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Abstract

-

Accurate nuclei segmentation and classification are vital for computational pathology. This study builds upon the
HoVer-Net architecture by integrating modern architectural components to enhance multi-task performance on the
PanNuke dataset, which contains both segmentation and classification labels across 19 tissue types. We evaluate
the effects of Squeeze-and-Excitation (SE) blocks, multi-head attention, enhanced DenseBlock decoders, and trans-
former-based encoders (ViT, SwinViT). All models follow HoVer-Net's preprocessing, training, and loss functions
for consistent comparison. Results show that adding SE blocks to the encoder improves overall performance by
approximately 3.6% in Dice scores, while transformer-based encoders lead to slight performance degradation. Our
best model, MSDHV-Net (Multi-head Attention + SE + enhanced decoder), consistently outperforms the original
HoVer-Net across several nuclei classes without increasing computational cost. These findings highlight the value
of targeted architectural enhancements in advancing nuclei analysis models.

J
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Introduction

Nuclear instance segmentation is a fundamental task in compu-
tational pathology, underpinning a range of downstream appli-
cations such as cell classification, tissue phenotyping, and tumor
microen- vironment analysis [1]. Accurate delineation of indi-
vidual nuclei is critical for automated diagnosis and quantitative
analysis in histopathological images, which are often challenged
by dense cellular arrangements, overlapping nuclei, and diverse
morphological variations [2].

Conventional image processing techniques have shown limited
robustness in these complex settings due to their sensitivity to
occlusion and shape variability. In contrast, deep learning ap-
proaches-particularly convolutional neural network CNN-based
models like U-Net and nnU- Net-have greatly advanced perfor-
mance by learning semantic features directly from data [3, 4].
Among these, HoVer-Net has emerged as a state-of-the-art multi-
task architecture capable of simultane- ously predicting nuclear
pixel maps (NP), horizontal-vertical distance maps (HoVer),
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and nuclear type maps (TP). This design has established a strong
benchmark for nuclear instance segmentation and classification,
particularly on large-scale datasets such as PanNuke [5, 6].

However, despite its effectiveness, HoVer-Net is built upon a
residual CNN encoder, which may constrain its ability to cap-
ture long-range dependencies and global context. Recent de-
velopments in Transformer-based models—such as the Vision
Transformer (ViT), Swin Transformer, and hybrid models like
CellViT —have demonstrated powerful capabilities in model-
ing spatial relationships, which are especially important for the
heterogeneous patterns seen in histopathology images [7-10].
Nevertheless, the incorporation of Transformer backbones into
multi-task segmentation frameworks like HoVer-Net remains
relatively underexplored.

In this study, I present a systematic investigation into enhancing
the HoVer-Net architecture through the integration of advanced
modules and modern design principles. My key contributions
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are as follows:

1. I investigate the integration of Squeeze-and-Excitation (SE)
blocks into the original CNN-based encoder of HoVerNet, aim-
ing to enhance channel-wise feature recalibration [11]. This
modifica- tion leads to measurable improvements in segmen-
tation accuracy.

2. I explore the replacement of Hover Net’s residual CNN en-
coder with Transformer-based modules, including Vision
Transformer (ViT) and Swin Transformer. A unified architecture
is proposed to preserve compatibility with HoVerNet’s three-
branch output structure.

3. I design an enhanced decoder architecture that leverages dense
connections and dropout regular- ization, facilitating improved
information flow and mitigating overfitting risks during training.
4. 1 conduct comparative experiments against the current state-
of-the-art model, CellViT, and perform ablation studies to assess
the individual contributions of each architectural component.
All experiments are conducted on the PanNuke dataset, follow-
ing consistent training proto- cols-such as fixed epoch count,
learning rate, pretrained models, optimizer, and train-validation
splits-to ensure fair evaluation. While not all proposed mod-
els surpass the original HoVerNet in every metric, the findings
emphasize the value of attention mechanisms and architectural
enhancements in advancing segmentation and classification per-
formance.

Materials and Methods

Dataset

All experiments in this study were conducted on the publicly
available PanNuke dataset, a large-scale benchmark specifically
curated for nuclei instance segmentation and classification tasks.
PanNuke contains pixel-wise annotated histopathology image
patches spanning 19 distinct tissue types. Each nucleus within
the dataset is labeled according to one of five predefined catego-
ries: neoplastic, inflammatory, connective, dead, and epithelial.

The dataset was chosen for its comprehensive and high-quality
annotations, as well as its estab-lished usage in prior research.
These characteristics make PanNuke particularly suitable for
evaluating multi-class nuclear segmentation methods
and enable consistent comparisons with other state-of-the-

art approaches.

Preprocessing and Augmentation

To ensure fair and consistent evaluation across all models, I ad-
opted the preprocessing and augmentation procedures from the
original HoVerNet pipeline. Input histopathology images were
first normalized and resized, followed by padding to align with
architectural constraints and to maintain spatial consistency
across samples. Random shuffling of training data was applied to
mitigate sampling bias and enhance the models’ generalization
performance[12].

The Pan Nuke dataset was partitioned into training, validation,
and testing subsets using a ratio of 2:6:2, ensuring a bal-
anced distribution of tissue types and cell classes across splits.

Model Variants Based on HoVerNet Architecture

To investigate the effects of architectural modifications on nuclei
instance segmentation and classification, we developed six vari-
ants of the original HoVerNet framework. Each variant retains
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HoVerNet’s distinctive three-head output structure-np _map, hv_
map, and tp_map-which enables joint nuclear segmentation and
classification. The modifications focus on enhancing the encoder
and decoder designs, and are detailed as follows (the pretrained
model can be found in Appendix A and training code in Appen-
dix B):

(1) HoVerNet + SE (HoverNetEnhanced): This variant aug-
ments the encoder with Squeeze-and-

Excitation (SE) blocks, which are integrated within the residual
units. SE blocks perform adaptive channel-wise recalibration,
emphasizing informative features while suppressing less useful
ones, thereby enhancing representational capacity.

(2) HoVerNet + Multi-head Attention (Multihead-HoverNet):
In this model, multi-head self- attention (MHSA) modules are
embedded into the encoder to capture long-range dependen- cies
and global contextual cues [13]. Inspired by prior analysis of
attention heads, this design seeks to improve performance on
complex spatial structures [14].

(3) HoVerNet + SE + MHSA + Enhanced Decoder (MS-
DHV-Net): This is the most comprehen-sive CNN-based modi-
fication. It combines both SE and MHSA modules in the encoder
and introduces a redesigned decoder featuring deeper Dense-
Block structures, additional skip con-nections, and convolution-
al refinement layers. This design aims to facilitate robust feature
propagation and enhanced spatial resolution restoration [15].
(4) HoVerNet + ViT Encoder (HoverViTNet): Here, the
conventional CNN encoder is replaced with a Vision Trans-
former (ViT)[7], enabling the model to extract patch-wise
global representations using self-attention. These trans-
former-derived features are decoded via a CNN-based decoder,
allowing comparative evaluation of attention-driven global con-
text modeling [16].

(5) HoVerNet + Custom SwinViT Encoder (HoVerIT): This
architecture integrates a custom Swin Transformer encoder into
the HoVerNet pipeline. The hierarchical design and shifted win-
dow self-attention in SwinViT capture both local and global
dependencies more effectively than vanilla ViT [17]. The idea
draws inspiration from the Swin-UNETR architecture, while
maintaining compatibility with HoVerNet’s three-branch out-
puts [18].

(6) HoVerNet + SwinUNETR from MONAI (HoverSwin-
Net): In this variant, the encoder is directly replaced with the
SwinUNETR backbone from MONAI. Transformer-derived
multi-scale features are routed through HoVerNet’s original
three-branch decoders, serving as a strong baseline to assess the
integration feasibility and performance of prebuilt transformer
encoders.

Training Configuration

All models were trained using the Adam optimizer with a fixed
learning rate of 1e-4. Pre- trained ResNet-50 weights were used
to initialize the encoder when applicable [19, 20]. Although al-
terna- tive optimizers such as AdamW were evaluated, they did
not produce noticeable improvements in performance [21]. At-
tempts to modify the learning rate led to unstable training dy-
namics, including instances of gradient explosion, thereby jus-
tifying the choice of a conservative fixed schedule. Each model
was trained for 80 epochs, based on empirical observations that
validation perfor-mance typically saturated between epochs 50
and 60(See Figure Al). A batch size of 16 was used to opti-
mize memory utilization on an NVIDIA L20 GPU with 44 GB
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VRAM.

The loss functions followed the original HoVerNet formulation:
binary cross-entropy (BCE) combined with Dice loss for nucle-
ar pixel (np_map) and nuclear type (tp_map) predictions, and a
joint loss of mean squared error (MSE) and mean squared gradi-
ent error (MSGE) for the horizontal-vertical distance (hv_map)
regression task.

Evaluation Metrics

To comprehensively evaluate model performance, we employed
several quantitative metrics: DICE coefficient, Panoptic Qual-
ity (PQ), Precision, Fl-score, and Recall. These metrics were
com-puted separately for each predicted cell type, enabling a
fine-grained analysis of segmentation and classification per-
formance. This multi-metric evaluation framework facilitated
rigorous comparisons across different architectural variants and
offered insight into the effectiveness and limitations of each pro-
posed enhancement [22].

Experiment

To evaluate the effectiveness of our proposed methods, we con-
duct extensive experiments on

the Pan Nuke dataset, which contains nuclei annotations across
multiple tissue types. All models are

trained and validated using the same data preprocessing pipeline
and patch-based augmentation

strategy as described in the Methods section.

For the pathological modality, we fine-tune CellViT with cus-
tomized architectural enhancements such as SE blocks, using a
combination of focal, dice, BCE, and regression-based losses
tailored to multi-task segmentation. Training is performed on
256%256 image tiles with overlapping strides, using the Adam
optimizer with an initial learning rate of 1e-4 for 80 epochs. Pre-
trained weights from SAM-ViT-H are employed to accelerate
convergence and improve generalization.

Each variant of the HoverNet-based model is trained inde-
pendently using identical training configurations. During infer-
ence, the output maps are aggregated and post-processed follow-
ing the original HoVerNet protocol to compute instance-level
masks and cell-type classifications.

Evaluation is carried out using Dice, Panoptic Quality (PQ),
precision, recall, and F1-score metrics. We report results across
different tissue types to assess the generalizability of each archi-
tecture.

Results

Baseline Performance

To establish a reliable benchmark, I trained the original HoV-
er-Net architecture on the PanNuke dataset using the standard-
ized training pipeline described earlier. The baseline model
achieved an NP-Dice score of 0.8686, indicating strong segmen-
tation accuracy for nuclear regions. For type prediction (TP),
Dice scores were 0.9703, 0.7978, 0.6728, and 0.6939 across the
four nuclear subtypes, reflecting varying levels of classification
performance.

In terms of instance-level evaluation, Panoptic Quality (PQ)
scores were 0.4005 for neoplastic, 0.2830 for inflammatory, and

Page No: 03 /

www.mKkscienceset.com

0.4526 for other cell types. Additionally, standard classification
metrics such as F1-score, Precision, and Recall were computed
to provide a comprehensive view of the model’s strengths and
weaknesses. These results serve as a foundational reference for
comparing the performance of all proposed architectural vari-
ants in subsequent experiments.

CNN-Based Architectural Enhancements

Three key modifications were explored within the tradi-
tional CNN-based design framework: the incorporation of
Squeeze-and-Excitation (SE) blocks, the integration of multi-
head self-attention modules, and the use of an enhanced Dense-
Block-based decoder. The most effective configuration, referred
to as MSDHV-Net, combined all three enhancements.

Compared to the original HoVerNet, MSDHV-Net achieved
consistent performance gains across multiple metrics. Specifi-
cally, the TP-Dice score for inflammatory nuclei increased from
0.6728 to 0.7162, while the TP-Dice score for the “other” cell
category improved from 0.6939 to 0.7241. The NP-Dice and
overall classification Dice scores also exhibited an average im-
provement of approximately 2% (See Table 1 and 2 for more
details).

However, despite these enhancements, performance on neo-
plastic cells remained challenging. Both the PQ and F1 scores
for this class experienced a slight decline of around 2% relative
to the baseline, suggesting that additional strategies may be re-
quired to address the morphological variability and contextual
ambiguity characteristic of neoplastic nuclei.

Transformer-Based Architectural Variants

The effectiveness of replacing the original CNN encoder with
Transformer-based architectures was also evaluated. Three mod-
el variants were explored: HoverSwinNet, which directly em-
ployed the SwinViT encoder from the MONAI SwinUNETR
implementation; HoVerIT, which integrated a customized Swin
Transformer encoder into the original HoVerNet three-branch
framework; and HoverViTNet, which substituted the encoder
with a vanilla Vision Transformer (ViT).

All Transformer-based models underperformed compared to
the CNN-based baseline. Among them, HoverViTNet demon-
strated slightly better results than HoverSwinNet, but overall,
the Trans-former variants exhibited a consistent degradation of
3-5% across Dice, Panoptic Quality (PQ), and classification-re-
lated metrics (See Table 1 and 2 for more details). These results
suggest that while Transformer encoders offer strong theoretical
advantages in capturing long-range dependencies, their practical
integrations into multi-task nuclei segmentation frameworks re-
mains a non-trivial challenge that warrants further investigation.

Summary of Comparative Performance

Among all proposed architectures, MSDHV-Net demonstrated
the most consistent and mean-ingful improvements(See Figure 1
and 2 for comparision), particularly for inflammatory and other
nuclear types. The transformer-based models, while conceptual-
ly promising, require further tuning or hybridization to outper-
form well-optimized CNN backbones on the PanNuke dataset.
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Figures, Tables and Schemes

Table 1: Segmentation Metrics for Each Model (NP-Dice and TP-Dice)

Model NP-Dice TP-Dice-0 TP-Dice-1 TP-Dice-2 TP-Dice-3
HoverNet 0.8686 0.9703 0.7978 0.6728 0.6939
HoverNetEnhanced 0.8696 0.9697 0.8119 0.7175 0.7129
Multihead-Hov- 0.8682 0.9698 0.7933 0.6643 0.6904

erNet

MSDHV-Net 0.8696 0.9697 0.8105 0.7162 0.7241
HoverSwinNet 0.8365 0.9643 0.7381 0.6221 0.6380
HoverViTNet 0.8564 0.9662 0.7672 0.6783 0.6816
HoverlT 0.8534 0.9676 0.7433 0.6297 0.6455
CellViT 0.8000 0.9729 0.9764 0.9632 0.9331

Table 2: Classification Metrics per Model (PQ, Recall, and Precision)

Model PQ-1 Recall-1 Precision-1 PQ-2 Recall-2 Precision-2
HoverNet 0.4005 0.4192 0.4004 0.2830 0.2935 0.3206
HoverNetEn- 0.3843 0.3971 0.3924 0.2820 0.3119 0.2952

hanced
Multihead-Hov- 0.3947 0.4070 0.4018 0.2813 0.2972 0.3150
erNet
MSDH V-Net 0.3825 0.3986 0.3872 0.2891 0.3179 0.3046
HoverSwinNet 0.3744 0.3824 0.3913 0.2400 0.2342 0.2945
HoverViTNet 0.3788 0.3984 0.3984 0.2793 0.3108 0.2976
HoverIT 0.3744 0.3984 0.3823 0.2400 0.3108 0.2976
CellViT 0.5606 0.6900 0.7200 0.4316 0.5700 0.5900
- SEgIETILATGN MELCS 167 ESch Mode)

Toce Sooe

Figure 1: Bar Chart of Segmentation Metrics for each model.
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Figure 4: Overview of the HoVerIT architecture.

(a) HoverIT 1 (b) HoverIT-2 l (c) HoverIT-3
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(j) Ground Truth-1

(k) Ground Truth-2

(1) Ground Truth-3

Figure 5: Segmentation and classification results of three different models on multiple test patches.

Formatting of Mathematical Components
Dice Score:
2x | XY
Dice = ——————
| X| + Y|
X and Y represent the predicted and ground truth binary seg-
mentation masks, respectively. |X| and |Y| denote the number of

positive pixels in each mask, while |X N Y| indicates the number
of overlapping (true positive) pixels between them.

Binary Cross-Entropy (BCE):
1 i)
BCE = —+ Yo lwilog(p) + (1 —y;) log(1 — pj)]
i=1

N is the total number of samples. yi is the ground truth label (ei-
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ther 0 or 1) for the i-th sample, and pi is the predicted probability
of the positive class for the same sample.

Mean Squared Error (MSE):
VSE = — f{ 2
. - N i=1 y! P:

N is the number of samples. yi and pi represent the ground truth
and predicted values for the i-th sample, respectively. The loss
penalizes the squared differences between predictions and true
values.

Panoptic Quality (PQ):
PO — Lipgere loU(p. g)
|TP| + 3|FP| + }|EN|
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TP, FP, and FN are the sets of true positive, false positive, and
false negative instance predictions, respectively. loU(p, g) de-
notes the intersection-over-union between a predicted instance p
and its matched ground truth g.
F1 Score:
F1 2 - Precision - Recall

Precision + Recall
The F1 Score is the harmonic mean of Precision and Recall,
balancing the two metrics to provide a single measurement of

accuracy.
Precision and Recall:

. TP TP
Precision = ﬁ, Recall = m

TP is the number of true positives, FP is the number of false pos-
itives, and FN is the number of false negatives. Precision mea-
sures the proportion of correct positive predictions, while Recall
measures the proportion of actual positives that were correctly
identified.

Discussion

This study aimed to investigate architectural enhancements to
the HoVer-Net framework for simultaneous nuclei segmentation
and classification[5]. My findings demonstrate that thoughtful
modifications within the CNN paradigm—specifically the in-
tegration of Squeeze-and-Excitation (SE) blocks, multi-head
attention, and an enhanced DenseBlock decoder—can lead
to measurable gains across multiple evaluation metrics. The
best-performing model, MSDHV-Net (See Figure 3 for architec-
ture), showed improved TP-Dice scores for Neoplastic, inflam-
matory and other nuclei types, indicating enhanced discrimina-
tive power in challenging classification scenarios.

These improvements are consistent with prior research empha-
sizing the importance of adap-tive channel recalibration (as in
SE blocks) and attention mechanisms in deep feature extraction
for biomedical imaging tasks. The enhanced decoder appears to
better capture spatial dependencies and refine instance boundar-
ies, especially in complex tissue environments.

In contrast, my exploration of Vision Transformer (ViT and
SwinViT) encoders-although theoreti-cally appealing due to
their global receptive field—did not yield superior performance.
HoverSwinNet  and HoVerIT (See Figure 4 for architecture)
underperformed compared to both the baseline and CNN-en-
hanced models. One likely reason is that transformer-based
models may require significantly larger training data or more
domain-specific pretraining to outperform CNNs in medical im-
aging, for example the SAM-VIiT pretrained model used in Cell-
Vit. Another limitation lies in integrating transformer encoders
into multi-task frameworks like HoVer-Net, which may require
carefully aligned intermediate feature representations.

Interestingly, all models struggled to improve classification met-
rics for neoplastic nuclei. This suggests either intrinsic ambigu-
ity in their visual features or insufficient discriminatory signal
in current feature representations. Future work could explore
class-specific loss weighting or incorporate cell microenviron-
ment context to enhance neoplastic classification.
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Looking forward, promising directions include hybrid CNN—
transformer architectures, domain- adaptive pretraining strat-
egies, and exploring self-supervised representation learning to
leverage unlabeled histopathology data. Additionally, integrat-
ing spatially aware attention mechanisms and refining decod-
er design may further enhance both instance segmentation and
fine-grained classification capabilities.

Overall, this work highlights the value of selectively integrat-
ing modern deep learning compo-nents into established archi-
tectures, balancing innovation with task-specific constraints in
computa-tional pathology.

Conclusions

In this work, I systematically investigated architectural enhance-
ments to the HoVer-Net framework for nuclei instance segmen-
tation and classification on the PanNuke dataset. Through the
integration of SE blocks, multi-head attention, and a more ex-
pressive decoder, I developed MSDHV-Net, which consistently
outperformed the original HoVer-Net in both segmentation and
classification tasks—particularly for inflammatory and other nu-
clei types.

In contrast, transformer-based variants such as HoverSwinNet
and HoVerIT did not demonstrate improved performance, sug-
gesting that CNN-based backbones remain more robust and ef-
fective under the current dataset and training conditions. These
results underscore the value of carefully engineered improve-
ments to established CNN architectures, while also highlighting
that successful

transformer integration—such as those attempted in CellViT
with SAM-VIiT pretraining-requires further domain adaptation
and architectural refinement.

Overall, these findings provide practical insights for designing
more accurate and efficient nuclei analysis models and lay a
foundation for future work exploring hybrid CNN-transformer
architectures and self-supervised learning approaches in compu-
tational pathology.
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Appendix A. Additional Materials and Resources

To promote reproducibility and transparency, additional materi-
als are provided as follows:

* Trained model weights for all variants (e.g., HoverNetEn-
henced, MSDHV-Net, HoverViTNet, HoVerIT) can be accessed
at: https://drive.google.com/drive/folders/1th0fiiGwIpPOa-

Appendix C: TensorBoard training logs and visualizations

faoSF5 2WDrP4vAIxKY 8?usp=drive link.

* More overlay images of segmentation and classification results
for representative samples are available at: https://drive.google.
com/drive/folders/TurDIgA4Qnl 25vAIlJV2ouKhwg0Xdp5X?
usp=sharing.

Appendix B. Model Structure and Implementation Code

1. HoverSwinNet https://github.com/davidqu921/HoverSwin-
Net.

2. MSDHV-Net https://github.com/davidqu921/HoVer-Net-En-
henced.

3. HoVerlT https://github.com/davidqu921/HoVerlIT.

4. HoverViTNet https://github.com/davidqu921/HoverViTNet.
These resources are intended solely for academic and non-com-
mercial use.
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Figure Al: Segmentation and classification results of different models on multiple validation metrics
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