
Science Set Journal of Pediatrics

www.mkscienceset.com Sci Set J of Pediatrics 2026

Review Article

The Microbiome–Imaging Axis: Can Radiology Detect Microbial Influences 
on Disease?

General Medicine, Iuliu Hatieaganu University of Medicine and Pharmacy, Cluj Napoca, Romania

*Corresponding author: Naeem Hamza, General Medicine, Iuliu Hatieaganu University of Medicine and Pharmacy, Cluj Napoca, Romania. 

Submitted: 12 January 2026     Accepted: 21 January 2026     Published: 28 January 2026

Citation: Hamza, N., Lana, M., Ismael, S. S. H., Mahdi, W., Almonajjed, M. B., Wirman, A. (2026). The Microbiome–Imaging Axis: Can 
Radiology Detect Microbial Influences on Disease? Sci Set J of Pediatrics, 4(1), 01-09.

Page No: 01

Keywords: Radio Microbiomics, Microbiota-gut-brain axis (GBA), Multi-omics integration, Gut-liver axis, Functional Connectiv-
ity (FC), Diffusion Tensor Imaging (DTI), Voxel-based morphometry (VBM), Bacteria-specific PET tracers, Microbial metabolites, 
Bile acids (BAs), Short-chain fatty acids (SCFAs), Lipopolysaccharides (LPS).

Abstract
The microbiome–imaging axis, or radio microbiomics, is an emerging field that combines medical imaging with gut 
microbiome analysis to map how the gut communicates with distant organs, particularly the brain. While traditional 
research often focuses on simple correlations, this framework uses structural and functional imaging to visualize the 
actual physical impact of gut dysbiosis on host tissue. This review explores how microbial metabolites ,such as short-
chain fatty acids (SCFAs) and bile acids, act as molecular messengers that trigger changes in brain connectivity, cor-
tical thickness, and liver fat deposition. We examine the clinical utility of these findings as non-invasive biomarkers for 
Alzheimer’s disease, Multiple Sclerosis, and NAFLD. Additionally, we discuss the development of pathogen-specific 
PET tracers that allow doctors to see active infections directly, rather than just the body’s inflammatory response.
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Introduction
The microbiome–imaging axis, often referred to as radio micro-
biomics, represents an emerging interdisciplinary framework 
that integrates advanced medical imaging with gut microbiome 
analysis to visualize and quantify interactions between the gas-
trointestinal tract and distant organ systems, particularly the 
brain [1-6]. This framework builds on accumulating evidence 
that the gut microbiota communicates with the central nervous 
system through metabolic, immune, and neural pathways, and 
that these interactions can be captured using structural, function-
al, and metabolic imaging techniques. By combining microbi-
ome profiling with radiological data, radio microbiomics pro-
vides a systems-level approach to characterizing the biological 
mechanisms underlying the gut–brain axis (GBA) and the con-
tribution of gut dysbiosis to disease pathogenesis [1-6].

The core strength of the microbiome–imaging axis lies in its ca-
pacity to integrate quantitative imaging parameters—including 
brain morphology, connectivity, and metabolic activity—with 
microbial compositional and functional data to map the down-

stream effects of gut-derived signals on the central nervous 
system . While early microbiome research primarily identified 
associations between specific microbial taxa and neurological 
disorders, this framework extends beyond correlation by link-
ing microbial alterations to observable structural and function-
al brain changes. Radio microbiomics specifically leverages 
radiomics-derived imaging features alongside high-throughput 
microbiome datasets to identify imaging biomarkers and poten-
tial mechanistic pathways within the GBA. Importantly, this ap-
proach supports a bidirectional model, capturing not only how 
microbial metabolites and immune mediators influence CNS ar-
chitecture, but also how brain activity feeds back to regulate gut 
physiology [1-6].

Understanding how gut microbial alterations are reflected in 
medical imaging is critical for uncovering disease mechanisms, 
identifying biomarkers, and improving clinical decision-mak-
ing. Whereas microbiome studies typically provide composi-
tional or functional snapshots, imaging enables visualization of 
the physiological consequences of dysbiosis, including altered 
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white matter integrity, cortical thinning, and disrupted functional 
connectivity. These imaging correlates help distinguish patho-
genic microbial effects from adaptive or compensatory changes. 
Moreover, imaging-based signatures associated with dysbiosis 
show promise as non-invasive biomarkers for early diagnosis, 
risk stratification, and prognostication in conditions such as Alz-
heimer’s disease, schizophrenia, and Crohn’s disease. Integra-
tion of imaging with microbiome and metabolomic data further 
supports precision medicine approaches by improving patient 
stratification and therapeutic targeting. For instance, combined 
MRI–microbiome models have been used to estimate biologi-
cal age in schizophrenia, enhancing assessment of cognitive de-
cline, and to improve prediction of cumulative bowel damage 
in Crohn’s disease. Imaging also provides an objective means 
of monitoring responses to microbiome-targeted interventions, 
such as probiotics, prebiotics, and dietary modification, through 
longitudinal assessment of brain structure and function [1-8].

 Multiple imaging modalities contribute complementary insights 
into microbiome-related disease processes. Magnetic Resonance 
Imaging (MRI) is the most extensively utilized modality. Struc-
tural MRI and voxel-based morphometry have demonstrated 
associations between specific microbial taxa and alterations in 
hippocampal volume, cortical thickness, and gray matter mor-
phology in disorders including Alzheimer’s disease and irritable 
bowel syndrome [1-4]. 

Diffusion Tensor Imaging (DTI); has revealed correlations be-
tween taxa such as Eggerthellaceae and white matter tract integ-
rity, particularly in pathways relevant to memory and language, 
and has identified microstructural abnormalities in germ-free 
animal models. Functional MRI (fMRI), both resting-state and 
task-based, has linked gut microbiota composition to altered 
connectivity in networks governing emotion, cognition, and 
autonomic regulation, including evidence of probiotic-induced 
modulation of the default mode network. Magnetic Resonance 
Spectroscopy (MRS) enables in vivo quantification of brain me-
tabolites and has identified abnormal choline peaks in the ante-
rior cingulate cortex of individuals at ultra-high risk for psycho-
sis, consistent with membrane dysfunction potentially related to 
dysbiosis [1-7].

Beyond neuroimaging, Magnetic Resonance Enterography 
(MRE) enables macroscopic assessment of intestinal inflamma-
tion and structural damage in Crohn’s disease, and its integra-
tion with microbiome signatures improves prediction of disease 
severity and progression [8]. Emerging ultra-high-field (UHF) 
MRI offers unprecedented spatial resolution for visualizing 
small brainstem and spinal structures implicated in vagal and 
spinal components of the GBA [2]. Positron Emission Tomog-
raphy (PET) further complements MRI by providing metabolic 
and molecular specificity. FDG-PET and amyloid-targeted trac-
ers have demonstrated associations between microbiome alter-
ations and cerebral glucose metabolism, amyloid deposition, and 
neuroinflammation in Alzheimer’s disease [1-4]. PET imaging 
of microglial activation offers insight into inflammatory pro-
cesses potentially driven by microbial metabolites such as short-
chain fatty acids [7]. Although modalities such as CT and ul-
trasound play supporting roles-particularly in hybrid approaches 
such as PET-CT-advanced MRI techniques remain central due 
to their superior soft tissue characterization and compatibility 

with multi-omic integration [8, 9]. Overall, the microbiome–im-
aging axis represents a transformative approach for visualizing 
the systemic consequences of gut dysbiosis. By integrating ra-
diological phenotyping with microbial and metabolic data, this 
framework enhances mechanistic understanding, supports the 
development of non-invasive biomarkers, and lays the founda-
tion for personalized therapeutic strategies across neurological 
and gastrointestinal disorders.

Building on these imaging-based insights into gut–organ com-
munication, the following section focuses on the gut–liver axis, 
where microbiome-driven metabolic and inflammatory path-
ways can be directly quantified using advanced hepatic imaging 
techniques.

Microbiome and Metabolic/Liver Diseases
The gut–liver axis is a central regulator of metabolic homeosta-
sis, reflecting the bidirectional interaction between the gut mi-
crobiota and hepatic physiology. Owing to its anatomical and 
functional connection to the intestine via the portal circulation, 
the liver is continuously exposed to gut-derived metabolites, 
microbial products, and inflammatory mediators, rendering it 
particularly susceptible to alterations in microbial composition 
and activity [2, 3]. Accumulating evidence indicates that gut 
dysbiosis plays a critical role in the initiation and progression of 
non-alcoholic fatty liver disease (NAFLD) and metabolic syn-
drome by modulating hepatic lipid accumulation, inflammation, 
and fibrogenesis through multiple interconnected biological 
pathways.

Influence of Gut Microbiota on Liver Fat, Fibrosis, and In-
flammation
Several mechanisms link microbial imbalance to liver pathol-
ogy. Increased intestinal permeability, a hallmark of dysbiosis, 
facilitates translocation of bacteria and microbial products such 
as lipopolysaccharide (LPS) into the portal circulation [2-4]. 
LPS activates Toll-like receptor 4 (TLR4) on hepatic Kupffer 
cells, inducing pro-inflammatory cytokine release—including 
TNF-α and IL-6—which promotes hepatic inflammation and 
triggers stellate cell activation, a key driver of fibrogenesis [1-
5]. Dysregulation of bile acid metabolism further contributes to 
metabolic dysfunction. Microbiota-mediated modification of 
bile acids alters signaling through the FXR and TGR5 pathways, 
disrupting glucose and lipid homeostasis [1-7]. Secondary bile 
acids, such as deoxycholic acid, may also impair intestinal barri-
er integrity and exert hepatotoxic effects [5]. 

Additional microbially mediated pathways exacerbate NAFLD 
pathogenesis. Certain bacterial species, including Klebsiella 
pneumoniae and Escherichia spp., produce endogenous etha-
nol, increasing oxidative stress and intestinal permeability and 
thereby amplifying hepatic injury [2-5]. Microbial conversion 
of dietary choline into trimethylamine (TMA) reduces choline 
availability for very-low-density lipoprotein (VLDL) synthesis, 
impairing hepatic lipid export and promoting steatosis [1,5]. 
Alterations in tryptophan metabolism also contribute to disease 
progression. A shift from the protective indole pathway toward 
the pro-inflammatory kynurenine pathway—driven by increased 
indoleamine 2,3-dioxygenase (IDO) activity—has been associ-
ated with hepatic inflammation and fibrosis [4]. Reduced levels 
of indole-3-propionic acid (IPA), a microbial metabolite that 
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supports gut barrier integrity, have likewise been linked to more 
advanced fibrotic disease [4].

Imaging Methods Used to Evaluate Microbiome-Related 
Liver Changes
Non-invasive imaging modalities play a critical role in quantify-
ing hepatic steatosis, inflammation, and fibrosis, particularly in 
research contexts where liver biopsy is impractical or unethical 
[8]. MRI–Proton Density Fat Fraction (MRI-PDFF) is a highly 
precise and reproducible technique for quantifying hepatic fat 
content and is widely adopted as a non-invasive biomarker, with 
a threshold of ≥5% commonly used to define NAFLD [6-8]. 
Magnetic Resonance Elastography (MRE) provides accurate as-
sessment of liver stiffness as a surrogate marker of fibrosis and is 
considered the most sensitive non-invasive method for detecting 
advanced fibrosis, with values ≥3.63 kPa indicating clinically 
significant disease [6-8].

Ultrasound-based elastography techniques, including vibra-
tion-controlled transient elastography (VCTE; FibroScan), offer 
accessible alternatives for estimating liver stiffness; however, 
their diagnostic accuracy may be reduced in individuals with 
obesity and they are less reliable for staging disease severity [3-
8]. Conventional ultrasonography remains widely used for de-
tecting hepatic steatosis but has limited sensitivity for mild fat 
infiltration and cannot reliably distinguish simple steatosis from 
non-alcoholic steatohepatitis (NASH) [3-5]. Collectively, these 
imaging approaches provide non-invasive platforms for linking 
structural and functional liver changes with microbiome-derived 
metabolic and inflammatory signatures.

Microbial Taxa and Metabolites Correlating with Imaging 
Findings
Recent studies integrating microbiome profiling with MRI-
PDFF and MRE have identified characteristic microbial and me-
tabolomic patterns associated with hepatic steatosis and fibrosis. 
Advanced fibrosis, as defined by MRE, is consistently associat-
ed with increased abundance of Gram-negative taxa, including 
Proteobacteria, Enterobacteriaceae, and Escherichia coli, along-
side depletion of beneficial Firmicutes such as Eubacterium rec-
tale and Ruminococcus obeum [1].  In NAFLD-related cirrhosis, 
microbial signatures shift further toward enrichment of Strep-
tococcus, Megasphaera, and Gallibacterium, accompanied by 
marked reductions in Faecalibacterium prausnitzii [8].  Metabo-
lomic analyses have identified 3-(4-hydroxyphenyl)lactate as a 
metabolite jointly associated with hepatic fibrosis and steatosis, 
correlating strongly with the abundance of Bacteroides caccae, 
Clostridium spp., and Escherichia coli [6].

Microbial correlates of hepatic steatosis, assessed using MRI-
PDFF or ultrasound, include elevated abundance of the family 
Veillonellaceae, which has been linked to increased NAFLD risk 
[7]. Conversely, taxa such as Rikenellaceae, Barnesiellaceae, 
and Bifidobacterium adolescentis are associated with reduced 
disease likelihood [7]. Taurocholic acid, a bile acid derivative, 
positively correlates with NAFLD risk and higher microbi-
ome-based risk scores [7]. Consistent with fibrosis-associated 
findings, elevated levels of 3-(4-hydroxyphenyl)lactate are also 
observed in individuals with MRI-defined NAFLD, reinforcing 
its role as a shared microbial metabolite associated with both 
hepatic fat accumulation and fibrotic remodeling [6]. Despite 

these consistent associations, the predominantly cross-sectional 
design of existing studies limits causal inference, underscoring 
the need for longitudinal, multi-omic imaging studies to clarify 
temporal relationships.

Microbiome and Brain Imaging: The Gut–Brain Axis
The gut–brain axis (GBA) operates as a bidirectional communi-
cation network through which the gut microbiota interacts with 
the central nervous system via neural, endocrine, immune, and 
metabolic pathways [9]. Dysbiosis—alterations in microbial 
composition—can affect brain plasticity, structural organization, 
and physiological activity by modulating neurotransmitter pro-
duction, influencing the hypothalamic–pituitary–adrenal axis, 
activating inflammatory cascades, and changing microbial me-
tabolite availability [9, 10]. Advances in neuroimaging have en-
abled the detection of these microbiome-driven effects on func-
tional networks, cortical morphology, white-matter architecture, 
and neurometabolite signatures.

Influence of Gut Microbiota on Brain Structure, Connectiv-
ity, and Metabolism
Evidence indicates that gut microbiota are critical modulators 
of intrinsic functional brain networks. Functional connectivity 
(FC) analyses reveal that microbial composition affects large-
scale systems such as the default mode network (DMN), sa-
lience network (SN), and frontoparietal network (FPN). Genera 
including Prevotella and Bacteroides show strong associations 
with connectivity strength within these networks [11]. Microbial 
diversity correlates with global network topology, with higher 
diversity linked to small-world network properties that support 
cognitive functions like working memory [16]. Experimental 
studies in germ-free mice demonstrate widespread hyperconnec-
tivity and poorly modularized networks, highlighting the impor-
tance of microbial colonization for normal synaptic pruning and 
network maturation [14]. Additionally, gut microbes influence 
structural–functional coupling in regions such as the fusiform 
gyrus and hippocampus, affecting cognitive control and atten-
tional processes [16].

Microbiome-related changes also extend to brain structure and 
microstructure. Structural MRI studies indicate that microbial 
enterotypes, such as Bacteroides or Prevotella dominance, are 
associated with differences in cortical thickness and gray matter 
volume. Individuals with a Bacteroides enterotype often show 
reduced prefrontal cortical thickness compared with those dom-
inated by Ruminococcaceae or Prevotella [10]. Diffusion tensor 
imaging (DTI) links families such as Selenomonadaceae and 
Veillonellaceae with white-matter integrity in the frontal cor-
tex and cerebellum [11]. Germ-free mouse models complement 
these findings, showing immature microglia, altered dendritic 
spine density, and impaired structural organization in the ab-
sence of microbiota [14].

Inflammatory and metabolic pathways form another critical 
connection between gut microbial communities and neural func-
tion. In schizophrenia, peripheral cytokines (IL-2, IL-6, TNF-α) 
mediate relationships between specific bacterial taxa, such as 
Succinivibrio, and altered anterior cingulate cortex activity [9]. 
Short-chain fatty acids (SCFAs), mainly produced by commen-
sal bacteria, maintain blood–brain barrier integrity and reduce 
neuroinflammation [10]. Reduced SCFA-producing genera are 
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common in depression and schizophrenia and are linked to ab-
normal neural responses [9]. Microbial genera including Bac-
teroides and Parabacteroides also regulate glutamate–GABA 
pathways, connecting dysbiosis to altered metabolic activity in 
cerebellar and limbic circuits [10].

Neuroimaging Techniques to Study the Gut–Brain Relationship
Radiomicrobiomics, which integrates microbiome data with 
neuroimaging, has transformed the study of gut–brain interac-
tions [10]. Resting-state fMRI (rs-fMRI) remains the primary 
tool for mapping FC alterations related to microbial variability, 
with dysbiosis linked to disrupted synchrony in DMN, SN, and 
limbic networks [11, 12]. Task-based fMRI shows complemen-
tary effects; probiotic supplementation can reduce amygdala 
reactivity to emotional stimuli and enhance executive control 
circuits during working-memory tasks [12, 13].

DTI reveals associations between microbial taxa and white-mat-
ter integrity in frontal lobes, cerebellum, and corpus callosum 
[11]. Structural MRI measures cortical thickness and gray-mat-
ter volume, showing microbiome-related differences in the 
hippocampus and prefrontal cortex [10]. Magnetic resonance 
spectroscopy (MRS) provides metabolic insights by quantifying 
neurometabolites such as GABA, glutamate, and N-acetylas-
partate, corresponding to microbiome composition or probiotic 
interventions [9].

Machine learning models combining microbial sequencing with 
neuroimaging biomarkers improve disease classification. Sup-
port vector machines and deep learning approaches achieve high 
accuracy (AUC > 0.90) in distinguishing clinical populations 
from controls based on microbial abundance and neural features 
[9, 10].

Diseases Studied in the Gut–Brain–Imaging Context
Major depressive disorder (MDD) shows reduced SCFA-pro-
ducing bacteria (Faecalibacterium, Coprococcus) and increased 
pro-inflammatory taxa (Enterobacteriaceae, Eggerthella), cor-
relating with abnormal hippocampal and DMN connectivity 
[10]. IBS demonstrates structural alterations in the prefrontal 
cortex and hypothalamus, with disrupted SN connectivity [18]. 
Schizophrenia presents a strong inflammatory microbiota–brain 
axis, where elevated cytokines associated with Succinivibrio 
and Proteus correlate with reduced regional homogeneity and 
altered brain volume [9]. ASD is linked to microbial Clostridium 
overgrowth, associated with reduced fractional anisotropy in the 
corpus callosum [10]. Bipolar disorder and hepatic encephalop-
athy further illustrate the influence of microbial modulation on 
neural function and connectivity [5-21].

Imaging Microbial Infections Directly
Radiology and nuclear medicine are increasingly essential for 
detecting infectious processes; however, conventional imaging 
lacks sensitivity and specificity. CT and MRI are widely used 
to localize infections and determine tissue involvement [22], 
but they rely on structural changes like edema, necrosis, or flu-
id collections, which appear only at later stages [22, 23]. Early 
infection often goes undetected, and anatomical imaging can-
not reliably differentiate active bacterial infection from sterile 
inflammation or malignancy [22, 23]. Conventional nuclear 
medicine methods using [18F]FDG or radiolabeled leukocytes 

detect inflammatory activity rather than pathogens, generating 
false positives in sterile inflammatory lesions or tumors [22, 23].
To overcome these limitations, microbe-targeted radiophar-
maceuticals have been developed to image pathogens directly. 
These agents exploit prokaryote- or fungal-specific pathways, 
such as siderophore-mediated iron acquisition, specialized sugar 
metabolism, and folate synthesis [22, 23]. Radiolabeled sidero-
phores like [68Ga]Ga-DFO-B selectively accumulate in infec-
tions caused by Pseudomonas aeruginosa and Staphylococcus 
aureus [22]. Para-aminobenzoic acid (PABA) analogs target 
bacterial folate synthesis, allowing specific detection without 
uptake in noninfected host tissue [24].

Among promising tracers is 2-deoxy-2-[18F] fluoro-D-sorbitol 
([18F]FDS), which selectively enters Enterobacterales via a sor-
bitol-specific pathway absent in mammalian cells [24, 25]. [18F]
FDS accumulates in infected tissues but not in Staphylococcus 
aureus, host tissues, or cancer cells, and can distinguish fungal 
species (C. albicans vs. C. glabrata) [24, 25]. In contrast, [18F]
FDG accumulates non-specifically in metabolically active tis-
sues, including sterile inflammation and tumors [25].

Microbial PET tracers are evaluated for diverse infections. In 
invasive aspergillosis, [18F]FDS distinguishes fungal infiltrates 
from bacterial pneumonia or sterile inflammation in immuno-
compromised patients [25]. Musculoskeletal infections use 
D-methyl-[11C]methionine and [68Ga]Ga-NOTA-UBI29-41 to 
differentiate septic from aseptic implant loosening [26]. Pulmo-
nary and cardiovascular infections, including tuberculosis and 
endocarditis, are being studied using various pathogen-specific 
tracers [26]. MRI complements PET by providing structural in-
formation and elucidating microbiome–host interactions across 
organ systems [23, 24].

Molecular Pathways Linking Microbiome to Imaging 
Changes
The gut microbiome (GM) and its metabolites exert profound 
effects on host health and central nervous system (CNS) func-
tion. Research across neurodegenerative, psychiatric, and in-
flammatory diseases consistently highlights that the micro-
biota-gut-brain axis (GBA) represents a robust bidirectional 
communication system, necessitating advanced methodologies 
to elucidate underlying mechanisms [23].

Microbial Metabolites and Host Pathways
The mechanistic link between gut flora dysbiosis and host pa-
thology is mediated by small-molecule metabolites that modu-
late immune, metabolic, and neural systems.

Short-Chain Fatty Acids (SCFA) and Neuroinflammation
SCFAs, primarily acetate (AA), propionate (PA), and butyrate 
(BA), are essential microbial products frequently depleted in 
disease states [28]. Lower plasma PA/AA and BA/AA ratios 
are strongly associated with increased T2 lesion load and high-
er disability scores (EDSS) in patients with multiple sclerosis 
(MS) [29]. These depleted SCFA ratios negatively correlate 
with pro-inflammatory cytokine-producing immune cells (GM-
CSF+, TNF-α+, IFN-γ+ T and B cells), suggesting that SCFA 
imbalances promote environments that exacerbate neurodegen-
erative processes [29]. Similarly, in Alzheimer's disease (AD) 
and amnestic Mild Cognitive Impairment (aMCI), SCFA con-
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centrations decline progressively, coinciding with a reduction in 
SCFA-producing Firmicutes taxa such as Clostridia and Blautia 
[28-30].

Bile Acids, Lipids, and Toxic Byproducts
Other mediating metabolites include bile acids (BAs) and host 
lipids. Altered BA profiles correlate with neuroimaging bio-
markers in AD; for instance, lower cholic acid (CA) levels are 
associated with decreased hippocampal volume and reduced 
FDG-PET brain glucose metabolism [28]. Lipid metabolism 
dysfunction in AD, reflected by declines in serum sphingomy-
elin (SM) and ether-containing phosphatidylcholines (PC), af-
fects cellular lipid rafts—platforms influencing Aβ accumula-
tion and tau oligomer production, linking metabolic status to 
structural integrity [28].

Pro-inflammatory microbial products such as lipopolysaccha-
ride (LPS), derived from Gram-negative bacteria (e.g., Bacte-
roides), translocate across impaired barriers, linking systemic 
inflammation to brain regions with elevated amyloid load (fron-
tal, anterior cingulate, precuneus cortex) as visualized by PET 
imaging [23-31].

Microbial Metabolic Deficiency and Organ Function
In the gastrointestinal tract, SCFA shortage due to reduced bac-
terial load (e.g., via broad-spectrum antibiotics) forces colono-
cytes to switch energy metabolism to glycolysis, resulting in 
measurable increases in colonic 18F-FDG uptake (SUVmax/
mean) on FDG-PET-CT [32]. This demonstrates a unique func-
tional imaging application to monitor host–microbiota interac-
tions [32].

Quantitative Neuroimaging: Mapping the Microbiome's Impact
Quantitative neuroimaging is essential for translating GBA re-
search into spatial and temporal visualization of microbial-in-
duced brain effects [23].

Functional MRI (fMRI) and Connectivity Changes
Resting-state fMRI (rsfMRI) measures functional connectivity 
(FC) and BOLD signal alterations due to GM changes [23]. In 
aMCI patients, regions with decreased intrinsic brain activity, 
particularly the cerebellar vermis IV-V (0.01–0.08 Hz), nega-
tively correlate with Bacteroidetes abundance [30]. Functional 
disruptions in cerebellar regions, traditionally linked to motor 
control and cognition, parallel decreased cognitive scores. Pro-
biotics or fermented milk products modulate brain activity in 
emotion- and sensation-related networks, such as the DMN and 
salience network, decreasing BOLD signals in viscero-sensory 
cortices [23-30].

Structural and Microstructural Imaging (VBM and DTI)
Voxel-based morphometry (VBM) identifies structural changes; 
studies link GM composition to increased sensory region vol-
umes and decreased insular and prefrontal cortices in IBS pa-
tients [27]. Germ-free (GF) mice models further demonstrate 
commensal bacteria are necessary for normal neural morpholog-
ic development, showing regional expansion of olfactory bulbs 
and prefrontal cortex [23-31].

Diffusion tensor imaging (DTI) provides fractional anisotropy 
(FA) and mean diffusivity (MD) measures of white matter in-

tegrity. Fecal matter transplantation (FMT) from ADHD patients 
into GF mice reduces FA and increases MD in hippocampus and 
fornix, indicating GM directly impacts neural microstructure 
[23-31]. Increased Actinobacteria abundance correlates with 
higher FA in amygdala and thalamus in obese men, underscoring 
DTI specificity beyond VBM [23].

Multi-Omics Integration and Biomarker Discovery
Integration of microbiome, metabolome, and functional gene 
data identifies reproducible, disease-specific signatures, enhanc-
ing diagnostic accuracy.

Integrative Analysis in IBD
Cross-cohort integrative analysis (CCIA) of IBD used nine 
metagenomic and four metabolomic cohorts, identifying 31 spe-
cies, 25 KO genes, and 13 metabolites that consistently differen-
tiated IBD from healthy controls [33]. Integration of multi-omics 
signatures improved AUROC to 0.98, outperforming single-om-
ics models [33]. KEGG orthology (KO) analysis highlighted 
upregulated two-component systems and downregulated propa-
noate metabolism, with crp gene expression correlating with fe-
cal calprotectin [33]. Multi-omics correlation maps revealed im-
paired microbial biotransformation (e.g., rocF downregulation 
leading to urea accumulation) and enriched aminoacyl-tRNA 
biosynthesis, suggesting immune regulatory roles [33].

Shotgun Metagenomics in Hematopoietic Cell Transplanta-
tion (HCT)
In HCT patients under chemotherapy and broad-spectrum anti-
biotics, shotgun metagenomic sequencing enabled high-resolu-
tion functional analysis of resistomes and virulence factors [31]. 
Metagenome-assembled genomes (MAGs) tracked bacterial 
population dynamics, including shifts in dominant Enterococ-
cus faecium strains, validated with orthogonal PCR [31]. These 
analyses highlight clinical relevance for detecting microbial 
threats in vulnerable populations [31].

Future Directions
Neuroimaging and multi-omics integration complement each 
other in characterizing GBA functional consequences [23-32]. 
While metagenomics and metabolomics reveal microbial com-
ponents and molecular messengers, quantitative neuroimaging 
(fMRI, DTI, PET) provides measurable evidence of temporal 
and spatial effects on CNS and GI tissues [23-32]. Longitudinal 
studies and controlled preclinical models (GF and gnotobiotic 
animals) are critical for confirming causality [23]. The combined 
use of imaging and multi-omics data holds substantial potential 
for developing non-invasive, high-accuracy biomarkers for di-
agnosis, prognosis, and therapy monitoring in complex diseases 
such as AD, MS, and IBD [23-33].

Radio microbiomics and Multi-Omics Integration
Defining Radio microbiomics and Neuroimaging-Omics
Radio microbiomics integrates quantitative brain imaging with 
gut microbiome data, enabling investigation of complex bidi-
rectional communication systems like the GBA, particular-
ly relevant in AD pathogenesis [28]. Neuroimaging-omics or 
multi-omics integration combines radiomic features with bio-
logical data (microbiomics, genomics, metabolomics) to identi-
fy multi-dimensional signatures critical for understanding inter-
action mechanisms and discovering biomarkers or therapeutic 
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targets [28-34]. Data layers include microbiome composition 
(via 16S rDNA or metagenomic sequencing) [28]; imaging-de-
rived radiomics (multi-modal MRI, 18F-FDG-PET) [28-35]; 
and metabolomics profiling (e.g., SCFAs, BAs) as intermediate 
signals bridging gut microbiota and brain [28].

AI and Deep Learning Approaches for Integration
Artificial intelligence (AI), especially deep learning (DL), is cru-
cial for integrating high-dimensional, heterogeneous radiomics 
and multi-omics data [34]. CNNs process raw 2D/3D images, 
extracting features while maintaining spatial context [34]. Gen-
erative models (VAEs, GANs) handle incomplete data, generate 
synthetic samples, and infer missing modalities [34]. Transform-
ers combined with GANs can relate MRI features to SNP data to 
predict cognitive decline [34].

Sequential models (RNNs) handle longitudinal imaging data in 
diseases like AD, and combined RNN-VAE frameworks capture 
both temporal and cross-modal dimensions [34]. Integration 
strategies—early, intermediate, late fusion—enable learning 
nonlinear inter-modality relationships and shared latent spaces 
[34].

Challenges in Combining High-Dimensional Imaging and 
Microbiome Data
Integrating imaging and omics data presents challenges due to 
heterogeneity, scale differences, and missingness [35]. High 
feature dimensionality leads to overfitting and unreliable anal-
yses. Spatial and temporal discrepancies occur because imaging 
is longitudinal while molecular profiling may not be systematic 
[35, 36]. Differences in technical platforms, measurement scales, 
and feature counts complicate integration [34, 35]. Missing mo-
dalities reduce usable sample size, limiting machine learning 
performance [36].

Lack of standardized nomenclature linking radiomic data with 
biological omics further hinders reproducibility and global cor-
relation [35]. Addressing these challenges requires innovative 
multi-layer computational systems to ensure structured relation-
ships and consistency across data types [35].

Methodological Challenges and Study Quality
The central methodological challenge in microbiome–imaging 
research is that current imaging modalities do not visualize mi-
croorganisms directly; instead, they detect microbial metabolic 
activity or downstream effects on host tissues (37). This indirect 
detection paradigm reflects the physical limitations of existing 
imaging technologies, particularly their insufficient spatial reso-
lution to resolve individual microbes in vivo (37). While inten-
tional, this constraint introduces interpretative challenges when 
distinguishing microbial-derived signals from host background 
effects, especially in complex biological environments. These 
challenges are further compounded by the intrinsic complexity, 
inter-individual variability, and temporal instability of the hu-
man microbiome [37].

A substantial body of literature demonstrates that systematic 
biases may be introduced at nearly every stage of microbiome 
research, from sample acquisition to downstream bioinformatic 
analysis [38]. When such biases intersect with imaging-derived 
endpoints, they may propagate or amplify error, underscoring 

the need for rigorous methodological control and cautious inter-
pretation [38].

Limitations and Biases in Microbiome–Imaging Studies
Low-Microbial-Biomass Samples and Contamination
Low-microbial-biomass (LMB) samples represent one of the 
most significant constraints in microbiome–imaging studies, 
particularly when derived from tissues traditionally considered 
sterile, such as blood, lung, placenta, or solid organs (39). In 
these settings, microbial DNA signals are often comparable to 
background contamination originating from laboratory reagents 
(“kitomes”), environmental exposure, equipment, or personnel 
[39]. This limitation is critical for imaging validation, as spu-
rious microbial signals may result in false spatial or functional 
associations. Earlier reports describing a placental microbiome 
were later shown to be indistinguishable from contamination 
controls, highlighting the consequences of inadequate contam-
ination control in LMB studies [39].

Biases in Standard Microbiome Analysis
Even prior to integration with imaging, sequencing-based mi-
crobiome analyses are subject to substantial technical bias [38].

Sample Collection and Storage
Sample collection methods impose biological constraints; mu-
cosal biopsies capture adherent microbial communities, where-
as stool or rectal swabs primarily represent luminal populations 
[38]. Storage conditions further influence microbial composi-
tion, as delayed freezing or room-temperature storage allows se-
lective expansion of aerotolerant taxa such as Enterobacteriace-
ae, distorting community structure [38]. Chemical preservatives 
such as RNAlater may also bias diversity metrics and relative 
abundance estimates [38].

DNA Extraction and PCR
DNA extraction introduces significant bias due to differen-
tial lysis efficiency among bacterial taxa, particularly between 
Gram-positive and Gram-negative organisms [38]. The choice 
of extraction kit alone can alter inferred microbial composition 
(38). In addition, PCR-based approaches amplify DNA from 
both viable and non-viable cells, complicating interpretation 
when imaging aims to reflect active microbial metabolism [38].

Sequencing and Bioinformatics
Primer selection for 16S rRNA gene sequencing represents a 
major source of bias, as no universal primer set amplifies all 
taxa equally [38]. In metagenomic workflows, library prepara-
tion protocols can introduce GC-content bias, as demonstrated 
with certain commercial kits [38]. Downstream analytical de-
cisions—including OTU clustering versus denoising algorithms 
(e.g., DADA2, Deblur) and reference database selection (e.g., 
SILVA, Greengenes)—can yield substantially different taxo-
nomic profiles from identical datasets [38]. These methodolog-
ical choices directly influence how imaging-derived signals are 
contextualized and interpreted.

Limitations of Specific Imaging Modalities
Each imaging modality operates within distinct physical and bi-
ological regimes that define its applicability [37]. Optical tech-
niques, including fluorescence and bioluminescence imaging, are 
limited by shallow tissue penetration and oxygen dependence, 
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restricting their use largely to preclinical models and exclud-
ing obligate anaerobes that dominate the gut microbiota [40]. 
Metabolic labeling approaches, whether fluorescence-based or 
radionuclide-based, are constrained by signal dilution as labeled 
bacteria divide, limiting their utility for long-term colonization 
studies [41, 42].

MRI-based tracking using iron oxide nanoparticle labeling 
similarly suffers from signal dilution and lacks discrimination 
between live and dead bacteria, complicating functional inter-
pretation [43]. Ultrasound-based acoustic reporter gene technol-
ogies represent a promising but still nascent approach; current 
limitations include genetic stability of reporter constructs and 
restricted applicability across diverse microbial taxa, particular-
ly Gram-positive species [44]. PET imaging, while highly sen-
sitive, is limited by spatial resolution, cost, radiation exposure, 
and tracer-specific pharmacokinetics, including non-target organ 
retention [37].

Influence of Confounding Factors
Pharmacologic and host-related variables represent major con-
founders in microbiome–imaging studies [37, 38].

Antibiotics
Antibiotic exposure is particularly influential, as it can pro-
foundly alter microbial composition and function. Wang et al. 
demonstrated that broad-spectrum antibiotics eliminated the 
antitumor efficacy of anti–PD-1 immunotherapy by disrupting 
the gut microbiota [42]. Conversely, antibiotic treatment is now 
deliberately used as an experimental tool to confirm bacterial 
specificity of imaging signals or to monitor antimicrobial effi-
cacy [40].

Other Confounders
Additional variables, including diet, age, host genetics, and im-
mune status, further modulate microbial activity and imaging 
readouts (37, 38). Animal models therefore remain essential for 
isolating microbial effects under controlled conditions, although 
this reliance introduces translational limitations when extrapo-
lating findings to heterogeneous human populations [37]

Recommended Standards for Study Quality
To mitigate these challenges, rigorous contamination control 
is essential, particularly for LMB samples [39]. Comprehen-
sive negative controls, including extraction blank controls and 
no-template amplification controls, should be routinely incorpo-
rated to characterize background signal [39]. Quantitative val-
idation methods such as qPCR should be used to confirm that 
microbial DNA levels in biological samples exceed those of 
control blanks [39]. Statistical decontamination tools, including 
Decontam, may then be applied to identify and remove contam-
inant sequences [39].

Standardization of protocols across studies remains critical for 
reducing inter-study variability (38). This includes consistency 
in sample collection, storage conditions, DNA extraction meth-
ods, and sequencing workflows [38]. For emerging imaging mo-
dalities, built-in validation controls are particularly important; 
for example, acoustic reporter gene signals can be selectively 
erased to confirm specificity and improve reproducibility [44].

Clinical Applications and Future Perspectives
The microbiome–imaging axis is driven by its potential to move 
beyond correlative associations and provide spatially resolved, 
functional insight into host–microbe interactions [37]. By inte-
grating imaging with microbiome profiling, this approach offers 
a pathway toward clinically actionable interpretation of micro-
bial activity.

Improving Diagnosis, Prognosis, and Treatment Monitoring
A primary clinical application lies in distinguishing active bac-
terial infection from sterile inflammation, a limitation of con-
ventional imaging techniques [45]. Bacteria-specific PET tracers 
targeting metabolic pathways absent in host cells, such as folate 
and peptidoglycan synthesis, represent a rational solution to this 
diagnostic challenge [45]. This approach is particularly prom-
ising for infections in anatomically inaccessible or sterile sites, 
including vertebral osteomyelitis, septic arthritis, diabetic foot 
infections, and pneumonia [45].

Functional imaging of microbial activity also enables early 
assessment of treatment response, often preceding anatomical 
changes detectable by CT or MRI [45]. Parker et al. demonstrat-
ed the ability to distinguish antibiotic-sensitive from resistant 
E. coli strains in vivo using D-[³-¹¹C]alanine PET imaging, con-
firming therapeutic efficacy in real time [45]. Complementary 
metagenomic analyses may further guide therapy by identifying 
antimicrobial resistance genes and informing targeted antibiotic 
selection [39].

As microbiome-based therapeutics such as fecal microbiota 
transplantation and engineered probiotics gain clinical traction, 
imaging tools capable of tracking delivery, engraftment, and 
persistence will become increasingly important [40-42].

Target Diseases for Clinical Application
Cancer: Imaging microbiome modulation of immunotherapy 
(e.g., anti-PD-1) and tumor microbiota interactions in colorectal 
and breast cancer [42]. Infectious Diseases: Targeted imaging 
for difficult-to-diagnose infections such as pneumonia, vertebral 
discitis-osteomyelitis, and septic arthritis [45].

Inflammatory and Autoimmune Disorders: Conditions like 
IBD, where microbial dysbiosis plays a role, are potential tar-
gets [38]. Neurological and Metabolic Disorders: Microbiome 
involvement in neuropsychiatric and metabolic diseases can be 
investigated via functional imaging of gut-brain interactions [37, 
38].

Technological and Ethical Challenges
Despite rapid progress, several barriers to clinical translation re-
main. Many PET tracers exhibit taxonomic bias or background 
host uptake, while metabolic labeling strategies are inherent-
ly limited by signal dilution, preventing long-term tracking of 
colonization [41, 42]. Optical imaging techniques remain con-
strained by tissue penetration, although emerging fluorophores 
in the near-infrared window offer potential improvements [37-
40]. Reporter gene approaches face challenges related to micro-
bial genetic engineering, particularly for obligate anaerobes that 
dominate the gut microbiota [37-41]. Methods requiring bacte-
rial pre-labeling, such as MRI-based approaches, remain largely 
restricted to animal models [43]. Ultimately, widespread clinical 
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adoption will depend on robust validation, standardization, and 
ethical oversight to prevent misinterpretation and potential pa-
tient harm [38, 39].
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