Materials	Methods	Results	Reference
PLLA-HA vs. Titanium Screws	40 patients underwent ACLR using either PLLA-HA or titanium screws. Clinical and imaging evaluations (MRI, KT-1000, Lysholm, single-leg hop) were done at 2 and 5 years.	No clinical differences at 2 or 5 years. The PLLA-HA group had smaller femoral tunnels at 2 years (P = .02), but no difference at 5 years. PLLA-HA screws showed progressive resorption without increased cyst formation.	[9]
Hamstring Tendon Autograft	27 males underwent double-bundle ACLR with hamstring autografts. Evaluations at pre-op, 6 months, and 2 years included MRI and instability tests (Lachman, anterior drawer, pivot-shift).	After 2 years, 92% had normal anterior laxity and rotational stability. No significant differences in range of motion, strength, or function. No infections, graft failures, or pain were reported.	[13]
ADRC with BTB Autografts	20 soccer players underwent ACLR with ADRC-enhanced BTB autografts. A historical control group received standard BTB autografts. Clinical, imaging, and functional scores were evaluated.	At 12 months, IKDC improved significantly more in the ADRC group ($P = 0.03$). No major complications. One ADRC patient (5%) had a graft rupture. Tegner scores were maintained in ADRC but declined in controls ($P = 0.006$).	[15]
ACL Autografts (ST, ST-G, PT)	ACLR patients with non-surgical MCL injuries were grouped by graft type (ST, ST-G, PT). KOOS scores and revision rates were compared at 1 and 2 years.	No significant difference in ACL revision rates. ST group had higher KOOS sports scores at 2 years vs. ST-G and PT ($P = .010$, $P = .006$).	[16]
PLLA-HA vs. Titanium Screws	40 ACLR patients received either PLLA-HA or titanium screws. Blind evaluations included IKDC, Lysholm, KT-1000, MRI, and CT scans at 2, 5, and 13 years.	No clinical differences over 13 years. PLLA-HA group had smaller tibial tunnel volumes at 13 years (P = .004) and showed complete or near-complete resorption.	[17]
Hamstring Autograft vs. Posterior Tibialis Allograft	100 ACL-deficient patients were randomized to receive either a hamstring autograft or posterior tibialis allograft. Failures and tibial slope were assessed over 10 years.	Autograft failure rate: 8.3%, allograft failure rate: 26.5% (P = 0.0002). Higher tibial slope correlated with failure risk. Strong inter-rater reliability for tibial slope measurement.	[11]
Hamstring Autograft vs. Allograft	50 ACLR patients received either a hamstring autograft or an allograft. SNQ scores from MRIs at 6 and 12 months were correlated with clinical outcomes over 60 months.	Clinical scores improved in both groups. The autograft group had a higher SNQ at 6 months (P = 0.038), but scores equalized at 12 months. 12-month SNQ correlated with long-term function.	[12]
Ipsilateral vs. Contralateral ST Graft Harvest	140 ACLR patients were randomized to ipsilateral or contralateral ST graft harvest. Isokinetic and isometric strength testing was performed pre-op and at 6, 12, and 24 months.	Flexion strength was reduced at 6 months but normalized by 12 months. No significant differences in other strength outcomes.	[18]

Biological Enhancements for Improved Healing

Bone marrow mesenchymal stem cells (BM-MSCs) have become an important source of cells for engineering tissue repair and cell therapy. Vascular endothelial growth factor (VEGF) promotes angiogenesis and contributes fibrous integration between tendon and bone during the early postoperative stage. Both MSCs and VEGF can stimulate cell proliferation, differentiation, and matrix deposition. Intra- tunnel injections of BM-MSCs and VEGF after ACL reconstruction enhanced graft tunnel healing. Overall, the femoral tunnel that received BM-MSCs and VEGF had better advance healing with increased collagen type III fibers and better outcomes on MRI and biomechanical analysis. [19].

The use of Platelet- rich plasma has also been introduced in many clinical trials. A study conducted with 30 patients between age groups of 18 to 40 years with complete ACL tears were randomly divided into two groups, the control group in which only ACL reconstruction was done and second group in which ACL reconstruction was performed along with augmentation with Platelet rich plasma. For the PRP group, 3 ml of PRP was obtained in the operation room and was injected into femoral tunnel just before after portal suture. MRI was obtained post operatively 3-month, 6 months and 9th months for both the groups. Graft healing time was defined as the time taken for the graft to reach ligamentization phase when the graft became hyper-intense or was visualized like PCL or the remnant which was pre-

Page No: 04 www.mkscienceset.com J Clin Surg Care Res 2025

served during reconstruction. Patients in PRP augmented group achieved ligamentization phase significantly earlier as compared to those in the control group, with mean time of 3.4 months as compared to 8.1 months in the control group. PRP helps with the faster healing of the Hamstring graft. However further studies are required to correlate graft healing time with return to previous activity [20].

Bio enhanced ACL repair, which uses a bioactive scaffold to promote healing, has shown promise in short-term studies, but its long-term effects on cartilage remain untested in a large animal model. A total of 64 Yucatan mini pigs underwent ACL transaction and randomization to 4 experimental groups: no treatment, conventional ACL reconstruction, bio enhanced ACL reconstruction using a bioactive scaffold, and bio enhanced ACL repair using a bioactive scaffold. The biomechanical properties of the ligament or graft were examined, and macroscopic assessments of the cartilage surfaces were performed after 6 and 12 months of healing. The structural properties of the ligament after bio enhanced ACL repair were not significantly different from those in bio enhanced ACL reconstruction or conventional ACL reconstruction but were significantly greater than those in untreated ACL transection after 12 months of healing [21].

As the intra-articular environment is complex in its response to implanted materials, this study was designed to determine whether there would be a significant rate of adverse reaction to the implanted scaffold. A nonrandomized, first-in-human study compared the BEAR (Bridge-Enhanced ACL Restoration) procedure with traditional hamstring autograft ACL reconstruction in 20 patients (10 per group). The BEAR procedure involved suture repair augmented with a proprietary scaffold placed between the torn ACL ends, along with 10 mL of autologous whole blood, while the control group underwent standard hamstring autograft reconstruction. Outcomes, including pain, muscle atrophy, range of motion, and implant failure, were assessed at 3 months postoperatively. Results showed no joint infections or significant inflammation in either group, with similar effusion,

pain levels, and failure rates (no failures by Lachman criteria). MRI confirmed a continuous ACL or intact graft in all patients. Notably, hamstring strength at 3 months was significantly higher in the BEAR group $(77.9\% \pm 14.6\%$ of the contralateral side) compared to the hamstring autograft group $(55.9\% \pm 7.8\%; P < .001)$. The BEAR procedure demonstrated a low rate of adverse reactions, supporting further investigation into its efficacy in larger cohorts [22].

Due to limitations of current grafts, tissue-engineered substitutes are being explored for ACL regeneration. However, few in Vivo studies have assessed these grafts. This study immobilized heparin onto electro spun polycaprolactone scaffolds to incorporate basic fibroblast growth factor (bFGF). In vitro, human foreskin fibroblasts (HFFs) cultured on bFGF-coated scaffolds showed significantly greater proliferation. In vivo, electro spun polycaprolactone grafts with and without bFGF were implanted into athymic rat knees and analyzed for up to 16 weeks post-implantation. Histological staining showed cellular infiltration and aligned collagen fibers. Mechanical testing at 16 weeks revealed that grafts reached about 30% of the native ACL's maximum load to failure. However, no significant differences were observed between grafts with or without heparin-immobilized bFGF. While this study highlights the promise of regenerative medicine for ACL repair, it also underscores the discrepancy between in vitro and in vivo results [23].

Rehabilitation and Return to Sport Activities

A retrospective comparison of traditional and accelerated postoperative rehabilitation protocols following ACL reconstruction, focusing on range of motion (ROM), isokinetic strength, and ligamentous stability. Results demonstrated that the accelerated rehabilitation group achieved faster and more complete recovery of both active and passive ROM, including hyperextension, compared to the traditional group. Additionally, ligamentous stability in the accelerated group was either equivalent to or better than that of the traditional group, despite the more aggressive rehabilitation approach.

Table 2: Different Rehabilitation Techniques

Materials	Method	Results	Reference
Accelerated vs. traditional rehab protocol	1,508 ACL reconstructions used a modified Jones technique. Patients from Group A were compared to those from Group B under a more rigorous rehab. Follow-ups at 3, 6, and 12 months assessed ROM, strength, and stability.	Group B achieved better hyperextension and flexion. Less tibiofemoral excursion in Group B after accelerated rehab.	[24]
Aquatic rehab	67 athletes were randomized: Group 1 followed conventional rehab, Group 2 an innovative protocol. They were assessed pre-surgery and at 2 weeks, 1, 2, and 6 months for posture, strength, walking, and proprioception in this multicenter, prospective, randomized study (level I evidence).	Group 2 relied more on somesthesis for postural control. Group2 showed less lateralization, stronger quadriceps and external hamstrings, and walked farther at 1 month. Group 2 also improved proprioception in flexion during the first 2 months.	[25]
Accelerated vs. traditional rehab review	Compares the two approaches and high- lights the benefit of the criteria-based model when factoring returning to the respective sport after recovery.	There is no universal return-to-sport time- line, but both conservative and accelerated approaches offer benefits based. Evidence supports a multidisciplinary, criteria-based approach.	[24]

Neuromuscular training	13 ACLR subjects (7 males, 6 females, 20.15±7.97 years) underwent 3D motion analysis pre- and post-12-session NMT (36.0±18.3 to 46.6±17.4 weeks post-op). 13 controls (9 males, 4 females, 20.77±6.55 years) were tested at 52.4±2.7 weeks.	increased knee flexion at DVJ initial con-	[29]
Neuromuscular training	Strategies to integrate neurocognitive training into traditional ACLR rehab (week 9+) and reviews updated testing metrics for return-to-competition readiness. A comprehensive approach combining physical and neurocognitive elements is proposed to improve outcomes, enhance testing, and reduce re-injury risk.	Updates to traditional ACLR rehabilitation now emphasize neuroplastic, cognitive, and visual-motor skills to help athletes prepare for the unpredictable nature of sports and may improve return-to-sport outcomes, reducing the risk of re-injury.	[27]

These findings indicate that accelerated rehabilitation can lead to improved ROM and strength gains without compromising knee stability, challenging previous concerns about the safety and efficacy of more intensive rehabilitation protocols. The study provides evidence supporting the potential benefits of accelerated rehabilitation in enhancing postoperative recovery outcomes [24].

The use of aquatic therapy in the post operative rehabilitation in patients with ACL reconstruction have not been established well in the literature. The effectiveness of the innovative rehabilitation program permits faster recovery, allowing for an earlier return to social, sporting, and professional activities. Faster retrieval of knee function following aquatic rehabilitation would prevent both short-term risk of lesions of the contralateral limb due to overcompensation and long-term risk of surgery due to osteoarthritis [25]. Second anterior cruciate ligament (ACL) injuries occur at a 10-20-fold higher rate than primary injury, and result in significantly poorer outcomes. Targeted neuromuscular training (NMT) alters biomechanics and reduces rates of primary ACL injury, but its effects in an ACL-injured population have not been elucidated [26]. Despite advanced surgical techniques, both ACL injuries and re-injuries are rising, causing neuroplastic and neuromuscular changes. Research highlights persistent neurocognitive deficits, including altered proprioception, impaired motor control, muscle recruitment, and increased reliance on visual feedback. This shift from subconscious to volitional movement may raise re-injury risk and hinder return to sport. A comprehensive framework combining physical and neurocognitive elements aims to improve long-term outcomes, enhance return-to-sport testing, and reduce re-injury risk [27]. Fear of reinjury after ACL reconstruction (ACLR) often prevents returning to preinjury sports, requiring a better understanding to improve rehabilitation. A study was done to identify individual fear evoking tasks or situations and to compare them with the other injury related fears after returning to sport training. It was hypothesized that the fear-evoking tasks would vary among patients, with higher intensity and less change after training compared to other injury-related fears [28].

Long-Term Outcomes and Future Directions

Evidence based medicine shows ACL injury risk is multifactorial, with bony morphology playing a key role. Posterior tibial slope and posterior femoral condyle characteristics affect rotatory knee stability. Increased tibial slope, posterior femoral condylar depth, deepened lateral femoral notch, and intercondylar notch morphology are linked to higher ACL injury risk and, in some cases, reconstruction failure. Surgeons must understand these factors and their impact on ACL reconstruction. Some can be modified (e.g., tibial slope osteotomy), while others require adjusted surgical, rehabilitation, and return-to-play strategies. Careful assessment of bony morphology is crucial for optimizing outcomes [30]. ACL injuries account for 25% of high school knee injuries. For skeletally mature adolescents with complete ACL tears, adult-type ACL reconstruction (ACL-R) is the preferred treatment. Graft choice is individualized based on anatomy, activity level, and sports participation [31]. The ideal minimum size for a successful quadrupled hamstring autograft ACL reconstruction remains debated. The risk of ACL re-tear is not well-defined in younger patients, who are more active in sports, and in female athletes, who have several predisposing factors [32]. Clinical trials related to the use of AI and wearable technology is still to be tested and proven to be effective in the rehabilitation of patients with ACL reconstruction.

Discussion

The field of ACL reproduction has seen noteworthy advances, with progressions in surgical procedures, unite determination, and restoration procedures. Double-bundle recreation and bio-enhanced repair strategies have moved forward knee soundness and useful results, whereas organic upgrades like PRP and MSCs have quickened unite mending. Negligibly intrusive approaches have diminished postoperative complications and improved recuperation. In any case, challenges such as unite disappointment and re-injury stay, especially in youthful, dynamic populaces. Personalized treatment plans, educated by hazard calculators and patient-specific variables, are fundamental for optimizing results. The integration of AI and wearable innovation holds guarantee for revolutionizing restoration and checking recuperation.

Conclusion

ACL reconstruction continues to evolve, with advancements in surgical techniques, graft choices, and rehabilitation strategies improving outcomes and reducing re-injury rates. A multidisciplinary approach, incorporating surgical innovation, biological enhancements, and personalized rehabilitation, is crucial for optimizing patient recovery. Future research should focus on integrating emerging technologies and refining personalized treatment protocols to further enhance outcomes in ACL reconstruction.

References

- Duthon, V. B., Barea, C., Abrassart, S., Fasel, J. H., Fritschy, D., & Ménétrey, J. (2006). Anatomy of the anterior cruciate ligament. Knee surgery, sports traumatology, arthroscopy, 14, 204-213.
- Sanders, T. L., Maradit Kremers, H., Bryan, A. J., Larson, D. R., Dahm, D. L., Levy, B. A., ... & Krych, A. J. (2016). Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study. The American journal of sports medicine, 44(6), 1502-1507.
- Dewig, D. R., Boltz, A. J., Moffit, R. E., Rao, N., Collins, C. L., & Chandran, A. (2024). Epidemiology of anterior cruciate ligament tears in National Collegiate Athletic Association Athletes: 2014/2015-2018/2019. Medicine and science in sports and exercise, 56(1), 29-36.
- Noyes, F. R., Huser, L. E., & Levy, M. S. (2018). The effect of an ACL reconstruction in controlling rotational knee stability in knees with intact and physiologic laxity of secondary restraints as defined by tibiofemoral compartment translations and graft forces. JBJS, 100(7), 586-597.
- Chuanjia, D. U., Jiao, J. I. A. O., Jihe, Z. H. O. U., Chow, B. C., Qiuqiong, S. H. I., Zhang, X., ... & Jianchao, Y. A. N. G. (2024). Three-month functional training programme improves knee joint function in athletes post-ACL reconstruction surgery. Journal of Rehabilitation Medicine, 56, 18701.
- Trentacosta, N., Pace, J. L., Metzger, M., Michalski, M., Nelson, T., Polakof, L., & Mandelbaum, B. (2020). Biomechanical evaluation of pediatric anterior cruciate ligament (ACL) reconstruction techniques with and without the anterolateral ligament (ALL). Journal of Pediatric Orthopaedics, 40(1), 8-16.
- Eggli, S., Kohlhof, H., Zumstein, M., Henle, P., Hartel, M., Evangelopoulos, D. S., ... & Kohl, S. (2015). Dynamic intraligamentary stabilization: novel technique for preserving the ruptured ACL. Knee Surgery, Sports Traumatology, Arthroscopy, 23, 1215-1221.
- Gerami, M. H., Haghi, F., Pelarak, F., & Mousavibaygei, S. R. (2022). Anterior cruciate ligament (ACL) injuries: A review on the newest reconstruction techniques. Journal of family medicine and primary care, 11(3), 852-856.
- Arama, Y., Salmon, L. J., Sri-Ram, K., Linklater, J., Roe, J. P., & Pinczewski, L. A. (2015). Bioabsorbable versus titanium screws in anterior cruciate ligament reconstruction using hamstring autograft: a prospective, blinded, randomized controlled trial with 5-year follow-up. The American journal of sports medicine, 43(8), 1893-1901.
- Marmura, H., Getgood, A. M., Spindler, K. P., Kattan, M. W., Briskin, I., & Bryant, D. M. (2021). Validation of a risk calculator to personalize graft choice and reduce rupture rates for anterior cruciate ligament reconstruction. The American Journal of Sports Medicine, 49(7), 1777-1785.

- Cruz, C. A., Mannino, B. J., Pike, A., Thoma, D., Lindell, K., Kerbel, Y. E., ... & Bottoni, C. R. (2022). Increased posterior tibial slope is an independent risk factor of anterior cruciate ligament reconstruction graft rupture irrespective of graft choice. Journal of ISAKOS, 7(5), 100-104.
- Cusumano, A., Capitani, P., Messina, C., de Girolamo, L., Viganò, M., Ravasio, G., ... & Thiébat, G. (2022). Different timing in allograft and autograft maturation after primary anterior cruciate ligament reconstruction does not influence the clinical outcome at mid-long-term follow-up. Knee Surgery, Sports Traumatology, Arthroscopy, 30(7), 2281-2290.
- Sacramento, S. N., Magalhães, E., Christel, P., Ingham, S., & Fukuda, T. Y. (2016). A new technique in double-bundle anterior cruciate ligament reconstruction with implant-free tibial fixation. Knee Surgery, Sports Traumatology, Arthroscopy, 24, 2831-2837.
- Obradović, M., Ninković, S., Gvozdenović, N., Tošić, M., Milinkov, M., & Dulić, O. (2023). Tubularization of Bone-Tendon-Bone Grafts: Effects on Mechanical Strength and Postoperative Knee Stability in Anterior Cruciate Ligament Reconstruction. Medicina, 59(10), 1764.
- 15. Alentorn-Geli, E., Seijas, R., Martínez-De la Torre, A., Cusco, X., Steinbacher, G., Álvarez-Díaz, P., ... & Cugat, R. (2019). Effects of autologous adipose-derived regenerative stem cells administered at the time of anterior cruciate ligament reconstruction on knee function and graft healing. Journal of Orthopaedic Surgery, 27(3), 2309499019867580.
- 16. Svantesson, E., Senorski, E. H., Östergaard, M., Grassi, A., Krupic, F., Westin, O., & Samuelsson, K. (2020). Graft choice for anterior cruciate ligament reconstruction with a concomitant non-surgically treated medial collateral ligament injury does not influence the risk of revision. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 36(1), 199-211.
- Sundaraj, K., Salmon, L. J., Heath, E. L., Winalski, C. S., Colak, C., Vasanji, A., ... & Pinczewski, L. A. (2020). Bioabsorbable versus titanium screws in anterior cruciate ligament reconstruction using hamstring autograft: a prospective, randomized controlled trial with 13-year follow-up. The American Journal of Sports Medicine, 48(6), 1316-1326.
- von Essen, C., McCallum, S., Eriksson, K., & Barenius, B. (2022). Minimal graft site morbidity using autogenous semitendinosus graft from the uninjured leg: a randomised controlled trial. Knee Surgery, Sports Traumatology, Arthroscopy, 30(5), 1639-1645.
- Setiawati, R., Utomo, D. N., Rantam, F. A., Ifran, N. N., & Budhiparama, N. C. (2017). Early graft tunnel healing after anterior cruciate ligament reconstruction with intratunnel injection of bone marrow mesenchymal stem cells and vascular endothelial growth factor. Orthopaedic Journal of Sports Medicine, 5(6), 2325967117708548.
- Bhamare, D. S., Nathani, G., Shevate, I., & Parikh, N. (2019). Comparative study of hamstring graft healing time after anterior cruciate ligament reconstruction with augmentation of platelet-rich plasma. Journal of Orthopaedics and Sports Medicine, 1(4), 93-97.
- Murray, M. M., & Fleming, B. C. (2013). Use of a bioactive scaffold to stimulate anterior cruciate ligament healing also minimizes posttraumatic osteoarthritis after surgery. The American journal of sports medicine, 41(8), 1762-1770.

- 22. Murray, M. M., Flutie, B. M., Kalish, L. A., Ecklund, K., Fleming, B. C., Proffen, B. L., & Micheli, L. J. (2016). The bridge-enhanced anterior cruciate ligament repair (BEAR) procedure: an early feasibility cohort study. Orthopaedic Journal of Sports Medicine, 4(11), 2325967116672176.
- 23. Leong, N. L., Arshi, A., Kabir, N., Nazemi, A., Petrigliano, F. A., Wu, B. M., & McAllister, D. R. (2015). In vitro and in vivo evaluation of heparin mediated growth factor release from tissue-engineered constructs for anterior cruciate ligament reconstruction. Journal of Orthopaedic Research, 33(2), 229-236.
- De Carlo, M. S., Shelbourne, K. D., McCarroll, J. R., & Rettig, A. C. (1992). Traditional versus accelerated rehabilitation following ACL reconstruction: a one-year follow-up. Journal of Orthopaedic & Sports Physical Therapy, 15(6), 309-316.
- 25. Peultier-Celli, L., Mainard, D., Wein, F., Paris, N., Boisseau, P., Ferry, A., ... & Perrin, P. (2017). Comparison of an innovative rehabilitation, combining reduced conventional rehabilitation with balneotherapy, and a conventional rehabilitation after anterior cruciate ligament reconstruction in athletes. Frontiers in Surgery, 4, 61.
- 26. Wordeman, S. C., & Hewett, T. E. (2015). Biomechanical effects of neuromuscular training in anterior cruciate ligament-reconstructed subjects. Orthopaedic Journal of Sports Medicine, 3(7_suppl2), 2325967115S00098.

- Thomas, Z. M., Lupowitz, L., Ivey, M., & Wilk, K. E. (2024). Neurocognitive and Neuromuscular Rehabilitation Techniques after ACL injury-Part 2: Maximizing Performance in the Advanced Return to Sport Phase. International Journal of Sports Physical Therapy, 19(12), 1629.
- Meierbachtol, A., Obermeier, M., Yungtum, W., Bottoms, J., Paur, E., Nelson, B. J., ... & Chmielewski, T. L. (2020). Injury-related fears during the return-to-sport phase of ACL reconstruction rehabilitation. Orthopaedic journal of sports medicine, 8(3), 2325967120909385.
- Mueske, N. M., Patel, A. R., Pace, J. L., Zaslow, T. L., VandenBerg, C. D., Katzel, M. J., ... & Wren, T. A. (2020). Improvements in landing biomechanics following anterior cruciate ligament reconstruction in adolescent athletes. Sports biomechanics.
- Burnham, J. M., Pfeiffer, T., Shin, J. J., Herbst, E., & Fu, F. H. (2017). Bony morphologic factors affecting injury risk, rotatory stability, outcomes, and re-tear rate after anterior cruciate ligament reconstruction. Annals of Joint, 2(7).
- Mittal, A., Allahabadi, S., Coughlan, M., & Pandya, N. (2021). Graft Failure in Adolescent Patients Undergoing Adult-Type ACL Reconstruction with Bone Patellar Tendon Bone or Hamstring Autograft. Orthopaedic Journal of Sports Medicine, 9(7_suppl3), 2325967121S00106.
- 32. Nguyen, D. (2016). Sex, age, and graft size as predictors of acl re-tear: a multivariate logistic regression of a cohort of 503 athletes. Orthopaedic Journal of Sports Medicine, 4(7 suppl4), 2325967116S00164.

Copyright: ©2025 Hamza N, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Page No: 08 www.mkscienceset.com J Clin Surg Care Res 2025