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Introduction
The human body is a habitat of trillions of microbial cells whose 
coordinated actions are considered essential for human life. 
These populations of microbial cells can be found in greater 
numbers in the intestines, mouth, and vaginal canal, with the 
first having the highest density. This process is known as micro-
biota which develops throughout the host's childhood to eventu-
ally reach its adult form [1-5].

Members of this microbiota encompass the three domains of life: 
Archaea, Bacteria, Eukarya, and viruses [6, 7]. They are known 
to establish complex trophic relationships with one another and 
with their human host, ranging from symbiosis to parasitism 
[7]. There are a relatively small number of pathogens consid-
ered members of the microbiota, mainly in the intestines, resid-
ing undisturbed in the enteric microbiota of the host [1]. These 
pathogens threaten the host’s health when there is a disturbance 
in the ecosystem, altering the homeostasis of the microbiota [8].

The composition of gastrointestinal, mouth, and vaginal micro-
biota can be affected by several environmental parameters, such 
as pH, reactive oxygen levels, nutrient availability, and tempera-
ture. Depending on how the environment interacts with these mi-
croorganisms they can thrive and perform different activities on 
the host [9]. The human intestinal microbiota plays critical roles 
in maintaining health, helping to break down food substances, 
such as resistant starches, and forming essential nutrients for the 
host, as in short-chain fatty acids [10]. This brings benefits to 

host cells, protecting them from colonization by pathogens and 
modulating the immune system [11].

Short-chain fatty acids, mainly butyrate, promote metabo-
lism benefits not only to colonocytes but also to the liver [12]. 
Formed in the large intestine by the action of intestinal bacteria 
through resistant starch, this fatty acid interacts with the G pro-
tein-coupled receptor 109 A (GPR109A) in intestinal epithelia 
[13]. Butyrate has a synergistic interaction with niacin in the 
same receptor, modulating the action of macrophages in immu-
noinflammatory processes [14] (figure 1). Other short-chain fat-
ty acids such as acetate and propionate, also produced by intes-
tinal bacteria, interact with G protein-coupled receptors 41 and 
43 (GPR41/43), keeping interleukin 10 (IL-10) in control of the 
inflammation [12].

Several epidemiological studies have already established a cor-
relation between changes in the microbiota in childhood and 
metabolic disorders in adult life [15-18]. Thus, research has 
been supporting nutritional strategies to maintain intestinal mi-
crobiota homeostasis through functional foods, prebiotics, and 
probiotics [15].

The consumption of some drinks with probiotics, such as Kom-
bucha, has already demonstrated positive effects on the human 
microbiota [19]. Kombucha is a fermented tea drink with an 
acidic and effervescent flavor, composed of several species in 
a microbial ecosystem with complex interactions characterized 
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Abstract
Probiotics are live bacteria beneficial to the body, especially for the digestive system. Researchers are still trying to uncov-
er in detail how probiotics work. So far, there is evidence that probiotics help to keep the microbiota in mucous membranes 
healthy by helping in several aspects, mainly in the immune system. Probiotics can be used in a diversity of treatments, 
including irritable bowel syndrome, inflammatory bowel disease (IBD), infectious diarrhea (caused by viruses, bacteria, 
or parasites), diarrhea caused by antibiotics, eczema, and others. Emerging evidence highlights their use in addressing 
issues related to other parts of the body, such as urinary and vaginal health, prevention of allergies and colds, and oral 
health. Therefore, this review aims to analyze the role of these microorganisms in the human body, the differences between 
probiotics, prebiotics, and postbiotics, as well as the mechanisms of action of some strains and their benefits to the host.
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by cooperation and conflict [20]. In kombucha, a complex com-
munity of bacteria and yeasts starts the fermentation of an initial 
tea, which can be green tea with sugar, producing a biofilm that 
covers the liquid for several weeks [21]. This happens through 
several fermentative phases that are characterized by coopera-
tion and competition between microbes in the kombucha solu-
tion [21]. The bacteria produce a surface biofilm that can act as 
a public good, providing protection against invaders, storage of 
resources, and greater access to oxygen for microbes embedded 

in it [22]. Ethanol and acid produced during the fermentation 
process (by yeast and bacteria, respectively) can also help pro-
tect the system from invasions by microbial competitors in the 
environment [21].

Therefore, in this review, we investigate the role of these micro-
organisms in the human body, the differences between probi-
otics, prebiotics, and postbiotics, as well as the mechanisms of 
action of some strains and their benefits to the host.

Figure 1: Adapted Nature Chemical Biology 10(6):416-24.

Prebiotics
Prebiotics were first defined in 1995 by Gibson and Roberfroid 
as non-digestible starch [23]. In this category of foods, the re-
sistant starches act for the benefit of the host, stimulating the 
growth and activity of beneficial bacteria present in the colon 
[24]. Updated methods regarding prebiotics occurred in 2004 
when three distinct criteria were used: 1) resistance to gastric 
acidity and hydrolysis by mammalian enzymes and gastrointes-
tinal absorption; 2) fermentation by intestinal microbiota; and 
3) selectively stimulate the growth and/or activity of intestinal 
bacteria associated with health and well-being [25-27].

While Probiotics are living organisms that live in the mucous 
membranes, such as the intestine, mouth and vagina to protect 
the host system against invaders, especially harmful bacteria, 
prebiotics, in turn, are carbohydrates not digestible to the system, 
which serve as food for probiotics [28-31]. For the maintenance 
of intestinal and vaginal microbes, it is necessary to constantly 
and homogeneously consume prebiotics [30, 31]. However, the 
concept of prebiotics is a bit complex. Not all fibers can be clas-
sified as prebiotics. On the other hand, most prebiotics can be 
classified as dietary fiber [32].

Prebiotics have also been associated with stimulating the specific 
groups of beneficial bacteria, Bifidobacterium, and Lactobacil-
lus [33]. These two strains are two types that are extremely im-
portant in gut health [34]. The relationship between the increase 
in these bacteria and healthy intestinal microbiota has been sub-
stantially investigated by the scientific community, although this 
relationship has not yet been fully proven [35]. The production 
of acetate and lactate by Bifidobacterium and Lactobacillus is 

already well elucidated in the scientific literature [36, 37]. These 
studies also state that the production of acetate and lactate can 
stimulate several species of beneficial bacteria, which benefit in 
the presence of the prebiotic.

Postbiotics
The concept of postbiotics may be related to the observation of 
the beneficial effects of the microbiota mediated by the secre-
tion of certain metabolites [38]. However, its definition remains 
under discussion. Unlike prebiotics and probiotics, the scien-
tific community does not consider postbiotics to be symbiotic 
[39]. On the other hand, some authors such as Klemashevich et 
al., state that postbiotics can also strengthen the intestinal mi-
crobiome, noting that the term “symbiotics” should be revised 
and postbiotics should be incorporated into its definition [40]. 
Although postbiotics do not contain live microorganisms, they 
have a beneficial effect on health through mechanisms like pro-
biotics, minimizing the risks associated with their ingestion [39]. 
Due to the high heterogeneity of substances classified as post-
biotics, we can cite some examples, such as Bacterial Lysates 
(BLs), Bacterial Lipoteichoic Acid (LTA), antioxidant enzymes, 
such as glutathione peroxidase (GPx), superoxide dismutase 
(SOD), catalase, and NADH-oxidase, Cell-free Supernatants, 
Exopolysaccharides (EPSs), Bacterial Lysates (BLs), and Short-
chain Fatty Acids (SCFAs) [41-50].

Short-chain fatty acids (SCFAs), acetate, propionate, and bu-
tyrate are the main end products of bacterial fermentation of 
complex carbohydrates, being an important indicator of bacte-
rial fermentation in the colon considered postbiotic [51]. The 
concentration of SCFAs changes throughout the gastrointestinal 
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tract, with the highest concentrations in the proximal colon and 
the lowest concentrations in the distal colon, the region of the 
gastrointestinal tract with the highest density of microbes [52].

Although the balance between SCFAs is fundamental, butyrate 
is the key energy source for colonocytes and enterocytes [12]. 
Alternatively, propionate can also be functional in the intestines 
by intestinal gluconeogenesis or even diffused into the portal 
vein to be used as a substrate for gluconeogenesis (figure 2). 
Although 90 to 99% of SCFAs are absorbed by the intestine or 
even harnessed by the microbiota, a small amount of propionate 
and acetate are found in the peripheral circulation [52, 53].

Recently, several studies have been affirming the relationship 
between gut-brain pertaining to neurodegenerative diseases [54]. 
Interestingly, acetate, in addition to being the most abundant 
SCFA found in the bloodstream, this SCFA has been shown to 
easily cross the blood-brain barrier, interacting with the Central 
Nervous System [55]. However, the function of these postbiotics 
is to maintain glucose homeostasis, maintain cellular integrity 
in the gastrointestinal epithelium, control immunoinflammato-
ry processes, and regulate lipid metabolism as well as appetite 
modulation [38, 56].

Figure 2: Adapted International Journal of Molecular Sciences 19(6), 2018.

Probiotics
The term probiotic is derived from the Latin preposition “pro,” 
which means “for” and the Greek word “biotic” meaning “life” 
[57]. Probiotics are live bacteria beneficial to the body, espe-
cially for your digestive system [58]. Researchers are still try-
ing to find out exactly how probiotics work. So far, evidence 
indicates that probiotics help to keep the microbiota in mucous 
membranes healthy by helping in several.

aspects, mainly in the immune system [59]. Probiotics help to 
send food through the intestine, affecting the nerves that control 
movement called intestinal peristalsis [60].

Probiotics can be used in various types of treatments, including 
irritable bowel syndrome, inflammatory bowel disease (IBD), 
infectious diarrhea (caused by viruses, bacteria, or parasites), di-
arrhea caused by antibiotics, eczema, and others. Furthermore, 
additional research establishes their usefulness in problems re-
lated to other parts of your body, such as urinary and vaginal 
health, prevention of allergies and colds, and oral health [61-
68]. While research has not yet determined exactly how probi-
otics work, some of the ways these strains can keep you healthy 
would be in extreme cases when beneficial bacteria are lost, 
such as after taking antibiotics or after diarrhea caused by food 
poisoning. In these cases, probiotics can help by re-establishing 

these beneficial bacteria helping to keep the body functioning in 
a healthy way [63, 64]. Some studies suggest that administer-
ing a probiotic alongside antibiotic treatment helps in cases of 
diarrhea caused by the antibiotic [64]. However, probiotics are 
commonly used to reduce gastrointestinal symptoms that are not 
caused by acute illnesses, such as gas, bloating, and constipation 
[69].

In women, some strains of Lactobacillus have been shown to 
help prevent and treat bacterial vaginosis and vulvovaginal 
candidiasis [70]. However, studies have demonstrated the anti-
bacterial efficacy of Bifidobacterium, a type of probiotic, to aid 
vaginal health [71]. Bifidobacterium is a genus of gram-positive 
anaerobic bacteria [72]. They are ubiquitous inhabitants of the 
gastrointestinal tract, vagina, and mouth of mammals, including 
humans [73]. Alternatively, it is viable for women to prevent di-
gestive and vaginal infections by taking probiotic supplements 
aimed at restoring pH balance [74].

Bacterial vaginosis (BV) is one of the most common diseases in 
women of reproductive age [74]. Considering the contrast iden-
tified in the microbiome profile between women of different rac-
es, in the work of Wang et al., (2019) the lactobacillus showed 
satisfactory results in BV [75]. Compared to Caucasian wom-
en, black women tend to have a more diverse vaginal microbial 



 profile, with a higher prevalence of BV and Nugent scores and 
a considerably stronger immune response related to BV-associ-
ated bacteria [76]. Contrastingly, the vaginal flora of Caucasian 
women was mainly dominated by Lactobacillus [76]. Thus, the 
exclusive use of probiotics in therapy showed a better benefit in 
the treatment of BV compared to a placebo [77]. Therefore, us-
ing probiotics for vaginal health has been an interesting strategy 
for women.

A healthy lower female reproductive system is dominated by 
several Lactobacillus spp., with L. crispatus, L. gasseri, L. jen-
senii, L. iners and L. vaginalis the most frequent and abundant 
organisms present in American women [78, 79]. Several studies 
have shown that the predominant bacterial species that colonize 
the female genital tract differ by geography and ethnicity [80, 
81]. Depletion of Lactobacillus spp. is directly associated with an 
overgrowth of pathogenic bacteria leading to the development of 
bacterial vaginosis [82]. Despite a wide diversity of opinions re-
garding probiotics in the treatment of bacterial vaginosis, prom-
ising studies have been found with acidophilus lactobacillus and 
rhamnoses lactobacillus. Oral or intravaginal administration of 
these lactobacilli significantly inhibited the breakdown of epi-
thelial cells induced by Gardnerella vaginalis [83, 84].

Lactobacillus Acidophilus
Lactobacillus acidophilus is a gram-positive bacillus of the Lac-
tobacillus genus of the Lactobacillaceae family [85]. Most strains 
of L. acidophilus are microaerobic bacteria and grow more effi-
ciently in anaerobic rather than aerobic environments [86]. Their 
optimum growing temperature ranges from 35 to 38°C, and they 
basically do not grow at temperatures below 20°C [87]. L. aci-
dophilus has low heat resistance, and its pH optimum is between 
5.5~6.0 [88]. Due to its eosinophilic nature, this strain has good 
acid and bile resistance and can maintain itself in different envi-
ronments than other strains [89]. L. acidophilus still has distinct 
characteristics, such as the use of mono and disaccharides such 
as glucose, fructose, lactose, and sucrose respectively to carry 
out homotypic fermentation, producing DL-lactic through fer-
mentation [90].

The nature of L. acidophilus is one of the kinds of beneficial 
microbial flora. Recent studies have stated that L. acidophilus 
participates in the intestinal tract of the host mainly through the 
production of metabolites and regulation of the intestinal micro-
biota, regulating the balance of the intestinal flora, reducing the 
intestinal pH, and producing beneficial metabolites to the host 
[91].

L. acidophilus can lower the pH of the environment and inhibit 
the growth and reproduction of pathogenic bacteria, which pro-
duce enzymes able to catalyze the conversion of carcinogenic 
precursors to carcinogens, such as azo reductase, nitro reductase 
and β-glucosidase [91]. L. acidophilus can inhibit the enzymatic 
activity of these pathogens as well as compete for adhesion sites, 
thus inhibiting cell invasion [92]. 

As a cholesterol modulator in the host, L. acidophilus possess-
es the capacity to aid in several diseases associated with dys-
lipidemia [93, 94]. Among the various biological functions of 
L. acidophilus is risk reduction of cardiovascular disease, im-
provement of gastrointestinal disease outcomes, improvement 

of lactose intolerance, prevention and treatment of cancer, and 
regulation of immune capacity, among others [94-98].

Bifidobacterium Lactis
Bifidobacterium is a genus of gram-positive, immobile, often 
branching anaerobic bacteria [99]. Although predominantly pres-
ent in the gastrointestinal tract, these strains can also be encoun-
tered in the vagina and mouth of mammals, including humans 
[100, 101]. Similar to Lactobacillus, Bifidobacterium species 
are abundant in the gastrointestinal tract [101]. Bifidobacterium 
breve, Bifidobacterium lactis, B. infantile are some of the pro-
biotic strains of Bifidobacterium with multiple health benefits 
ranging from colorectal cancer and enterocolitis, inflammatory 
bowel disease to competitive elimination of pathogens [102].

Clinical studies already demonstrate that the subspecies of Bi-
fidobacterium animalis lactis 420 (B420) positively impact met-
abolic syndrome by limiting weight gain, improving glucose 
metabolism, and reducing low-grade inflammation [103]. Stud-
ies established that the addition of Bifidobacterium lactis as a 
probiotic to conventional treatment of ulcerative colitis had not 
only improved remission rates but also improved maintenance 
of remission [104]. Different species and/or strains of Bifidobac-
terium have been proven to exert a number of beneficial health 
effects, including regulation of intestinal microbial homeostasis, 
inhibition of harmful pathogens and bacteria that colonize and/
or infect the intestinal mucosa, modulation of local immune re-
sponses and systemic effects, the repression of pro-carcinogen-
ic enzymatic activities within the microbiota, the production of 
vitamins and the bioconversion of various dietary compounds 
into bioactive molecules [105]. Bifidobacterium also improves 
the barrier of the intestinal mucosa and reduces the levels of li-
popolysaccharides in the intestine, which are responsible for an 
alteration in the gut-brain axis in diseases of the Central Nervous 
System [106].

Lactobacillus Rhamnosus
Lactobacillus rhamnosus, more recently named Lacticaseiba-
cillus rhamnosus, is a gram-positive homofermentative faculta-
tive anaerobic non-spore-forming lactobacillus often appearing 
in chains [107]. Some strains of this bacteria are being used as 
probiotics, mainly in the treatment of female urogenital tract 
infections [108]. Studies have shown promising results with L. 
rhamnosus, especially in more complicated cases to treat bacte-
rial vaginosis [108, 109]. L. rhamnosus is commonly found in 
the healthy female genitourinary tract and is useful for maintain-
ing control of dysbiotic bacterial overgrowth during an active 
infection [110]. Despite being considered a beneficial organism, 
L. rhamnosus may rarely show some changes in certain subsets 
of the population, especially those mainly involving weakened 
immune systems or infants, and may cause endocarditis [111]. 
Although infections caused by L. rhamnosus are rare, it is im-
portant to note that the L. rhamnosus strains isolated from blood 
cultures are distinct from the specific strain known as L. rham-
nosus GG. The probiotic L. rhamnosus GG is considered safe for 
use in healthy individuals with a properly functioning immune 
system [112].

The ability to create co-aggregates with pathogenic microorgan-
isms can modulate the fate of pathologies such as vulvovagi-
nal candidiasis [113]. Some strains showed greater capacity for 
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adhesion and self-aggregation, with L. rhamnosus AD3 being 
the most efficient to form co-aggregates with all three Candida 
species, especially C. tropicalis [114]. Although the coaggrega-
tion capacity of L. rhamnosus GG is greater, L. rhamnosus AD3 
has demonstrated the capacity of binding to Candida cells more 
consistently [108, 115]. 

Studies by Stivala et al., (2021) indicated that among all strains 
of vaginal lactobacilli tested, L. rhamnosus AD3 revealed the 
necessary properties as a potential probiotic strain, addressing 
all safety features, showing the highest levels of resistance in 
relation to the gastrointestinal tract, in the production of active 
biotic powders, action against pathogenic fungi and bacteria, 
ability to adhere to epithelial mucosa, and ability to form strong 
aggregates as well as co-aggregating with Candida [108].

Lactobacillus Crispatus
Lactobacillus crispatus is a common rod-shaped species of the 
genus Lactobacillus [116]. This strain is used as a probiotic for 
premenopausal and postmenopausal women who have recurrent 
urinary tract infections [117]. Clinical studies have specifical-
ly pointed to the administration of L. crispatus in the preven-
tion and treatment of bacterial vaginosis, characterized by the 
absence of the Lactobacillus flora necessary to protect the host 
from infection [116].

The role of L. crispatus in maintaining vaginal health is cor-
related with hormonal factors, including testosterone as well as 
a strong interdependence between the intestinal and vaginal mi-
crobiota [118]. On the other hand, L. crispatus appeared more 
abundant in the fecal microbiome of patients with atheroscle-
rotic cardiovascular disease [119]. Several studies have already 
indicated that L. crispatus is critical in preserving fertility and 
preventing vaginal infections, in Bacterial Vaginosis as well as 
Vulvovaginal Atrophy (VVA), which can cause irritation and a 
foul-smelling vaginal discharge [116]. We know that if the pop-
ulation of L. crispatus is low, there is a favorable environment 
for bacterial vaginosis [119]. Therefore, one of the characteris-
tics of L. crispatus is keeping a low pH, preventing infections, 
and preserving the balance of microbe populations [116]. This 
occurs due to the production of lactic acids from sugars, using 
homofermentative metabolism, helping to slow down epithelial 
cells [120].

Lactobacillus Gasseri
Lactobacillus gasseri is a species of the genus Lactobacillus 
identified in 1980 by François Gasser [121]. It occurs in the 
vaginal and intestinal flora alike and is a normal inhabitant of 
the lower reproductive tract in healthy women [122]. One of the 
characteristics of L. gasseri was associated with stress control 
[123]. Studies have shown that daily intake of L. gasseri for four 
weeks improved symptoms associated with stress in medical 
students who participated in a cadaver dissection course and im-
proved clinical symptoms in patients with irritable bowel syn-
drome (IBS) [124].

As a lactic bacteria, L.gasseri has shown interesting results in 
controlling stress, as well as improving sleep quality and bowel 
function [125]. Previous studies have shown that ingesting fer-
mented milk with pasteurized L.gasseri improved bowel hab-
its and the intestinal environment compared to the effects of a 

placebo prepared with artificially acidified sour milk, indicating 
that pasteurized L.gasseri bacterial cells promote these improve-
ments [126].

Several studies have already proven some probiotics alter the 
production of SCFAs by the intestinal microbiota [50]. Stimu-
lating endocrine epithelial cells in colonocytes, as well as gut 
hormones, modulating the gut-brain axis [12]. In studies by 
Nishida et al., (2019) L.gasseri significantly increased n- valeric 
acid concentrations compared to the placebo [125]. In another 
study, Yuille et al., (2018) established that n-valeric acid is a 
potent inhibitor of class I histone deacetylase (HDAC) [127]. 
This study used HT-29 human colon cancer cells suggesting an 
increase in the concentration of n-valeric acid in comparison to 
the one found in feces in the study by Nishida et al., (approxi-
mately 10–15 mM). However, the physiological significance of 
n-valeric acid in stool is still not completely understood, requir-
ing further research on the topic.

Lactobacillus Reuteri
Lactobacillus reuteri DSM 17938 (L. reuteri) recently renamed 
Limosilactobacillus reuteri (L. reuteri) is a probiotic present in 
different parts of the human body, including the gastrointestinal 
and urinary tract, skin, and breast milk [128]. L. reuteri has the 
ability to adhere to the intestinal epithelium forming proteins 
that bind to mucus, making it difficult for pathogenic microor-
ganisms to enter [129]. Hou et al., (2015) demonstrated that L. 
Reuteri remodeled the intestinal microbiota of swine-producing 
antimicrobial molecules, improving the functionality of regula-
tory T cells, and strengthening the intestinal barrier [130]. This 
study also demonstrated that in humans the translocation of 
pathogenic bacteria from the lumen to tissues was reduced in the 
presence of L. reuteri [130].

Several studies have already shown that L. reuteri has several 
beneficial effects on gastrointestinal symptoms, including diar-
rhea due to intestinal infections [128], antibiotic-associated diar-
rhea, inflammatory bowel disease (IBD), and colorectal cancer 
[131-133]. Likewise, L. reuteri can reduce abdominal pain in 
infantile colic as well as abdominal discomfort due to necrotiz-
ing enterocolitis in premature neonates [134]. Other studies have 
also reported that L. reuteri may improve intestinal motility and 
chronic constipation in infants [128].

In a randomized clinical trial by Shornikova et al., (1997), L. 
reuteri showed promoting results in acute watery diarrhea in 
children and in rotavirus gastroenteritis [135]. In this study, 
the authors randomized children to receive 1010 or 107 colo-
ny-forming units (CFU) of L. reuteri or a placebo once daily for 
5 days.

The results showed that the use of L. reuteri shortened the du-
ration of acute watery diarrhea with a dose-related effect, being 
1.5 days in the group taking a large dose of L. reuteri, 1.9 days 
in the group taking a small dose and 2.5 days in the placebo 
group [135]. The results also denoted that on the second day of 
treatment with L. reuteri, acute watery diarrhea persisted in 48% 
of patients taking the high dose, 70% of those taking the low 
dose, and 80% of those taking the placebo. Several other studies 
have shown the positive effects of L. reuteri supplementation 
[136-138].
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This can be seen in a meta- analysis by Patro-Golab et al., (2019), 
where a reduction in the duration of diarrhea was observed, as 
well as the volume of feces in children [139]. The results of this 
work led the authors to conclude that L. reuteri together with 

other probiotics can be useful and safe for the treatment and pre-
vention of diarrhea, reducing both its duration and the intensity 
of symptoms.

Table 1.
S.no Name of Probiotic Illnesses Treated References

1 Lactobacillus acidophilus Dyslipidemia and cardiovascular 
disease 

Reamtong, et al. (2021) Anderson and Gilliland 
(1999)

2 Bifidobacterium lactis Ulcerative colitis Lapez-pier, et al. (2021)
3 Lactobacillus crispatus Vaginal infection Wright, et al. (2021)
4 Lactobacillus gasseri Gut-brain axis modulation Blaak, et al. (2020)
5 Lactobacillus reuteri Diarrhea and colorectal cancer Saviano et al. (2021) kim, et al. (2022)
6 Bacillus subtilis Antimicrobial drug Li, et al. (2022)
7 Lactobacillus rhamnosus Urogenital tract infection Stivala et al. (2021)

Bacillus Subtilis
Bacillus subtilis is a gram-positive, catalase-positive bacterium 
found predominantly in the gastrointestinal tract of humans 
[140]. As a member of the Bacillus genus, B. subtilis is rod-
shaped and is able to develop a tough, protective endospore, 
allowing it to tolerate extreme environmental conditions [141]. 
Despite being dominant in soil, B. subtilis has been identified in 
water, air, human and animal intestines, vegetables, fermented 
food, raw and pasteurized milk, and dairy products [142]. Due 
to their ubiquity in diverse environments, B. subtilis also holds 
potential value in food products, primarily in the microflora of 
milk [143]. Resembling the mitochondrial genome, the genomic 
sequence of B. subtilis is formed by a single double-stranded 
DNA molecule in a circular shape [144]. A circular chromosome 
is typical of bacteria, mitochondria, and plant chloroplasts.

Due to increased resistance to antibiotics by humans, B. subti-
lis has been studied as an alternative antimicrobial drug [145]. 
The capacity of B. subtilis to produce bacteriocins, specifically, 
peptides exhibiting antimicrobial activity, has drawn the scien-
tific community’s attention indicating a promising potential in 
treatments against bacterial infection [146]. This is due to the 
fact that these bacteriocins withstand large temperature fluctu-
ations as well as retard the growth and/or destroy many types of 
harmful bacteria [147]. Types of B. subtilis bacteriocins include 
the lanthionine-containing peptide antibiotic, also called subti-
lin, and an antibiotic called subtilisin [148]. Subtilisin has both 
antimicrobial activity against gram-negative and gram-positive 
bacteria as well as anaerobic and aerobic microorganisms, in-
cluding Enterococcus faecalis, Enterobacter aerogenes, Strep-
tococcus pyogenes, and Shigella sonnei. Subtilin, on the other 
hand, tends to demonstrate enhanced efficacy against gram- 
negative bacteria and fungi [149].

Discussion
There are a few hundred trillion bacteria per gram of feces in 
the human gut, which together form a complex gut microbiome 
[150]. However, this organ seems to be interconnected not only 
with the digestion and absorption of nutrients. Several studies 
have already reported a close relationship between the intestine 
and the brain, demonstrating that some neurodegenerative dis-
eases began several decades in the past primarily in the intes-
tine [151]. This relationship does not solely occur between the 
gut and the brain. The immune system is also directly linked to 
the gut as well as obesity and diabetes [11, 15, 55, 56, 59]. Re-
cent studies have established that metabolic syndrome may be 
attributed to an imbalance in the intestinal microbiota [15, 152].
Despite some controversies, the use of beneficial bacteria pres-
ent in the human microbiome has been a target of alternative 
therapies in the treatment of several diseases that are associated 
with the intestine and/or vagina. Uusitupa et al...., (2020) had 
already stated that Bifidobacterium animalis lactis 420 (B420) 
positively impacts metabolic syndrome by limiting weight gain, 
improving glucose metabolism, and reducing low-grade in-
flammation [152]. Similarly, Dong et al...., (2022) revealed that 
Bifidobacterium improves the barrier of the intestinal mucosa 
and reduces the levels of lipopolysaccharides in the intestine, 
protecting the host from one of the developmental causes of 
dementia, especially “Lewy body dementia” (figure 3) [106]. 
Some other strains may also interact positively with other types 
of diseases, such as colon and liver tumor growth [153]. Accord-
ing to El-Deeb et al...., (2022) the synthesis of polysaccharides 
carried out by L. acidophilus has demonstrated health bene-
fits by stimulating the immune response related to tumor cells 
[154]. Contrastingly, one of the most important factors that must 
be considered in terms of the effectiveness of probiotics in the 
body is the hydrophobicity of the cell surface, autoaggregation, 
and adhesion of epithelial cells [155].
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Figure 3: Adapted Nutrients. 2021 Jan; 13(1): 28.

According to Plaza-Diaz et al...., (2029) it becomes necessary for 
adhesion to target sites in the gastrointestinal tract of the host in the 
extracellular matrix of tissues as well as the ability for bacteria to 
attach to one another. This autoaggregation prevents the organism 
from eliminating the bacteria and maintains the ability to interact 
with other types of bacteria in the host [156]. In the same way that 
autoaggregation refers to the adhesion of genetically identical strains 
between bacteria and bacteria, the adhesion of distinct strains or dif-
ferent species is known as coaggregation [156]. Understanding both 
autoaggregation and coaggregation mechanisms is important since 
probiotics often protect against infections by these mechanisms an-
tagonistic towards pathogens [157]. While autoaggregation allows 
for competitive exclusion and displacement of pathogens coaggre-
gation enhances the proximity of type VI secretion systems of co-
aggregating probiotic bacteria releasing the antimicrobial substance 
to the target pathogen [156, 158].

Another no less important factor about probiotics is their interaction 
with mitochondria [159, 160]. Recent evidence shows that there is a 
bidirectional interaction between mitochondria and microbiota that 
can affect both mitochondrial biogenesis and the regulation of the 
intestinal microbiota itself [161]. Through the intestinal microbiota, 
it is possible to regulate the main transcriptional coactivators in-
volved in mitochondrial biogenesis, among them the peroxisome 
proliferator-activated receptor gamma coactivator 1-alpha (PGC-
1α), sirtuin 1 (SIRT1) and 5' adenosine monophosphate- activated 
protein kinase (AMPK) genes [159]. SCFAs produced by the gut 
microbiota are also directly associated with both energy production 
in gut mitochondria as well as modulation of ROS and inflamma-
tion which attenuate TNF-α-mediated immune responses [162]. In 
contrast, the production of ROS by mitochondria plays a crucial 
role in the regulation of the intestinal microbiota by modulating the 
function of the intestinal barrier and mucosal immune responses. 
The mitochondrial genome has also been shown to have a crucial 
influence on the gut microbiota by altering its composition and ac-
tivity [163-165].

Conclusion
Given that the human body harbors bacteria at a magnitude tenfold 
greater than that of its own cells, the study of probiotics is becoming 
increasingly necessary in the scientific community. However, the 
exact understanding of how these microorganisms work concerning 
the host still needs further investigation. We know that some strains 
really bring benefits to the host, but the treatment time and the ideal 
dosage are still not well established. The fact that probiotics engage 
in a bidirectional interaction with mitochondria further increases the 
demand to understand the optimal approach to maintain homeosta-
sis both regarding the intestinal and vaginal microbiota. 

Several studies have already revealed that mitochondria are di-
rectly linked to the maintenance of cell health, and the influence 
of probiotics on mitochondrial biogenesis is crucial. Moreover, the 
metabolites generated by this organelle for the maintenance of the 
microbiota of the host are correspondingly fundamental. Therefore, 
this discussion about probiotics and mitochondria should be further 
investigated, as it is a promising way to enhance the comprehension 
of this symbiosis between the microorganism and the human body.
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