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Introduction
Implementing renewable energy installations in the residential 
sector to reduce energy dependence on electricity generated by 
fossil fuel power plants and gas supply has led to a new scenar-
io in the energy distribution frame [1-3]. The classical electric 
household layout is a private installation with the power supply 
to the own house, releasing the excess of generated electricity, 
if any, to the grid [4-6]. Thermal energy generated in private 
renewable energy installations like solar thermal collectors, low 
enthalpy systems, or biomass micro-plants operate in a single 
direction with no exchange to the community distribution net-
work [7-16].

Residential thermal and electric power generation from renewable 
energy installations are not balanced throughout the day because 
of the variability in renewable resources and energy consumption 
[17-19]. The unbalanced consequence is exchanging the excess 

of generated energy, thermal or electric, to a storage system or an 
external network [20-22]. In the case of electricity, the solution is 
less complex since we can exchange electric energy excess with 
the grid or store it in batteries [23-25]. Nevertheless, thermal ener-
gy excess suffers from the lack of exchanging methods to a global 
distribution system or the storage system's low duration.

Electric energy storage requires an additional investment since 
batteries are expensive, especially lithium type, and periodical 
replacement due to the continuous battery degradation with use. 
On the other hand, batteries require maintenance and additional 
space, which is not always available in households. The need for 
a special inverter/charger unit adds extra cost to the installation, 
generating the rejection of many users regarding using a storage 
system. Furthermore, the payback period for batteries can be too 
long, discouraging their implementation by installers and users 
[26-28].
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Abstract
The paper describes the application of artificial intelligence to the operation and energy management of a local net-
work consisting of a group of interconnected households operating as a distributed generation system for electric 
power and a district heating system for thermal energy. 

The proposed Artificial Intelligence Protocol (AIP) helps a control unit to manage power supply from renewable 
sources with the aim of a null energy balance for the local network, avoiding grid dependence and optimizing the 
system energy performance. The AIP selects the most efficient power source for power supply and energy exchange 
throughout the local network. 
The AIP achieves the null energy balance by adjusting operational parameters to regulate the output power for the 
individual household installation and the energy distribution network. The AIP is applied to a group of unbalanced 
electric and thermal energy households, configuring a local network with an electric distributor and a heating ring 
to exchange electric and thermal energy between houses. 

The AIP application to this local network results in an accurate prediction of electric power generation, higher than 
99.7%, showing a global deviation of 0.1 kWh/day. Null energy balance prediction is highly accurate, 97.1%, with a 
maximum daily deviation of 9.61 kWh/day out of 209 kWh/day energy exchanged corresponding to thermal losses.
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Grid connection has become a current alternative for the energy 
excess in electric household generation; nevertheless, the low 
fare the electric companies pay for the electricity grid injection 
reduces the householders’ interest in selling energy to the grid, 
especially if we consider the extra cost for the specific equip-
ment to warranty the quality of the injected electric signal. In 
this scenario, the renewable energy system lowers its power gen-
eration capacity, reducing the energy efficiency and the payback 
time [29-30].

Thermal energy shows a similar state of the art with the notice-
able difference that energy storage lasts for a short time, current-
ly no longer than 24 hours; therefore, we should consume the 
household thermal generation from renewable energies within a 
day; otherwise, it is useless. Another significant difference with 
electric energy is the impossibility of exporting energy to a glob-
al network since this option is not feasible today.

Household renewable energy generation can be considered a 
distributed power plant of small size; therefore, we can design 
a local network connecting every installation with every single 
installation acting as an individual power source. This configu-
ration allows the power excess distribution, thermal and electric, 
depending on the household energy balance. The electric link 
is a local grid with individual two-way connections to a central 
distributor, and the thermal network acts as a low-size district 
heating [31-37].

Thermal and electric energy distribution in a local network 
cannot depend on human beings for multiple reasons: errors in 
managing the energy distribution, inappropriate training, lack of 
attention, and continuous operation with no breaking time, etc.; 
therefore, the system requires automation and programming to 
operate at optimum conditions with the highest efficiency possi-

ble. Automation avoids human dependence and guarantees good 
servicing at all times, while programming assures the energy 
supply at specific time intervals during the day [38-41].

This configuration, however, does not properly operate if hu-
man habits change, altering the household energy balance and 
the programmed sequence of thermal and energy exchange with 
local electric networks and district heating. We can solve this 
problem by applying artificial intelligence (AI) to the system 
operation since the AI adopts a variable working protocol that 
accommodates every single household energy balance.

Artificial Intelligence Application	
Artificial Intelligence is practical in configurations like the one 
described above since it follows an adaptive protocol that learns 
from human habit variation by adjusting the operational con-
ditions to the current status of the energy balance [42-44]. We 
could avoid the use of AI if we translate any change in daily 
habits regarding energy consumption to the programmed proto-
col for electric or thermal energy exchange; however, people are 
very busy with daily tasks and forget to make necessary changes 
in the protocol, or they don’t know how to manage the situation. 
The principal consequence of mismatching the current energy 
balance by the setup protocol is the need to consume energy 
from the grid or gas distribution network and the energy effi-
ciency reduction.

Artificial Intelligence supports the control system that operates 
the local electric network and the district heating; the control 
unit evaluates the energy balance for every household and de-
termines the energy exchange between houses based on energy 
efficiency and maximum power availability.  Figure 1 shows a 
graphic representation of the local electric network and district 
heating used as a model for the AI application.

Figure 1: Layout of local network 

Control Unit and Artificial Intelligence
Control unit (CU) based on artificial intelligence operates as fol-
lows:
•	 CU collects power generation and energy consumption data 

from renewable sources and household energy meter. This 
operation is made for every single house.

•	 CU determines the instantaneous energy balance of each 
home and classifies them into deficit and surplus types.

•	 CU evaluates the power transfer from surplus to deficit in-
stallation type and proceeds with the energy exchange based 
on null energy balance at the end of the process, if possible, 
or minimum deficit for the deficit installation type. The en-
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ergy exchange considers minimizing power losses during 
the process.

•	 CU records instantaneous power transfer amount and origin 
and destination, creating a database for future applications.

•	 CU develops the power transfer and energy exchange every 
day according to the database records.

•	 If energy balance changes due to random variations in pow-
er generation, the control unit reevaluates the energy bal-
ance for every household installation, prioritizing to achieve 
a null energy balance, if possible, by reducing non-essential 
energy consumption according to AI principles.

•	 In this former situation, the AI evaluates the critical energy 
consumptions based on previously recorded data from indi-
vidual appliances. 

•	 The AI protocol compares the recorded data with setup 
prioritize list and decides which energy consumptions are 
critical to maintain for a null energy balance in case the ini-
tial value is below zero. The prioritize list fulfils standard 
human habits.

•	 If the energy balance remains above zero after considering 
only critical loads, the AI protocol includes fundamental 
loads for energy balance calculation; if the energy balance 
continues above zero, the AI protocol moves to consider the 
ancillary loads.

•	 CU accommodates the power transfer and energy exchange 
according to the setup premise of null energy balance, if 
possible, or minimum deficit for the installation type.

•	 If energy consumption changes because of human habits 
variation, the AI protocol redefines the prioritize list accord-
ing to the detected changes.

•	 The automatic application of AI protocol to control unit en-
ergy management can be commuted to manual operation by 
the user under specific circumstances like new appliances 
implementation, changes in setup comfort conditions, in-
creasing household living people number, etc.

•	 This situation lasts for a short time until AI notices that it 
remains unchanged for a while; at this moment, the AI re-
defines its protocol and prioritize list to accommodate it to 
the new situation.

Figure 2: Flowchart of the System Operation Protocol

Local Network Configuration
The local network under study uses renewable energy sources to 
power households. Among the many current sources, the most 
currently used for heating and electricity in modern houses are 
solar thermal and photovoltaic, wind energy, biomass, and geo-

thermal. Other sources like micro-hydro, wave, and tidal energy 
are scarce and difficult to implement in our homes.

Depending on the location, the above-mentioned renewable 
sources are available or not. For a more extended analysis, we 
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consider a local network configuration with all these sources im-
plemented but not all installed in every house. Table 1 shows 
the renewable energy source distribution for a set of 8 houses 
according to the layout in Figure 1. Table 2 shows the peak pow-

er generation for every individual installation. We obtained data 
from a residential conglomerate, which was specially developed 
for the use of renewable energy resources to operate completely 
autonomously.

Table 1: B Peak Power Generation (Kw)
House 1 2 3 4 5 6 7 8

PV --- --- 4.0 4.0 2.0 9.0 --- ---
W 3.6 1.22 --- 1.5 6.0 --- --- ---
ST 2.8 --- --- --- --- 4.0 --- 8.0
B --- 6.0 --- --- 6.5 --- 7.2 ---
G --- --- 5.5 7.6 --- --- --- 6.8

Thermal 2.8 6.0 5.5 7.6 6.5 4.0 7.2 14.8
Electric 3.0 1.5 2.4 4.2 6.0 8.0 0 0

Table 1: A Renewable Energy Source Distribution for the Local Network
House 1 2 3 4 5 6 7 8

PV NO NO YES YES YES YES NO NO
W YES YES NO YES YES NO NO NO
ST YES NO NO NO NO YES NO YES
B NO YES NO NO YES NO YES NO
G NO NO YES YES NO NO NO YES

Legend: St (Solar Thermal); PV (Photovoltaic); W (Wind); B (Biomass); G (Geothermal)

We notice that some houses only install thermal energy, houses 
7 and 8, while all others install thermal and electric. The elec-
tric power generation distribution is variable, with some houses 
prioritizing photovoltaic, houses 3, 4, and 6, while others prior-
itize wind energy, houses 1, 2, and 5. Regarding thermal power 
generation, the distribution is also variable: houses 1 and 6 only 
have solar thermal, houses 2, 5, and 7 are only equipped with 
biomass installation, houses 3 and 4 only have geothermal, and 
house 8 has a balance thermal power generation between solar 
thermal and geothermal units. 
	
Power Generation and Energy Consumption
The Artificial Intelligence application to the local network ener-
gy management requires the hourly daily distribution of thermal 
and electric energy for every house. Figure 3 shows the hourly 
electric energy consumption evolution for every residence. On 
the other hand, the accurate energy balance used by the AI pro-
tocol requires knowing the power generation distribution; there-
fore, we collect information on solar and wind power hourly dis-
tribution to evaluate the electric generation. Figure 4 shows the 
evolution of solar and wind power during the day.

Electric Energy
Solar power profile corresponds to a clear sky day on an average 
sunny location; the wind power profile is taken as a standard 
although the high variability in wind resource may cause consid-
erable variation regarding the one shown in Figure 4.

The defined procedure calculates the hourly energy balance for 
every house to apply the AI protocol to the local network. The 
protocol decides whether or not a household installation is suit-
able for energy exchange depending on the calculated energy 
balance. Figure 5 shows the electric energy balance for individ-
ual household in the local network. Table 2 shows the energy 
daily balance distribution by individual house.

We notice that the daily electric energy balance for the local net-
work is null, proving that the system can operate with no grid 
dependence provided the accurate energy exchange between 
household installations occurs.

Table 2: Electric Energy Daily Balance Distribution by Individual House
House 1 2 3 4 5 6 7 8
Day 48.8 -31.6 -22.8 -13.4 85.9 -17.9 -25.0 -23.8

Hour
1 2 3 4 5 6 7 8 9 10 11 12

Network 18 27 13 27 -26 -32 14 -32 12 -46 45 39
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13 14 15 16 17 18 19 20 21 22 23 24
Network 7 27 27 26 20 17 -45 -13 14 38 -42 27

Values for the upper section of table 2 are expressed in kwh, while for the lower section are in wh.   

Figure 3: Individual Household Hourly Distribution of Electric Energy Consumption

Figure 4: Solar and Wind Power Hourly Distribution

Figure 5: Individual Household Hourly Distribution of Electric Energy Balance
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Analyzing data from Table 2, we notice that houses 1 and 5 are 
“energy producers” while the others are “energy consumers”; 
this particular configuration, derived from inefficient use of elec-
tric power generation, makes the local network especially useful 
for our purposes, such as the electric energy exchange between 
houses to avoid grid dependence, making energy consumption 
more efficient, and optimizing power resource use.

Analyzing data from Figure 5, we obtain that the daily hourly 
energy balance for the local network is negligible compared with 
the energy consumption, with a maximum ratio of 1.6%, mean-
ing that the network operates based on a null energy balance. The 

residential conglomerate, regarding the type and peak power of 
renewable energy installations, responds to the private wishes 
of the householders, their purchasing power, and the available 
space in the household for renewable energy installation.

Thermal Energy
The required thermal energy for a household comprises sanitary 
hot water and building heating. The type and power of the ther-
mal supply source are shown in Table 1. Figure 6 shows the dai-
ly distribution of solar thermal, biomass, and geothermal power 
supply.

Figure 6: Solar, Biomass and Geothermal Power Hourly Distribution

Peak power factor for geothermal unit exceeds the 1.0 factor be-
cause it relates to the COP (Coefficient of Performance) value 
and not to the thermodynamic efficiency. As in the case of elec-
tric energy analysis, the defined procedure calculates the hourly 
energy balance for every house to apply the AI protocol to the 
local network. The protocol decides if a household installation 

requires energy exchange depending on the calculated energy 
balance. Figures 7 and 8 show the thermal energy consumption 
and balance for individual households in the local network. Ta-
ble 3 shows the energy daily balance distribution by the single 
house.

Figure 7: Individual Household Hourly Distribution of Thermal Energy Consumption
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Figure 8: Individual Household Hourly Distribution of Thermal Energy Balance

Table 3: Daily Energy Balance Distribution by Individual House (Thermal) (kWh)
House 1 2 3 4 5 6 7 8
Day -35.7 -48.5 23.6 78.3 -34.2 -34.4 -6.5 76.1

Hour
1 2 3 4 5 6 7 8 9 10 11 12

Network 0 0 0 0 0 0 0 0 0 3.82 4.92 5.09
13 14 15 16 17 18 19 20 21 22 23 24

Network 4.92 0 0 0 0 0 0 0 0 0 0 0

Analyzing data from Table 3, we realize that all thermal energy 
balances are null except for the hour interval between 10 a.m. 
and 1 p.m., where the balance is above zero, meaning the house-
hold group produces more thermal energy than needed. Disag-

gregating households with hourly energy balances above and be-
low zero and grouping in positive and negative thermal energy 
balances, we have the next hourly distribution (Table 4).

Table 4: Disaggregated Thermal Daily Balance Distribution for Energy Deficit Cases (kWh)
Hour

1 2 3 4 5 6 7 8 9 10 11 12
Network 0 0 0 0 0 -18.7 -40.7 -9.4 -3.9 0 0 0

13 14 15 16 17 18 19 20 21 22 23 24
Network 0 -9.0 -10.3 -6.9 -2.2 -4.8 -13.4 -20.4 -25.8 -13.6 -7.5 0

Table 4 data show the thermal energy requirements by time in-
terval due to households where energy demand exceeds thermal 
power generation; the deficit, according to data in Table 3 is 
compensated by the thermal energy surplus in the other house-
holds achieving a null energy balance for every hour except for 
the 10 a.m. to 1 p.m. period as mentioned before. Since ther-
mal transfer causes higher energy losses than electric, we should 
consider to compensate for these losses by producing extra en-
ergy; this is the reason why the global daily thermal energy bal-
ance is above zero.

We estimate the thermal losses during heat transportation by ap-
plying the following equation:

 						    
		  (1)

QL are the thermal losses, Qt is the heat flow transferred, UL is the 
thermal losses coefficient, and Tamb and Td are the ambient and 
household destination installation temperature?

Applying the current values for the selected local network re-
sults in an average value of 18.10 kWh. Comparing this value 
with the global thermal energy excess, 18.74 kWh, shown in 
the lower section of Table 3, we notice the AI protocol adjusts 
the heat flow thermal power generation to compensate for ther-
mal losses with 96.6% accuracy. The slight difference between 
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global excess and thermal losses, 0.64 kWh/day, is negligible 
compared to the heat transferred throughout the local network, 
0.34%. 

Fundamentals
Household energy consumption depends on appliances' power 
and use time. Although it is hard to compute daily energy con-
sumption because it requires an accurate record of element type 
power and time of use, the calculation simplifies due to the reg-
ular pattern humans follow in their daily activities. Indeed, with 
slight variations, people tend to develop daily tasks regularly at 
the same time during the same interval; therefore, the daily ener-
gy consumption corresponds to a standard value defined by the 
following expression:

 (2)

P is the power, and t is the operating time of the appliance j.
The power generation derives from one or more renewable en-
ergy sources, according to the lower section of Table 1. Con-
sidering a general configuration with all the renewable power 
systems in the local network, we have:

 (3)

ξel and ξth are the global electric and thermal energy generation, 
PPV is the photovoltaic array peak power, psh is the peak sun 
hours value, Pw is the wind turbine maximum power, tw

ef is the 
time at which the wind turbine operates at maximum power, ηth 
is the solar thermal system efficiency, G is the solar radiation, S 
is the front surface of the solar collector, mb is the biomass flow, 
LHV is the biomass low heating value, Pgel is the geothermal 
system electric power consumption, and COP is the coefficient 
of performance.

Since solar radiation evolves with day hour (Figure 4), the avail-
able hourly electric and thermal energy generation from solar 
radiation changes continuously according to Equation 3. On the 
other hand, the hourly solar radiation variation is influenced by 
the cloudiness index, reducing the solar radiation level and the 
power generation. In such conditions, the AI protocol should 
consider the predictable evolution of solar radiation according 
to a database for at least three consecutive years, the minimum 

period for accurate predictions; based on these data, the AI pre-
dicts electric and thermal power generation from solar radiation, 
and adjusts the operational mode to make the control unit setup 
the working parameters for a null energy balance and accurate 
electric and heat transfer. This operation is based on an AI proto-
col subroutine devoted to power source management.

A similar procedure applies to wind energy, based on collect-
ed data for at least one year. Regarding biomass, since no me-
teorological parameters influence the system performance, the 
regulation consists of adjusting the mass flow supply to control 
power generation. The AI protocol subroutine retrieves recorded 
data from past experiences for every household where biomass 
installation is available to achieve the null energy balance con-
dition.

The artificial intelligence control on the geothermal system op-
eration uses the PID curves for building heating, regulating the 
power generation by modifying the PID heating curve. Previous 
studies show that by regulating the PID curves, the power gener-
ation changes without affectation to critical parameters like the 
comfort temperature. 

Combining equations 2 and 3, we have:

 (4)

If energy demand remains constant but power generation chang-
es because of solar radiation or wind speed variation, the arti-
ficial intelligence protocol adjusts parameters in Equation 4 to 
maintain a null energy balance; therefore, for a constant oper-
ating time:

 (5)

Since Cel, Cth, and Co are constant, the AI protocol adjusts twef 
as the solar radiation changes; thus, the psh value, to maintain 
the electric energy balance null. A similar procedure applies for 
the thermal energy balance, with the AI protocol modifying the 
geothermal COP value as the solar radiation changes.
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Figure 9: Flowchart for the Electric and Thermal Energy Supply AI Protocol Subroutine

Electric Energy
Because the addition of solar photovoltaic and wind energy may 
produce more power than required, the AI protocol prioritizes 
renewable resource use depending on the system's efficiency.

Based on this statement, the control unit evaluates the PV array 
and wind turbine performance when operating at specific energy 
requirement conditions; in such a case, considering the instanta-
neous power demand, Pi, and the photovoltaic and wind power 
generation, we have:

 (6)
Superscript s accounts for the source type, photovoltaic or wind, 
and subscript max corresponds to the source peak power.

The power source selection depends on the energy demand 
coverage factor; if the power source supplies more energy than 
required, the efficiency criterion applies; otherwise, the AI pro-
tocol selects the most efficient power source to provide all avail-
able power and regulates the other power source to supply the 
remaining energy to achieve a null energy balance. Figure 10 
shows the flowchart for this AI protocol subroutine.

Figure 10: Flowchart of the AI Control Protocol Subroutine for Power Source Selection and Adjustment in the Electric 
Energy Supply Case
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Since the PV panel operates at the maximum efficiency possible 
due to the integrated Maximum Power Point Tracking device, 
the PV output power, Pout

PV, only depends on the solar radiation 
value according to the expression:

 (7)

PPV
o is the maximum PV output power at the maximum solar ra-

diation, Go=1 kW/m2. G is the current incoming solar radiation.

The block diagram of Figure 10 only applies to households 
where solar photovoltaic or wind systems exist; otherwise, the 
household electric energy supply depends on the local network, 
houses 7 and 8, in our study.

When the two power sources are active, if the AI protocol selects 
only one, the AI protocol commands the control unit to derive 
the energy produced by the non-selected source to the local net-
work, as shown in Figure 10.

The AI protocol predicts which power source should be con-
nected at any given time based on the detected consumption and 
performance data stored in the system database. This procedure 
optimizes the local network performance since it preserves the 
most efficient power generation for the household installation 
where energy is produced, releasing the power generation resi-
due to the local network and minimizing energy losses.

Considering two houses with power demand Ph1 and Ph2, cov-
ered by the PV array or the wind turbine, the following equation 
applies:

 (8)

Subscript i applies indistinctively for any of the two houses.

If one of the power sources operates at higher efficiency than the 
other, ηPV1>ηWT1 for house number 1, and ηPV2<ηWT2 for house 
number 2, for equal PV array and wind turbine output power, 
Equation 8 transforms into:

 (9)
Sub-indexes 1 and 2 account for houses 1 and 2.

Considering ηPV1=ηWT1+ΔηWT1 (10), and ηWT2=ηPV2+ ΔηPV2 (11), 
using Equation 9 and operating:

 (12)

Applying Equation 8 for both houses:
 					   

 (13)

Combining Equations 10 to 13:

 (14)

Applying Equation 14 to any household combination, we have:

 (15)

K is a constant and Π is the producing mathematical operator.

Equation 15 shows the algorithm that the AI protocol uses to op-
timize the energy transfer between adjacent houses to maintain 
energy balance null.

When dealing with the local network, the AI protocol develops 
a mathematical approach method to achieve the highest efficien-
cy possible in the energy transfer because Equation 15 does not 
fulfill every pair of adjacent houses. The approaching method 
considers all the local network households exchanging energy 
between all of them, making the derivative of the sum of the 
relationship between the efficiencies of the power sources zero; 
mathematically:

 (16)

Developing Equation 16:

 (17)

Equation 17 represents the algorithm the AI protocol uses to op-
timize the electric energy transfer when all houses of the local 
network exchange energy between them all.

If only one power source exists, the Figure 11 flowchart applies. 
Figure 11 represents the flowchart for a PV array as a power 
source but also applies to wind energy. The AI protocol operates 
similarly by replacing the PV source with the wind one (shown 
in a dashed circle).
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Figure 11: Flowchart of the AI Control Protocol Subroutine for Single Power Source Electric Energy Supply Case

The mathematical approach method developed for two power 
sources is valid for a single one with the algorithm modified as 
follows:

 (18)

Subscripts i and j account for the two power sources in house-
holds with PV and wind installations; subscript k accounts for 
the single power source in houses with a PV array or wind tur-

bine system. Super and subscript m in the summations corre-
spond to the number of houses with two power sources.

Thermal Energy
Thermal energy generation, consumption, and distribution fol-
low identical analysis as for the electric energy with the only 
difference that up to three power sources may intervene in the 
power generation and energy distribution via local network. 
Equation 6 applies changing the superscript s by t with t ac-
counting for solar thermal, biomass, and geothermal.



 

www.mkscienceset.comPage No: 12 Wor Jour of Arti inte and Rob Res 2025

Figure 12: Flowchart of the AI Control Protocol Subroutine for Power Source Selection and Adjustment in the Thermal Energy 
Supply Case

Replicating the power analysis for the electric energy generation 
system, Equation 15 applies with the only difference that the 
subscript snow applies to solar thermal (ST), biomass (B), and 
geothermal (G); therefore, Equation 16 converts into:
 				  

 (19)

Developing Equation 19:

 (20)

Equation 20 represents the algorithm the AI protocol uses to op-
timize the thermal energy transfer when all houses of the local 
network exchange energy between them all.

If only two of the three power sources exist, the Figure 11 flow-
chart applies replacing PV and Wind by ST and B, ST and G, or 

B and G, depending on which pair of sources are active.

If we deal with a single power source, the analysis is identical to 
the one developed for the electric energy system with the only 
difference that Equation 18 converts into:

 (21)

The Artificial Intelligence protocol collects data on performance, 
η, and efficiency variation, Δη, from the control unit, which re-
ceives data from the power controller sensors, replacing calcu-
lated values in the corresponding algorithms to make decisions 
on the energy transfer throughout the local network.

Experimental Results
Based on the premise of null energy balance, the AI protocol is 
submitted to a verification process to validate the accuracy of the 
proposed methodology predictions. The verification process con-
sists of developing experimental tests run on the local network 
households, collecting daily hourly data from current photovol-
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taic and wind power generation, and comparing the experimental 
data with the predicted values from the AI protocol algorithms.

The AI protocol evaluates the daily hourly energy generation for 
every household, splitting data into two groups: the one including 
the hourly periods where the energy balance is above zero and 
the one corresponding to negative energy balance hourly periods.

The verification procedure compares the energy generation ex-
perimental data collected from the individual household power 
controller with the predicted values by the AI protocol corre-
sponding to the positive energy balance group.

The developed process is applied to the every house of the local 
network to verify the validity of the AI protocol. The experimen-
tal study includes two sections: first, electric and thermal pow-
er generation comparison, and second, evaluation of the energy 
transfer for null energy balance premise fulfillment.

Power Generation 
Electric Energy
The test starts with the verification of electric power generation 
using installation power data from Table 1, and solar and wind 

resource daily hourly evolution (Figure 4),. Photovoltaic array 
and wind turbine efficiency derive from the daily hourly pow-
er generation and the peak power generation corresponding to 
the energy resource for every source. Peak power generation 
depends on the selected type of PV panel and wind turbine for 
the household installation, and current power generation comes 
from the power analyzer device installed in every house. 

The photovoltaic and wind system efficiency are drawn in Fig-
ure 13. It should be noticed that graphs only show the existing 
power source efficiency. Houses 7 and 8 do not appear since they 
do not have photovoltaic or wind installation.

The power factor is calculated as the ratio between the current 
output power and the device peak power, photovoltaic panel or 
wind turbine.

The reader should notice that the power factor is low for some 
cases, like the photovoltaic system in house 3 where it barely 
achieves a 6% at the maximum, or in house 4 where the wind 
power system operates at a maximum power factor of 6%, and 
the PV system between 6% and 16%.

Figure 13: Hourly Distribution of Individual House Solar Photovoltaic and Wind System Power Factor for a Typical Day
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The results show a lack of adequate sizing of the power installa-
tion, both photovoltaic and wind; this is because the homes were 
initially designed to adjust generation to demand, but the change 
in the number of people living in the different homes, as well as 
the modification of the consumption habits of the residents have 
given rise to this mismatch between generation and consump-
tion, which causes a very low power factor in some cases.

This particular circumstance is the reason for having proposed 
the use of a local network for the exchange of electrical energy 

between the different homes governed by a control system that 
relies on an Artificial Intelligence protocol to optimize said ener-
gy exchange and operate the local network as a joint Distributed 
Generation system without dependence on the network.

Theoretical energy generation is determined applying Equation 
22:

 (22)

Figure 14:  Comparative Analysis of Daily Hourly Household Electric Energy Generation: AI Protocol Predicted Value (Solid Bar); 
Experimental Data (Dashed Bar)

Since the AI protocol works on the null energy balance premise, 
the predicted value by the AI protocol should match the exper-
imental data. We observe that AI prediction and experimental 

data match within high accuracy. Table 5 shows the matching 
index between both values.
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Table 5: Matching Index Between AI Prediction and Experimental Data for Electric Power Generation in the Individual Houses of 
the Local Network

House 1 2 3 4 5 6
σ 1.0016 1.0000 1.0003 0.9997 1.0001 0.9999

The data analysis in Table 5 show the perfect matching between 
AI prediction and experimental values, higher than 99.7% on 
average, proving the validity of the AI protocol.

Thermal Energy
Repeating the process for the thermal energy and applying Equa-
tion 6, we obtain the power factor adapted for every thermal 
power source (Figure 15).

Figure 15: Hourly Distribution of Individual House Solar Thermal, Biomass and-Geothermal
System Power Factor for a Typical Day
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As in the case of electric power generation, thermal power 
sources are poorly sized for the current energy demand; the rea-
son is similar to the one exposed in the electric power generation 
analysis: different numbers of residents in every house together 
with changes in energy consumption habits.

The information about the original power source design for ev-
ery house shows that they depended on owners’ likes, purchas-
ing power and investment costs, space availability, and some 
other factors that conditioned the power source installation de-
sign and size.

Similarly to electric power generation, the mismatching be-
tween thermal power generation and energy demand represents 
a unique opportunity to apply the artificial intelligence protocol 
to a control unit for energy exchange between houses, making 
the local network operate as a district heating, achieving a null 
energy balance, if possible, limiting the dependence on external 
sources like fossil fuels (gas, coal), and optimizing the local net-
work thermal global performance.

Now, reproducing the comparative analysis between AI predic-
tions and experimental results for thermal energy, we have (Fig-
ure 16):

Figure 16: Comparative Analysis of Daily Hourly Household Thermal Energy Generation: AI Protocol Predicted Value (Solid Bar); 
Experimental Data (Dashed Bar)



 

www.mkscienceset.comPage No: 17 Wor Jour of Arti inte and Rob Res 2025

As in the case of electric energy, the AI protocol predicts thermal 
power generation with high accuracy, matching the experimental 
data as shown in Figure 16. The experimental data are collected 
by the control unit, which receives information from the thermal 

power analyzer installed in every household installation. Table 6 
shows the matching index between the AI-predicted values and 
experimental data for thermal power generation in every house 
of the local network.

Table 6: Matching Index Between AI Prediction and Experimental Data for Thermal Power Generation in the Individual 
Houses of the Local Network

House 1 2 3 4 5 6 7 8
σ 0.9996 1.0002 1.0007 1.0015 1.0001 1.0001 1.0002 0.9996

The data analysis in Table 6 show the perfect matching between 
AI prediction and experimental values, higher than 99.8% on 
average, proving the validity of the AI protocol.

Energy Balance
We design the AI protocol to predict system performance based 
on the premise of a null energy balance for the local network. 
The AI protocol also includes a subroutine to optimize the per-
formance, selecting the most efficient power source to exchange 
energy between houses when individual house energy balance 
is not null.

If only a power source exists, electric or thermal, the AI protocol 
subroutine does not make any decision about the selected power 
source; however, if more than one operates in an individual in-
stallation, the AI protocol applies the power selection decision 
as shown in Figures 10 and 12 for electric and thermal energy.

The second part of the experimental tests aims to verify the pre-
vious statement; to this goal, we focused the analysis on hous-
es 4 and 5 for electric energy and 8 for thermal since they are 
equipped with double power sources. Figure 17 shows the re-
sults of applying the AI protocol to the selected houses.

Figure 17: Power Source Selection Factor Based on AI Protocol. Upper Section: Electric Energy Installation; Lower Section: Ther-
mal Energy Installation

Analyzing data in Figure 17, we notice that the AI protocol as-
signs a factor to every operating power source; based on this 
factor, the AI protocol commands the control unit to open the 
exchange energy from the selected power source household to 
the electric network distributor or the heat distribution ring. The 
assigned selection factor is based on the null energy balance 

premise and corresponds to the power generation weighted val-
ue that makes the energy balance null.

When the selection factor is non-null for any power source 
during the same hourly interval, the AI protocol prioritizes the 
source with the higher factor. It utilizes any additional power 
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source to supplement the energy supplied by the primary source 
until the energy balance reaches zero. For instance, in the case 
of house 4, during the interval from 10 am to 2 pm, the protocol 
prioritizes the photovoltaic power source due to its superior effi-
ciency, using wind energy to supplement the default energy until 
a null energy balance is achieved.

In the case of house 5 for electric energy, we observe that the 
AI protocol exchanges between photovoltaic and wind power 
sources depending on which one is more efficient. For the hourly 
intervals at 6 am, 7 am, and 3 pm, the AI prioritizes the wind 
power source as the most efficient; however, at 8 am, and 2, 5, 

and 6 pm, is the photovoltaic the selected power source as the 
most efficient.

The time intervals where a selection factor appears for only one 
power source means that the other source is unnecessary to achieve 
the null energy balance. Similarly, no power source is necessary 
for the energy exchange process if no selection factor appears.

The analysis for the thermal energy case, house 8, is identical to 
the electric energy case for house 5. Figure 18 shows the results 
for the energy balance applying the AI protocol to the local net-
work.

Figure 18: Daily Hourly Energy Balance for the Local Network. Left Side: Electric; Right Side: Thermal

The data analysis from Figure 18 shows a negligible energy bal-
ance deviation from the zero value, with a maximum difference 
of 0.07 kWh for the electric energy and 1.60 kWh for the thermal 
energy, proving the validity of the AI protocol application to the 
energy management control of the local network.

We notice that in the electric energy case, the global energy bal-
ance throughout the day is almost null, 0.10 kWh/day, while in 
the case of thermal energy, the daily balance is 9.61 kWh/day. 
This deviation respect to the null energy balance condition is 
due to thermal losses during heat transportation across the heat 
distribution network. Considering the daily global energy trans-
fer in the local network, 209 kWh/day, thermal losses represent 
4.6% of the total, an acceptable value for the heat transfer pro-
cess.

Conclusions
An artificial intelligence protocol (AIP) to command a control 
unit for energy management in a local network is designed and 
developed. The AIP operates based on the null energy balance 
premise, making the local network independent on the grid. The 
AIP protocol applies to a group of households powered by re-
newable energies, photovoltaic and wind for electric generation, 
and solar thermal, biomass, and geothermal for heat production.

The AIP predicts the daily hourly electric and thermal power 
generation within high accuracy, prioritizing the most efficient 
power source to supply energy to the individual installation and 
to exchange energy with other household installation operating 

in energy default state. The AIP may select or not a power source 
for energy exchange depending on the energy balance and pow-
er supply by the selected power source; therefore, the AIP can 
disconnect a household power source from the local network 
energy distribution if the selected power source makes the local 
network to achieve a null energy balance.

The AIP has been tested in a group of households with severe in-
dividual energy unbalance to prove the validity of the energy man-
agement process. The results of the experimental tests showed that 
the AIP predictions match experimental values within 99.8% ac-
curacy for the electric energy and 97.1% for the thermal. Further-
more, the daily hourly local network energy balance is near zero 
deviation regarding the null value, with a maximum difference of 
0.07 kWh, meaning a standard deviation lower than 0.21% for the 
electric energy, and 2.94% for thermal case.

The AIP provides a practical tool for energy network designers 
and managers to optimize the system performance, improving 
the energy supply by selecting the most efficient power source 
for the local network energy exchange.
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