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Abstract
Accurate nuclei segmentation and classification are vital for computational pathology. This study builds upon the 
HoVer-Net architecture by integrating modern architectural components to enhance multi-task performance on the 
PanNuke dataset, which contains both segmentation and classification labels across 19 tissue types. We evaluate 
the effects of Squeeze-and-Excitation (SE) blocks, multi-head attention, enhanced DenseBlock decoders, and trans-
former-based encoders (ViT, SwinViT). All models follow HoVer-Net’s preprocessing, training, and loss functions 
for consistent comparison. Results show that adding SE blocks to the encoder improves overall performance by 
approximately 3.6% in Dice scores, while transformer-based encoders lead to slight performance degradation. Our 
best model, MSDHV-Net (Multi-head Attention + SE + enhanced decoder), consistently outperforms the original 
HoVer-Net across several nuclei classes without increasing computational cost. These findings highlight the value 
of targeted architectural enhancements in advancing nuclei analysis models.
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Introduction		
Nuclear instance segmentation is a fundamental task in compu-
tational pathology, underpinning a range of downstream appli-
cations such as cell classification, tissue phenotyping, and tumor 
microen- vironment analysis [1]. Accurate delineation of indi-
vidual nuclei is critical for automated diagnosis and quantitative 
analysis in histopathological images, which are often challenged 
by dense cellular arrangements, overlapping nuclei, and diverse 
morphological variations [2].

Conventional image processing techniques have shown limited 
robustness in these complex settings due to their sensitivity to 
occlusion and shape variability. In contrast, deep learning ap- 
proaches-particularly convolutional neural network CNN-based 
models like U-Net and nnU-  Net-have greatly advanced perfor-
mance by learning semantic features directly from data [3, 4]. 
Among these, HoVer-Net has emerged as a state-of-the-art multi-
task architecture capable of simultane- ously predicting nuclear 
pixel maps (NP), horizontal–vertical distance maps (HoVer), 

and nuclear type maps (TP). This design has established a strong 
benchmark for nuclear instance segmentation and classification, 
particularly on large-scale datasets such as PanNuke [5, 6].

However, despite its effectiveness, HoVer-Net is built upon a 
residual CNN encoder, which may constrain its ability to cap-
ture long-range dependencies and global context. Recent de-
velopments in Transformer-based models—such as the Vision 
Transformer (ViT), Swin Transformer, and hybrid models like 
CellViT —have demonstrated powerful capabilities in model-
ing spatial relationships, which are especially important for the 
heterogeneous patterns seen in histopathology images [7-10]. 
Nevertheless, the incorporation of Transformer backbones into 
multi-task segmentation frameworks like HoVer-Net remains 
relatively underexplored.
	  
In this study, I present a systematic investigation into enhancing 
the HoVer-Net architecture through the integration of advanced 
modules and modern design principles. My key contributions 



 

www.mkscienceset.comPage No: 02 Wor Jour of Arti inte and Rob Res 2025

are  as follows:	
1. I investigate the integration of Squeeze-and-Excitation (SE) 
blocks into the original CNN-based encoder of HoVerNet, aim-
ing to enhance channel-wise feature recalibration [11]. This 
modifica-  tion leads to measurable improvements in segmen-
tation accuracy.
2. I explore the replacement of Hover Net’s residual CNN en-
coder with Transformer-based modules,   including Vision 
Transformer (ViT) and Swin Transformer. A unified architecture 
is proposed to preserve compatibility with HoVerNet’s three-
branch output structure.
3. I design an enhanced decoder architecture that leverages dense 
connections and dropout regular- ization, facilitating improved 
information flow and mitigating overfitting risks during training.
4. I conduct comparative experiments against the current state-
of-the-art model, CellViT, and perform ablation studies to assess 
the individual contributions of each architectural component. 
All experiments are conducted on the PanNuke dataset, follow-
ing consistent training proto- cols-such as fixed epoch count, 
learning rate, pretrained models, optimizer, and train-validation 
splits-to ensure fair evaluation. While not all proposed mod-
els surpass the original HoVerNet in every metric, the findings 
emphasize the value of attention mechanisms and architectural 
enhancements in advancing segmentation and classification per-
formance.
	
Materials and Methods	
Dataset	
All experiments in this study were conducted on the publicly 
available PanNuke dataset, a large-scale benchmark specifically 
curated for nuclei instance segmentation and classification tasks. 
PanNuke contains pixel-wise annotated histopathology image 
patches spanning 19 distinct tissue types. Each nucleus within 
the dataset is labeled according to one of five predefined catego-
ries: neoplastic, inflammatory, connective, dead, and epithelial.
	
The dataset was chosen for its comprehensive and high-quality 
annotations, as well as its estab-lished usage in prior research. 
These characteristics make PanNuke particularly suitable for 
evaluating	  multi-class nuclear segmentation methods 
and enable consistent comparisons with other state-of-the-	
art approaches.
	
Preprocessing and Augmentation	
To ensure fair and consistent evaluation across all models, I ad-
opted the preprocessing and augmentation procedures from the 
original HoVerNet pipeline. Input histopathology images were 
first normalized and resized, followed by padding to align with 
architectural constraints and to maintain spatial consistency 
across samples. Random shuffling of training data was applied to 
mitigate sampling bias and enhance the models’ generalization 
performance[12].

The Pan Nuke dataset was partitioned into training, validation, 
and testing subsets using a ratio	  of 2:6:2, ensuring a bal-
anced distribution of tissue types and cell classes across splits.

Model Variants Based on HoVerNet Architecture
To investigate the effects of architectural modifications on nuclei 
instance segmentation and classification, we developed six vari-
ants of the original HoVerNet framework. Each variant retains	 

HoVerNet’s distinctive three-head output structure-np_map, hv_
map, and tp_map-which enables joint nuclear segmentation and 
classification. The modifications focus on enhancing the encoder 
and decoder designs, and are detailed as follows (the pretrained 
model can be found in Appendix A and training code in Appen-
dix B):
(1) HoVerNet + SE (HoverNetEnhanced): This variant aug-
ments the encoder with Squeeze-and-	
Excitation (SE) blocks, which are integrated within the residual 
units. SE blocks perform	 adaptive channel-wise recalibration, 
emphasizing informative features while suppressing less useful 
ones, thereby enhancing representational capacity.
(2) HoVerNet + Multi-head Attention (Multihead-HoverNet): 
In this model, multi-head self- attention (MHSA) modules are 
embedded into the encoder to capture long-range dependen- cies 
and global contextual cues [13]. Inspired by prior analysis of 
attention heads, this design seeks to improve performance on 
complex spatial structures [14].
(3) HoVerNet + SE + MHSA + Enhanced Decoder (MS-
DHV-Net): This is the most comprehen-sive CNN-based modi-
fication. It combines both SE and MHSA modules in the encoder 
and introduces a redesigned decoder featuring deeper Dense-
Block structures, additional skip con-nections, and convolution-
al refinement layers. This design aims to facilitate robust feature 
propagation and enhanced spatial resolution restoration [15].	
(4) HoVerNet + ViT Encoder (HoverViTNet): Here, the 
conventional CNN encoder is replaced with a Vision Trans-
former (ViT)[7], enabling the model to extract patch-wise 
global representations	  using self-attention. These trans-
former-derived features are decoded via a CNN-based decoder, 
allowing comparative evaluation of attention-driven global con-
text modeling [16].
(5) HoVerNet + Custom SwinViT Encoder (HoVerIT): This 
architecture integrates a custom Swin Transformer encoder into 
the HoVerNet pipeline. The hierarchical design and shifted win-
dow self-attention in SwinViT capture both local and global 
dependencies more effectively than vanilla ViT [17]. The idea 
draws inspiration from the Swin-UNETR architecture, while 
maintaining compatibility with HoVerNet’s three-branch out-
puts [18].
(6) HoVerNet + SwinUNETR from MONAI (HoverSwin-
Net): In this variant, the encoder is directly replaced with the 
SwinUNETR backbone from MONAI. Transformer-derived 
multi-scale features are routed through HoVerNet’s original 
three-branch decoders, serving as a strong baseline to assess the 
integration feasibility and performance of prebuilt transformer 
encoders.	

Training Configuration	
All models were trained using the Adam optimizer with a fixed 
learning rate of 1e-4. Pre-  trained ResNet-50 weights were used 
to initialize the encoder when applicable [19, 20]. Although al-
terna- tive optimizers such as AdamW were evaluated, they did 
not produce noticeable improvements in performance [21]. At-
tempts to modify the learning rate led to unstable training dy-
namics, including instances of gradient explosion, thereby jus-
tifying the choice of a conservative fixed schedule. Each model 
was trained for 80 epochs, based on empirical observations that 
validation perfor-mance typically saturated between epochs 50 
and 60(See Figure A1). A batch size of 16 was used to opti-
mize memory utilization on an NVIDIA L20 GPU with 44 GB 
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VRAM.

The loss functions followed the original HoVerNet formulation: 
binary cross-entropy (BCE) combined with Dice loss for nucle-
ar pixel (np_map) and nuclear type (tp_map) predictions, and a 
joint loss of mean squared error (MSE) and mean squared gradi-
ent error (MSGE) for the horizontal-vertical distance (hv_map) 
regression task.

Evaluation Metrics	
To comprehensively evaluate model performance, we employed 
several quantitative metrics: DICE coefficient, Panoptic Qual-
ity (PQ), Precision, F1-score, and Recall. These metrics were 
com-puted separately for each predicted cell type, enabling a 
fine-grained analysis of segmentation and classification per-
formance. This multi-metric evaluation framework facilitated 
rigorous comparisons across different architectural variants and 
offered insight into the effectiveness and limitations of each pro-
posed enhancement [22].
	
Experiment	
To evaluate the effectiveness of our proposed methods, we con-
duct extensive experiments on	
the Pan Nuke dataset, which contains nuclei annotations across 
multiple tissue types. All models are	  
trained and validated using the same data preprocessing pipeline 
and patch-based augmentation
strategy as described in the Methods section.
	
For the pathological modality, we fine-tune CellViT with cus-
tomized architectural enhancements such as SE blocks, using a 
combination of focal, dice, BCE, and regression-based losses 
tailored to multi-task segmentation. Training is performed on 
256×256 image tiles with overlapping strides, using the Adam 
optimizer with an initial learning rate of 1e-4 for 80 epochs. Pre-
trained weights from SAM-ViT-H are employed to accelerate 
convergence and improve generalization.
	
Each variant of the HoverNet-based model is trained inde-
pendently using identical training configurations. During infer-
ence, the output maps are aggregated and post-processed follow-
ing the original HoVerNet protocol to compute instance-level 
masks and cell-type classifications.
	
Evaluation is carried out using Dice, Panoptic Quality (PQ), 
precision, recall, and F1-score metrics. We report results across 
different tissue types to assess the generalizability of each archi-
tecture.
	
Results	
Baseline Performance	
To establish a reliable benchmark, I trained the original HoV-
er-Net architecture on the PanNuke dataset using the standard-
ized training pipeline described earlier. The baseline model 
achieved an NP-Dice score of 0.8686, indicating strong segmen-
tation accuracy for nuclear regions. For type prediction (TP), 
Dice scores were 0.9703, 0.7978, 0.6728, and 0.6939 across the 
four nuclear subtypes, reflecting varying levels of classification 
performance.
In terms of instance-level evaluation, Panoptic Quality (PQ) 
scores were 0.4005 for neoplastic, 0.2830 for inflammatory, and 

0.4526 for other cell types. Additionally, standard classification 
metrics such as F1-score, Precision, and Recall were computed 
to provide a comprehensive view of the model’s strengths and 
weaknesses. These results serve as a foundational reference for 
comparing the performance of all proposed architectural vari-
ants in subsequent experiments.
	
CNN-Based Architectural Enhancements	
Three key modifications were explored within the tradi-
tional CNN-based design framework: the incorporation of 
Squeeze-and-Excitation (SE) blocks, the integration of multi-
head self-attention modules, and the use of an enhanced Dense-
Block-based decoder. The most effective configuration, referred 
to as MSDHV-Net, combined all three enhancements.

Compared to the original HoVerNet, MSDHV-Net achieved 
consistent performance gains across multiple metrics. Specifi-
cally, the TP-Dice score for inflammatory nuclei increased from 
0.6728 to 0.7162, while the TP-Dice score for the “other” cell 
category improved from 0.6939 to 0.7241. The NP-Dice and 
overall classification Dice scores also exhibited an average im-
provement of approximately 2% (See Table 1 and 2 for more 
details).
	
However, despite these enhancements, performance on neo-
plastic cells remained challenging. Both the PQ and F1 scores 
for this class experienced a slight decline of around 2% relative 
to the baseline, suggesting that additional strategies may be re-
quired to address the morphological variability and contextual 
ambiguity characteristic of neoplastic nuclei.
	
Transformer-Based Architectural Variants	
The effectiveness of replacing the original CNN encoder with 
Transformer-based architectures was also evaluated. Three mod-
el variants were explored: HoverSwinNet, which directly em-
ployed the SwinViT encoder from the MONAI SwinUNETR 
implementation; HoVerIT, which integrated a customized Swin 
Transformer encoder into the original HoVerNet three-branch 
framework; and HoverViTNet, which substituted the encoder 
with a vanilla Vision Transformer (ViT).
	
All Transformer-based models underperformed compared to 
the CNN-based baseline. Among them, HoverViTNet demon-
strated slightly better results than HoverSwinNet, but overall, 
the Trans-former variants exhibited a consistent degradation of 
3–5% across Dice, Panoptic Quality (PQ), and classification-re-
lated metrics (See Table 1 and 2 for more details). These results 
suggest that while Transformer encoders offer strong theoretical 
advantages in capturing long-range dependencies, their practical 
integrations into multi-task nuclei segmentation frameworks re-
mains a non-trivial challenge  that warrants further investigation.
	
Summary of Comparative Performance	
Among all proposed architectures, MSDHV-Net demonstrated 
the most consistent and mean-ingful improvements(See Figure 1 
and 2 for comparision), particularly for inflammatory and other 
nuclear types. The transformer-based models, while conceptual-
ly promising, require further tuning or hybridization to outper-
form well-optimized CNN backbones on the PanNuke dataset.
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Figures, Tables and Schemes

Table 1: Segmentation Metrics for Each Model (NP-Dice and TP-Dice)
Model NP-Dice TP-Dice-0 TP-Dice-1 TP-Dice-2 TP-Dice-3

HoverNet 0.8686 0.9703 0.7978 0.6728 0.6939
HoverNetEnhanced 0.8696 0.9697 0.8119 0.7175 0.7129

Multihead-Hov-
erNet

0.8682 0.9698 0.7933 0.6643 0.6904

MSDHV-Net 0.8696 0.9697 0.8105 0.7162 0.7241
HoverSwinNet 0.8365 0.9643 0.7381 0.6221 0.6380
HoverViTNet 0.8564 0.9662 0.7672 0.6783 0.6816

HoverIT 0.8534 0.9676 0.7433 0.6297 0.6455
CellViT 0.8000 0.9729 0.9764 0.9632 0.9331

Table 2: Classification Metrics per Model (PQ, Recall, and Precision)
Model PQ-1 Recall-1 Precision-1 PQ-2 Recall-2 Precision-2

HoverNet 0.4005 0.4192 0.4004 0.2830 0.2935 0.3206
HoverNetEn-

hanced
0.3843 0.3971 0.3924 0.2820 0.3119 0.2952

Multihead-Hov-
erNet

0.3947 0.4070 0.4018 0.2813 0.2972 0.3150

MSDHV-Net 0.3825 0.3986 0.3872 0.2891 0.3179 0.3046
HoverSwinNet 0.3744 0.3824 0.3913 0.2400 0.2342 0.2945
HoverViTNet 0.3788 0.3984 0.3984 0.2793 0.3108 0.2976

HoverIT 0.3744 0.3984 0.3823 0.2400 0.3108 0.2976
CellViT 0.5606 0.6900 0.7200 0.4316 0.5700 0.5900

Figure 1: Bar Chart of Segmentation Metrics for each model.
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Figure 2: Heat map of Classification Metrics for each model.

Figure 3: Overview of the MSDHV-Net architecture.

Figure 4: Overview of the HoVerIT architecture.

(a) HoverIT-1 (b) HoverIT-2 (c) HoverIT-3
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(d) HoverSwinNet-1 (e) HoverSwinNet-2 (f) HoverSwinNet-3

(g) MSDHV-Net-1 (h) MSDHV-Net-2 (i) MSDHV-Net-3

(j) Ground Truth-1 (k) Ground Truth-2 (l) Ground Truth-3

Figure 5: Segmentation and classification results of three different models on multiple test patches.

Formatting of Mathematical Components
Dice Score:	

X and Y represent the predicted and ground truth binary seg-
mentation masks, respectively. |X| and |Y| denote the number of 
positive pixels in each mask, while |X ∩ Y| indicates the number 
of overlapping (true positive) pixels between them.
	
Binary Cross-Entropy (BCE):	  

 N is the total number of samples. yi is the ground truth label (ei-

ther 0 or 1) for the i-th sample, and pi is the predicted probability 
of the positive class for the same sample.

Mean Squared Error (MSE):	

N is the number of samples. yi and pi represent the ground truth 
and predicted values for the i-th sample, respectively. The loss 
penalizes the squared differences between predictions and true 
values.

Panoptic Quality (PQ):
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TP, FP, and FN are the sets of true positive, false positive, and 
false negative instance predictions, respectively. IoU(p, g) de-
notes the intersection-over-union between a predicted instance p 
and its matched ground truth g.
F1 Score:

	
The F1 Score is the harmonic mean of Precision and Recall, 
balancing the two metrics to provide a single measurement of 
accuracy.
Precision and Recall:

TP is the number of true positives, FP is the number of false pos-
itives, and FN is the number of false negatives. Precision mea-
sures the proportion of correct positive predictions, while Recall 
measures the proportion of actual positives that were correctly 
identified.

Discussion
This study aimed to investigate architectural enhancements to 
the HoVer-Net framework for simultaneous nuclei segmentation 
and classification[5]. My findings demonstrate that thoughtful 
modifications within the CNN paradigm—specifically the in-
tegration of Squeeze-and-Excitation (SE) blocks, multi-head 
attention, and an enhanced DenseBlock decoder—can lead 
to measurable gains across multiple evaluation metrics. The 
best-performing model, MSDHV-Net (See Figure 3 for architec-
ture), showed improved TP-Dice scores for Neoplastic, inflam-
matory and other nuclei types, indicating enhanced discrimina-
tive power in challenging classification scenarios.

These improvements are consistent with prior research empha-
sizing the importance of adap-tive channel recalibration (as in 
SE blocks) and attention mechanisms in deep feature extraction 
for biomedical imaging tasks. The enhanced decoder appears to 
better capture spatial dependencies and refine instance boundar-
ies, especially in complex tissue environments.

 

In contrast, my exploration of Vision Transformer (ViT and 
SwinViT) encoders-although theoreti-cally appealing due to 
their global receptive field—did not yield superior performance. 
HoverSwinNet	  and HoVerIT (See Figure 4 for architecture)
underperformed compared to both the baseline and CNN-en-
hanced models. One likely reason is that transformer-based 
models may require significantly larger training data or more 
domain-specific pretraining to outperform CNNs in medical im-
aging, for example the SAM-ViT pretrained model used in Cell-
Vit. Another limitation lies in integrating transformer encoders 
into multi-task frameworks like HoVer-Net, which may require 
carefully aligned intermediate feature representations.

Interestingly, all models struggled to improve classification met-
rics for neoplastic nuclei. This suggests either intrinsic ambigu-
ity in their visual features or insufficient discriminatory signal 
in current feature representations. Future work could explore 
class-specific loss weighting or incorporate cell microenviron-
ment context to enhance neoplastic classification.

Looking forward, promising directions include hybrid CNN–
transformer architectures, domain- adaptive pretraining strat-
egies, and exploring self-supervised representation learning to 
leverage unlabeled histopathology data. Additionally, integrat-
ing spatially aware attention mechanisms and refining decod-
er design may further enhance both instance segmentation and 
fine-grained classification capabilities.

Overall, this work highlights the value of selectively integrat-
ing modern deep learning compo-nents into established archi-
tectures, balancing innovation with task-specific constraints in 
computa-tional pathology.

Conclusions
In this work, I systematically investigated architectural enhance-
ments to the HoVer-Net framework for nuclei instance segmen-
tation and classification on the PanNuke dataset. Through the 
integration of SE blocks, multi-head attention, and a more ex-
pressive decoder, I developed MSDHV-Net, which consistently 
outperformed the original HoVer-Net in both segmentation and 
classification tasks—particularly for inflammatory and other nu-
clei types.

In contrast, transformer-based variants such as HoverSwinNet 
and HoVerIT did not demonstrate improved performance, sug-
gesting that CNN-based backbones remain more robust and ef-
fective under the current dataset and training conditions. These 
results underscore the value of carefully engineered improve-
ments to established CNN architectures, while also highlighting 
that successful

transformer integration—such as those attempted in CellViT 
with SAM-ViT pretraining-requires further domain adaptation 
and architectural refinement.

Overall, these findings provide practical insights for designing 
more accurate and efficient nuclei analysis models and lay a 
foundation for future work exploring hybrid CNN-transformer 
architectures and self-supervised learning approaches in compu-
tational pathology.
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 Appendix A. Additional Materials and Resources	
To promote reproducibility and transparency, additional materi-
als are provided as follows:	
• Trained model weights for all variants (e.g., HoverNetEn-
henced, MSDHV-Net, HoverViTNet, HoVerIT) can be accessed 
at: https://drive.google.com/drive/folders/1fh0fiiGwIpPOa-

faoSF5 2WDrP4vAIxKY8?usp=drive_link.	
• More overlay images of segmentation and classification results 
for representative samples are available at: https://drive.google.
com/drive/folders/1urDlgA4QnI_25vAllJV2ouKhwg0Xdp5X? 
usp=sharing.
	
Appendix B. Model Structure and Implementation Code	
1. HoverSwinNet https://github.com/davidqu921/HoverSwin-
Net.	
2. MSDHV-Net  https://github.com/davidqu921/HoVer-Net-En-
henced.	
3. HoVerIT https://github.com/davidqu921/HoVerIT.	
4. HoverViTNet https://github.com/davidqu921/HoverViTNet.	
These resources are intended solely for academic and non-com-
mercial use.	

Appendix C: TensorBoard training logs and visualizations

(a) HoverIT-valid-np (b) HoverIT-valid-tp-1 (c) HoverIT-valid-tp-2

(d) HoverSwinNet-valid-np (e) HoverSwinNet-valid-  (f) HoverSwinNet-valid-tp- 2

(g) MSDHV-Net-valid-np (h) MSDHV-Net-valid-tp-1 (i) MSDHV-Net-valid-tp-2
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(j) HoverViTNet-valid-np (k) HoverViTNet-valid-tp-1 (l) HoverViTNet-valid-tp-2

Figure A1: Segmentation and classification results of different models on multiple validation metrics


