

Science Set Journal of Economics Research

Modeling the Elasticity of Ulaanbaatar Development Index in Connection with its Sub-Indices

Ganlkhagva Gantigmaa¹., Badrakh Otgonsuvd¹., Dulamragchaa Uuganbaatar¹., Rentsen Enkhbat^{1*}., Natsagdorj Tungalag²., Altangerel Munkh-Erdene¹., Munkhnast Munkh-Erdene¹

¹Institute of Mathematics and Digital Technology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia ²National University of Mongolia, Ulaanbaatar 210646, Mongolia

*Corresponding author: Rentsen Enkhbat, 1Institute of Mathematics and Digital Technology, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia.

Submitted: 17 December 2024 Accepted: 22 December 2024 Published: 31 December 2024

di https://doi.org/10.63620/MKSSJER.2024.1065

Citation: Gantigmaa, G., Otgonsuvd, B., Uuganbaatar, D., Enkhbat, R., Tungalag, N., Munkh-Erdene, A., & Munkh-Erdene, M. (2024). Modeling the Elasticity of Ulaanbaatar Development Index in Connection with its Sub-Indices. Sci Set J of Economics Res, 3(6), 01-04.

Abstract

This research presents the results of four simulations using the Cobb-Douglas function to model the impact of 86 sub-indices on the Ulaanbaatar Development Index. The 86 sub-indices and the general index for 2023, as calculated by scientific organizations, serve as the primary data. To estimate the elasticities of the city indices, the Cobb-Douglas function was reformulated and analyzed using the least squares method. The numerical computations were performed in Python with the CVXPY package.

Keywords: City Indicators, Urban Livability

Introduction

Many indices are used globally to assess different aspects of city development and urban livability, such as the City Prosperity Index, Global Power City Index, and Mercer Quality of Living Index. These indices are built from sub-indices focusing on areas like infrastructure, quality of life, environmental sustainability, economic performance, accessibility, and healthcare.

The municipality of Ulaanbaatar calculated the City Development Index for the first time in 2023. It comprises 86 sub-indices organized into four broad groups and six distinct categories. The government's aim in developing this index is to promote a city that is competitive, sustainable, accessible, and offers a high quality of life. Meanwhile, citizens are encouraged to fulfill their responsibilities while benefiting from these improvements [1].

Understanding the relationship between sub-indices and the overall City Development Index is essential for identifying the key drivers of urban development goals. This study applies the Cobb-Douglas function to specifically quantify how changes in individual sub-indices influence the overall CDI(general index).

By doing so, it enables policymakers and stakeholders to identify and prioritize targeted initiatives that maximize the effectiveness of urban development strategies, ensuring sustainable and measurable improvements in the city's growth and quality of life.

Currently, there doesn't appear to be a published research paper that explicitly uses the Cobb-Douglas function to calculate the elasticity of a city development index (or similar indices) in direct correlation with its sub-indices. However, the following methodologies have been studied previously to demonstrate the relationship between development indicators and their influential factors.

An improved simulated annealing algorithm is employed for parameter estimation to refine the traditional Cobb-Douglas production function. This approach incorporates policy factors that influence growth at different stages, thereby improving the accuracy of estimating the contribution rates of various factors on economic growth [2].

Page No: 01 www.mkscienceset.com Sci Set J of Economics Res 2024

The methodology of using probability-weighted averages of population sizes within local labor market areas has shown stronger correlations with location quotients for knowledge-intensive business services—industries that are highly dependent on urbanization economies [3].

The use of multilevel logistic regression revealed significant correlations between higher Urban Liveability Index scores and an increased likelihood of using active and public transport, along with a decreased reliance on private vehicles [4]. The Analytic Hierarchy Process is also employed to determine the relative weights of various indicators in the development of the Liveable. City. Index [5].

Research Methodology

The model of the general city index, taking into account the elasticities in the indices, is formulated as following:

$$f = k_1^{\alpha_1} k_2^{\alpha_2} \dots k_n^{\alpha_n} \tag{1}$$

were, α_i – elasticity coefficients of k_i -th index. In other words, a 1% change in the k_i-th index results in a change of α_i percent in the general city index f_.

From the given 86 sub-indices, the general city index is found by the following formula.

$$f = 0.35 \sum_{1}^{43} k_i + 0.15 \sum_{44}^{86} k_i \tag{2}$$

where, f – general city index, k i –sub-indices, i=1, 2..., 86.

The elasticities are solved as follows by taking the logarithms from both sides of (1) and using the least squares method.

$$\ln f = \ln k_1^{\alpha_1} k_2^{\alpha_2} \dots k_n^{\alpha_m} \Rightarrow \ln f = \alpha_1 \ln k_1 + \alpha_2 \ln k_2 \dots \alpha_m \ln k_n$$

For $k_1^j, k_2^j, \dots, k_n^j$, we compose

$$\ln f_i = \sum_{i=1}^n \alpha_i \ln k_i^j$$
, $j = 1, 2, ..., m$.

Finding α_i , i=1,2,...,n reduces to following optimization problem,

$$F = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} \alpha_i \ln k_i^j - \ln f_j \right)^2 \to \min$$
 (3)

In order to find α_p , we take derivatives with respect to α_p and equalize to zero.

$$\frac{\mathrm{d}F}{\mathrm{d}\alpha_p} = 2\sum_{j=1}^m \left(\sum_{i=1}^n \alpha_i \ln k_i^j - \ln f_j\right) \ln k_p^j = 0, \, \mathrm{p=1, 2..., n}$$

We simplify the above equations in the following:

$$\sum_{i=1}^{n} \alpha_i \left(\sum_{j=1}^{m} \ln k_i^j \ln k_p^j \right) = \sum_{j=1}^{m} \ln f_j \ln k_p^j, \, p=1, \, 2..., \, n.$$
 (4)

Let us assume the change in the *i*-th index is $\Delta \tilde{k}_i$ and calculate it as follows:

$$\begin{split} &\tilde{\mathbf{k}}_{i}{=}k_{i}{+}\Delta\tilde{\mathbf{k}}_{i},\ i{=}1,2...,n\\ &\Delta\tilde{\mathbf{k}}_{i}{=}0.01i,\ i{=}1,2...,86\\ &\Delta\tilde{\mathbf{k}}_{i}{=}0.02i,\ i{=}1,2...,86\\ &\dots\\ &\dots\\ &\Delta\tilde{\mathbf{k}}_{i}{=}0.20i,\ i{=}1,2...,86 \end{split}$$

The perturbed equations of (1) and (2) are calculated as shown below:

$$\begin{split} \ln \tilde{f} &= \alpha_1 \ln \tilde{k}_1 + \alpha_2 \ln \tilde{k}_2 + \dots + \alpha_n \ln \tilde{k}_n \\ \tilde{f} &= 0.35 \sum_{1}^{43} \tilde{k}_i + 0.15 \sum_{44}^{86} \tilde{k}_i \end{split}$$

The elasticities are calculated through the following four simulations.

Case1.
$$F(\alpha_1, \alpha_2 ..., \alpha_n) = \sum_{i=1}^n (\alpha_i \ln k_i - \ln f_i)^2 \to min$$

Case 2. $F(\alpha_1, \alpha_2 ..., \alpha_n) = \sum_{i=1}^{n} (\alpha_i \ln k_i^j - \ln f_i)^2 + \sum_{j=1}^{m} \sum_{i=1}^{n} (\alpha_i \ln \tilde{k}_i^j - \ln \tilde{f}_j)^2 \to min, \text{ where } \Delta \tilde{k}_i = 0.01i, i = 1, 2, ..., 86.$

Case 3. $F(\alpha_1, \alpha_2 ..., \alpha_n) = \sum_{i=1}^{n} (\alpha_i \ln k_i - \ln f_i)^2 + \sum_{j=1}^{m} \sum_{i=1}^{n} (\alpha_i \ln \tilde{k}_i^j - \ln \tilde{f}_j^j)^2 \to min, \text{ where } \Delta \tilde{k}_i = 0.20i, i = 1, 2, ..., 86.$

Case4. $F(\alpha_1, \alpha_2 ..., \alpha_n) = \sum_{i=1}^{86} (\alpha_i \ln k_i - \ln f_i)^2 + \sum_{j=1}^{20} (\sum_i^{86} \alpha_i \ln(\tilde{k}_j + \Delta \tilde{k}_j) - \ln f_j) \rightarrow min$, where $\Delta \tilde{k}_i = 0.01i$, 0.02i,...0.20i. i = 1, 2, ..., 86.

Since some indices may affect positively and negatively to the general index, all optimization problems for all cases (1-4) are unconstrained convex optimization problems.

Results

Calculations are performed using the CVXPY(Convex Programming in Python) library, which contains specially designed methods for finding solutions to convex and static optimization problems. OSPQ (Operator Splitting Quadratic Programming) and ADMM (Alternating Direction Method of Multipliers) methods were applied, and a total of 50 iterations were completed.

Annex 1 lists the 86 indices along with their corresponding names and positive/negative elasticities.

Case	Case 1	Case 2	Case 3	Case 4	Case	Case 1	Case 2	Case 3	Case 4
Min.value	1.55E-15	1.72E-15	1.11E-13	2.41E-09	Min.value	1.55E-15	1.72E-15	1.11E-13	2.41E-09
α1	0.007	0.0105	0.0356	0.0056	α44	-0.0275	-0.0273	-0.0371	-0.0466
α2	0.011	0.0161	0.0338	0.0148	α45	0.0216	0.0213	0.0217	0.0353
α3	0.0198	0.0289	0.0277	0.0223	α46	0.0138	0.0119	0.0242	0.0336

α4	-0.0312	-0.0337	-0.0287	-0.0207	α47	0.0174	0.016	0.0231	0.0347
α5	0.0231	0.0302	0.0347	0.0303	α48	0.0227	0.0222	0.0209	0.0297
α6	0.0126	0.0176	0.0314	0.0241	α49	0.0243	0.0239	0.0199	0.0225
α7	0.0288	0.0392	0.0135	0.0511	α50	0.0073	0.004	0.0257	0.0263
α8	-0.0226	-0.0242	-0.0465	-0.0482	α51	0.0068	0.0041	0.0258	0.0256
α9	-0.0128	-0.0135	-0.0564	-0.0486	α52	0.0047	0.0042	0.0263	0.0229
α10	-0.0381	-0.0404	-0.0153	-0.0354	α53	0.01	0.0064	0.0248	0.0284
α11	-0.0113	-0.0118	-0.0566	-0.0555	α54	0.0124	0.0092	0.0241	0.0295
α12	0.0235	0.0311	0.023	0.0413	α55	0.014	0.011	0.0236	0.0295
α13	-0.0277	-0.0292	-0.0401	-0.065	α56	0.0206	0.0192	0.0084	0.0037
α14	0.0212	0.0275	0.0248	0.0358	α57	0.0211	0.0187	0.0215	0.0247
α15	0.006	0.0066	0.0309	0.0272	α58	0.0288	0.0274	0.016	0.0093
α16	0.0127	0.0156	0.0281	0.0182	α59	0.0088	0.0048	0.0248	0.026
α17	0.0132	0.0161	0.0276	0.0172	α60	0.005	0.0049	0.0257	0.0229

Conclusions

After 4 different simulations, the Case1 has the minimum and the best result. This leads to the conclusion that the perturbations should be put in different forms.

If we summarize the results of the first simulation:

 17 sub-indices, such as Commute time and Job security, have elasticities that are negatively correlated with the general index (Annex1).

The sub-indices with the greatest positive impact appear to be Agriculture, Accessibility of Green Spaces and Public Amenities, Investments in The Health Sector, Investments in Low Greenhouse Gas Emission Energy Production, Economic Returns from Land Use and Integrated System for Reducing Potential Risks and Threats. A 1% sub-increase in these indices would lead to approximately a 0.03% increase in the general index [6].

On the other hand, the sub-indices with the strongest negative influence are the Consumer Price and Investments in Tourism and Cultural Events. A 1% increase in these sub-indices is estimated to reduce the general index by approximately 0.04%. The least sensitive sub-indices are Accessibility of Food Supply and Accessibility of Education, with elasticities of approximately 0.005% [7].

References

- 1. Introduction and numerical data of Ulaanbaatar city index
- 2. Mao Lin Cheng. (2014). A modified Cobb-Douglas production function model and its application, IMA Journal of Management Mathematics, 25, 353-365
- Andre Lemelin., Fernando Rubiera-Morollon., Ana Gomez-Loscos. (2014). Measuring Urban Agglomeration:
 A Refoundation of the Mean City-Population Size Index, Springer Science+Business Media Dordrecht.
- Carl Higgs., Hannah Badland., Koen Simons., Luke Knibbs, D., Billie Giles-Cortl. (2019). The Urban Liveability Index: developing a policy-relevant urban liveability composite measure and evaluating associations with transport mode choice, Higgs et al.Int J Health Geogr, 18:14
- Worawej Onnom., Nitin Tripathi., Vilas Nitivattananon., Sarawut Ninsawat. (2018). Development of a Liveable City Index (LCI) Using Multi Criteria Geospatial Modelling for Medium Class Cities in Developing Countries, MDPI.
- Enkhbat, R., Battuvshin, C. H. (2021). Supply and Demand Theory and Methodology, National University of Mongolia Press.
- 7. GPCI year book. (2022).

Annex 1

	General Index	0.433
		The year 2023
	Stability condition	0.412
1	Average Life Expectancy	0.710
2	FertilityRate	0.587
3	Migration	0.381
4	Commute Time and Traffic Jams	-0.268
5	Share of Renewable Energy in Total Consumption	0.031
6	Employment Rate	0.542
7	Agriculture	0.104
88	Job Security(as measured by the unemployment rate)	-0.435
9	PovertyLevel	-0.626
10	Consumer Price Index	-0.140
11	hoome Disparity	-0.660
12	GDP per Capita (at 2015 par prices)	0.270
13	Tax Burden	-0.355

		The year 2023
	Accessibility	0.488
44	General Health Indicators	-0.358
45	Accessibility of Private Health Care Services	0.331
46	Accessibility of Public Health Care Services	0.511
	Accessibility of Public Transportation Services	0.429
48	Availability of Pedestrian and Bicycle Paths	0.295
49	Accessibility of The Road Network	0.246
50	Accessibility of Local Road Connections	0.700
	Accessibility of Engineering Infrastructure	0.717
52	Accessibility of Food Supply	0.797
53	Accessibility of Commercial and Public Facilities	0.615
54	Accessibility of Consumer Goods and Services	0.547
55	Accessibility of Housing	0.505
56	Cultural Accessibility	0.020

Page No: 03 www.mkscienceset.com Sci Set J of Economics Res 2024

14 Personal Physical Security Rating	0.344	57 Accessibility of Sports	0.350
15 htegrityAssessment	0.745	58 Accessibility of Green Spaces and Public Amenifies	0.125
Responsibility and Capacity of Civil Servants of The City (ethics and responsibility)	0.539	59 Accessibility of Neighborhood Association	0.851
17 Education Level	0.526	60 Accessibility of Education	0.786
18 Digital Transformation of The City	0.398	61 Accessibility of General Education	0.628
19 Legal Framework for The PolicyDevelopment	0.491	62 Accessibility of Private Education	0.511
Capital Policy/Development, Planning and Implementation (optimal, effective, impactful, transparent)	0.228	63 Accessibility of Public Services	0.492
21 Risk Management Plan	0.280	64 Social Welfare	0.663
Quality of Environment	0.490	65 Location and Accessibility of Risk Reduction Facilities	0.453
22 Qualityo fPubli cHealth Care	0.498	Competitiveness	0.293
23 Qualityo fPersonal Health Care	0.602	66 Investments in The Health Sector	0.115
24 Particulate Pollution/particles (PM2.5/ PM10)	-0.321	67 Average SalarybySector	0.588
25 Qualityo fWater Supply	0.378	68 h vestments in Low Greenhouse Gas Emission Energy Production	0.111
26 Air QualityIndex	0.319	69 Investments in Infrastructure Sectors	-0.468
27 Quality of Public Transport Services	0.396	70 Utilization of Labor Resources	0.343
28 Qualityo fThe Road Network	0.394	71 Trade Logistics	0.210
29 Power SupplyQuality	0.787	72 Economic Capability	0.339
30 Qualityo fFood Supply	0.733	73 Economic Returns from Land Use	0.130
31 Tax Rates	-0.330	74 Types of Investments	-0.280
32 Fulfilment of Basic Human Needs	0.680	75 Investments in Tourism and Cultural Events	-0.142
33 Life Satisfaction	0.606	76 Production Share in Total Income	0.250
34 Qualityo f Green Space per Capita	0.207	77 Investments in The Agricultural Sector	-0.300
35 Urban Cultural and Tourism Level /recreation/	0.600	78 Productivityand Efficiency	0.462
36 StressLevel	-0.471	79 Living Conditions	0.244
37 Sanitation Facilities and Their Quality	0.620	80 Investments in The Education Sector	-0.194
38 Level of Waste Management	0.483	81 Legal Environment in Finance	0.603
39 Qualityo fPrivate Education	0.720	82 Planning Capability	0.275
40 Qualityo f General Education	0.545	83 Financial Capability	0.250
41 Equality(Gender Inequality)	0.237	84 Investment Freedom	0.450
42 Qualityo fPublic Services	0.508	85 Financial Balance of Budgetary Investment	-0.297
43 Disaster Risk	-0.348	86 Integrated System for Reducing Potential Risks and Threats	0.139

Copyright: ©2024 Rentsen Enkhbat, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Page No: 04 www.mkscienceset.com Sci Set J of Economics Res 2024