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Abstract
Chemoinformatics is an interdisciplinary field combining chemistry, informatics, biotechnology, and data analysis, 
enabling the analysis and interpretation of chemical information using databases, algorithms, and computational 
methods. Its primary applications are found in the pharmaceutical industry, where it allows for the preliminary 
selection of chemical compounds with high biological potential, reducing both the cost and time associated with 
traditional drug discovery processes. This review covers the process of designing analogues of natural products, 
from the selection of organisms for screening (random, ethnopharmacological, chemosystematic, ecological, and 
computational approaches), through extraction, isolation, and identification of active compounds, to biological 
testing and optimization. Modern chemoinformatics tools are also discussed, including molecular modeling, pro-
tein–ligand docking, QSAR, and the prediction of ADME properties and bioavailability. The findings demonstrate 
that the integration of chemistry, biology, and bioinformatics enables rapid identification and modification of chem-
ical structures with therapeutic potential, reducing the need for costly experimental studies. The analysis of natural 
products and their secondary metabolites provide valuable inspiration for the design of new drugs, particularly in 
the context of increasing drug resistance. The conclusions indicate that chemoinformatics is an essential tool in 
modern medicinal chemistry, facilitating the efficient design of natural product analogues with improved pharma-
cokinetic and therapeutic properties, while simultaneously accelerating the drug discovery process.
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Introduction
Chemoinformatics is an interdisciplinary science that fuses 
a variety of scientific fields, including chemistry, informatics, 
data analysis and biotechnology, among others. The method-
ology employed encompasses the utilisation of algorithms and 
databases for the analysis and interpretation of chemical infor-
mation. In addition, a range of computational methods are em-
ployed for the purposes of visualisation and the initial prediction 
of possible outcomes [1]. One of the most common applications 
of chemoinformatics is found in the pharmaceutical industry. 
The conventional approach to drug discovery is characterised 
by its protracted nature and the necessity for substantial finan-

cial investment. Consequently, it necessitates a series of rigorous 
evaluations, encompassing bioactivity and various other prop-
erties, including toxicity and kinetic analysis. The efficacy of 
this process is not assured, as evidenced by numerous studies [2, 
3]. Conversely, chemoinformatics enables experimentalists to 
eliminate certain materials at an early stage, thus enabling them 
to focus on those with greater potential for applicability. One 
such example is the development of machine-learning models 
for Zika virus proteins, first reported in 1947 [4]. Furthermore, 
chemoinformatics has facilitated the development of in silico 
models, which have been instrumental in identifying novel mol-
ecules with potential antimalarial properties [5].
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A further aspect meriting inclusion in any discussion of chemo-
informatics is medicinal chemistry, which is defined as a mul-
tidimensional science at the interface of medicine, chemistry, 
pharmacology and biology. The field of medicinal chemistry is 
generally concerned with the identification of new pharmaceu-
tical compounds for therapeutic use [6, 7]. However, the scope 
of medicinal chemistry extends beyond this initial scope. It 
has been identified as a pivotal instrument in the global effort 
to eradicate poverty in developing countries. It has been estab-
lished that a correlation exists between unsatisfactory sanitation 
conditions, food insecurity and the absence of safe, effective and 
affordable medicines in numerous locations. This has resulted 
in a pernicious cycle of poverty. Medicinal chemistry facilitates 
the development of innovative and accessible therapeutic inter-
ventions, contributing to the near-elimination of several diseas-
es, including dracunculiasis, lymphatic filariasis and trachoma 
in numerous countries. It is accomplishing this objective in the 
context of addressing the escalating issue of drug resistance. An-
other pertinent example is that of the eradication of schistosomi-
asis, a condition which is endemic in numerous countries and for 
which the current treatment is praziquantel, a drug that rapidly 
paralyses the schistosome worms [8].

Prior to the analysis of the design of analogue natural products, 
it is imperative to first comprehend the concept of what a natural 
product is. The definition of natural products (NPs) is as follows: 

they are any chemical substance found in a living organism. They 
play a crucial role in pharmacology and other industries due to 
their bioactivity as well as in drug discovery [ 9, 10]. In addi-
tion to NPs, the secondary metabolites of these organisms have 
been found to demonstrate significant potential. Metabolites are 
defined as small molecules that act as intermediate products of 
metabolic processes found in all living organisms. These have 
been identified as promising biomarkers for a range of diseases 
and conditions, including lung cancer [11]. It is possible to esti-
mate the intake of certain substances, including the daily intake 
of nicotine from cigarette smoking, due to the existence of this 
data [12]. Secondary metabolites represent a distinct category of 
natural products that have been shown to detect oxidative dam-
age resulting from stress. These hormones are synthesised under 
typical adverse conditions in response to environmental stress, 
indicating the organism's ability to adapt to changing conditions 
[13]. The utilisation of these substances is evident in a variety of 
industrial sectors, including but not limited to pharmaceuticals, 
dyes and food production. Furthermore, a range of methodolo-
gies have been devised to augment the synthesis of secondary 
metabolites in plants (Fig.1.), given their role in activating their 
defence mechanisms [14]. Furthermore, the presence of certain 
secondary metabolites has been demonstrated to possess signif-
icant pharmacological and therapeutic potential for humans, in-
cluding anticancer properties. Consequently, they make substan-
tial contributions to both the natural world and human health. 

Figure 1: Examples of Secondary Metabolites in Plants

Despite extensive research in this area, there remains no offi-
cial classification of NPs and metabolites, nor any established 
nomenclature. However, at present, they are diversified by the 
taxonomy rank of the organisms in which they occur [15]. In the 
context of such a division, the following distinctions are made: 
terpenes, terpenoids, alkaloids, flavonoids, nonribosomal pep-
tides and polyketides.

Terpenes (Fig.2.) are obtained from the plant and tree kingdoms. 
Furthermore, certain terpenes have been shown to reduce in-
flammatory symptoms [16]. Examples of such compounds in-
clude clerodane, 18β-glycyrrhetinic acid, lupeol and ursolic acid 
[17]. Volatile terpenes are being explored as a potential alterna-
tive source of energy for the petrochemical industry. However, 
a significant number of terpenes are also used as flavouring and 

fragrance agents in the food and cosmetic industries. Examples 
of such substances include lutein, menthol, carvone and citral 
[18]. Terpenoids, conversely, exhibit structural and chemical va-
riety, albeit to a limited extent. These elements are present in 
both fungi and plants. Terpenoids are frequently employed in 
the pharmaceutical, cosmetic, and food industries. Examples 
in pharmacology include artemisinin, an antimalarial drug, and 
taxol, an anticancer drug [19].

Alkaloids (Fig.2.) are naturally occurring chemical compounds 
that are found in a variety of plants. They are characterised by the 
presence of nitrogen atoms in their molecular structure. These 
agents have been demonstrated to function as a defensive mea-
sure against pathogens [20]. Alkaloids are utilised in medicine 
for their analgesic, antiasthmatic, anticancer, antihypertensive, 
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antipyretic and antihyperglycemic properties. Examples of such 
substances include morphine, ephedrine, vincristine, reserpine 
and quinine [21].

Flavonoids (Fig.2.), a class of phytonutrients, are found in fruit, 
vegetables and plant-derived foods. They have antioxidant and 
anti-inflammatory properties [22]. Flavonoids represent a class 
of naturally occurring dietary molecules that have been shown to 
possess potential in the prevention of both the process of aging 
itself and the associated diseases [23]. Furthermore, evidence 
has been provided to demonstrate their ability to regulate key 
cellular enzyme function. Anthocyanins, which are categorised 
as a subgroup, are frequently employed as food colourants. Con-
versely, isoflavones, a subgroup of flavonoids, have been demon-
strated to possess significant antioxidant properties. These prop-
erties have been shown to contribute to a reduction in the risk of 
cancer by hindering the damage to DNA induced by free radicals 
[24]. Examples of such substances include genistein, resveratrol, 

quercetin and silymarin [25].

Nonribosomal peptides (Fig.2.) are microbial secondary metabo-
lites which exhibit a tremendous structural diversity and a broad 
range of biological activities that are useful in the medical and 
agro-ecological fields [26] (found in bacteria and fungi). These 
compounds are typically utilised as antibacterial agents, immu-
nosuppressants, and antitumour compounds in pharmaceutical 
formulations. Examples of such agents include penicillin, van-
comycin, bleomycin and cyclosporine. [27]. Polyketides (Fig.2.) 
are found in bacteria, fungi, plants and lower ranks of animals, 
including mollusks and sponges. It is evident that the subjects 
demonstrate notable structural diversity, which in turn engen-
ders a broad spectrum of functions, including anti-cholesterol, 
antifungal, and anticancer properties. Examples of such agents 
include tetracycline, doxorubicin, rapamycin and amphotericin 
B. Polyketides have been employed in the treatment of cancer, 
for example in the form of doxorubicin [28]. 

Figure 2: Division of NPs and Metabolites with their Occurrences

The objective of the present review is to provide a comprehen-
sive overview of contemporary chemoinformatic methodologies 
employed in the design of natural product analogues. This in-
novative approach represents a significant advancement in the 
pursuit of novel, effective bioactive compounds. The integration 
of chemistry, bioinformatics and pharmacology facilitates the 
expeditious identification and modification of chemical struc-
tures with therapeutic potential. The employment of molecular 
modelling and machine learning facilitates the reduction of cost-
ly experimental research. The work under consideration places 
particular emphasis on the significance of natural products and 
their secondary metabolites as a source of inspiration for the de-
velopment of new drugs, particularly in the context of an in-
crease in drug resistance.

Modern Chemoinformatics Methods
Process of Designing Analogues of Natural Products
The development of natural products analogues is a multifacet-
ed process that encompasses numerous stages and is, in relative 

terms, a complex procedure. The methods employed can vary 
significantly, contingent on the approach and the techniques uti-
lised, with these being informed by the characteristics of the out-
put compound. The overall stages are distinguished as follows: 
selection of organisms for screening, authentication, extraction, 
isolation and structure elucidation. 

A number of approaches have been posited for the selection of 
organisms for screening purposes. These include random, eth-
nopharmacological, chemosystematic, ecological and computa-
tional methods [29].

In a random approach, organisms such as plants, fungi or bacte-
ria are selected at random; however, the key factor is their avail-
ability. Conversely, within the ethnopharmacological approach, 
the selection of substances is determined by their historical 
usage and application. In the context of a chemosystematic ap-
proach, the selection of compounds is informed by chemotaxon-
omy and phylogeny. This is attributable to the fact that certain 
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plant families are known to produce compounds or compound 
classes that possess specific properties and demonstrate partic-
ular bioactivity. In accordance with an ecological approach, the 
selection of these entities is based on their interaction with their 
environment, whilst also considering the ecological functions of 
secondary metabolites. In the computational approach, the se-
lection of the subjects is made on the basis of their predicted in 
silico bioactivity.

Irrespective of the used approach, a chosen model always re-
quires authentication. The first step of it should be identifying 
botanical origin and the scientific name. Later steps should in-
volve authentication through comparing organoleptic properties, 
like structure and shape, and odour, with known data, which can 
be done by many methods, such as: macroscopic, microscopic, 
chromatographic and spectroscopic techniques, or DNA finger-
printing analysis.

Recently, methods using bioactivity and physical properties, 
such as chromatographic techniques, are being applied frequent-
ly to extract and isolate active compounds. There are two main 
approaches to obtaining natural products by extraction. The 
parallel approach, which is used when the process of selecting 
organisms was based on its ethnopharmacological applications. 
It is a three-stage process that contains: extracting at least three 
extracts from biomaterial, purifying the most active extract to 
fractions, and isolation of compounds from the most active frac-
tion by appropriate chromatographic technique. 

Sequential approach is used when selection of model organism 
is random and bioactivity remains unknown, and is a two-stage 
process, in which we can distinguish: extracting extracts from 
material into fractions, and isolating the most active compounds 
from the most active fraction. After isolating active compounds, 
further identification is needed. It can be achieved through mass 
spectrometry (MS) and comparing obtained data with the one 
of known compounds. Characterisation of the compound struc-

ture can be carried out by analytical methods, especially various 
spectroscopic methods, such as: FT-IR spectroscopy, NMR spec-
troscopy, or mass spectrometry. However, in order to understand 
the whole structure of the compound, more methods should be 
applied, like X-ray diffraction or optical rotatory dispersion [30].

Biological Screening
The next step involves using the obtained isolates for biological 
screening to determine the bioactivity of the active compound. 
Ethnopharmacological knowledge at this stage can simplify the 
process by providing guidance on the potential effects of the 
compound. Biological screening can be defined as a general 
testing of the compound in search of its bioactivity. However, 
it is imperative to acknowledge the significance of adopting the 
appropriate technique for the effective screening of both thera-
peutic agents and potential adverse effects [31]. The following 
screening methods are employed: high-throughput screening 
(HTS), in vitro screening, cell culture-based screening and phe-
notypic screening. Adopting the appropriate technique can be a 
complex matter. However, the following aspects of the process 
should be given due consideration: the target effect, the type of 
compound that is being tested, and the desired scale of screening 
[32]. It is evident that a plethora of intriguing applications of 
biological screening can be identified in the domain of toxicol-
ogy. In this particular field, there has been a notable surge in the 
utilisation of in vitro models for the assessment of compound 
toxicity. This development signifies a significant shift from con-
ventional in vivo animal models and underscores the potential 
for more efficacious and ethical research methodologies [33]. 

Modern medicinal chemistry approaches utilise bioactive natu-
ral products to create new analogues that are less toxic and have 
better pharmacokinetic profiles. Designing and developing new 
analogues (Fig. 3) can be summarised in a few steps: in silico 
ligand construction and preparation; target preparation; docking; 
identification of the hit molecule; and optimisation of the hits. 

Figure 3: Process of Development Natural Products Analogues
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Ligand - Protein Relation 	
The process of drug discovery is an investment that is both cost-
ly and time-consuming, and one that is also challenging. Com-
puter-aided drug discovery (CADD) has the potential to facil-
itate the process, thereby reducing both the financial cost and 
the time required for development. It is an indispensable tool in 
the field of therapeutic development. It is evident that a number 
of computational methodologies have demonstrated their effica-
cy in the domains of drug discovery and pipeline development. 
In this segment, the following aspects will be discussed: struc-
ture-based drug discovery (SBDD), protein structure prediction 
methods and protein-ligand docking [34].

The SBDD approach is employed in instances where the 
three-dimensional structure of a drug target is known. In the 
context of SBDD, two frequently employed methodologies are 
molecular docking approaches and de novo ligand design. Mo-
lecular dynamics (MD) are frequently employed to facilitate 
comprehension of ligand-target protein binding, the mechanisms 
of interaction, and target flexibility. SBDD methodologies have 
been instrumental in facilitating the progression of numerous 
compounds through clinical trials and securing FDA approval 
for market release. The protease of HIV-1 (Human Immunode-
ficiency Virus 1) is the primary target for anti-AIDS therapeutic 
agents. Saquinavir and Amprenavir were both synthesised with 
the intention of targeting HIV-1 protease using SBDD methods. 
An additional example is dorzolamide, a carbonic anhydrase II 
inhibitor, which is utilised in the treatment of glaucoma.

Proteins are typically perceived as static structures, despite the 
fact that they are dynamic systems that display internal motions. 
It is evident that target flexibility is frequently being ignored. It 
is imperative to elucidate the target flexibility, given that their 
structures undergo modification during the binding process. 
The rigidity of the target is not realistic and can result in mis-
leading outcomes. In order to account for target flexibility, two 
approaches may be considered: induced fit docking methods or 
ensemble-based screening methods.

The most common methods employed for predicting protein 
structures are X-ray crystallography and NMR spectroscopy. It 
is evident that experimental methods of this nature are contin-
gent upon cost and time limitations. For instance, X-ray crys-
tallography is only possible when a protein target can be crys-
tallized, and a certain amount of them is difficult to crystallize. 
Conversely, nuclear magnetic resonance (NMR) spectroscopy 
has been found to be exclusively applicable to smaller proteins. 
The utilisation of computational methodologies, such as SBDD, 
to quantify structures from sequences has been demonstrated to 
effectively address the sequence-structure discrepancy. A pleth-
ora of methodologies have been employed for the purpose of 
predicting protein structures. These include the use of homology 
modelling, threading approaches and ab initio folding. 

Information regarding drug molecules and target structures, 
such as proteins, is of paramount importance in SBDD tools. 
The following section details several databases that contain such 
information. PubChem, a repository for small molecules, is ac-
cessible via the National Institutes of Health (NIH) and contains 
millions of biologically relevant small molecules. ZINC, a data-
base of virtual compounds, contains over 35 million molecules. 

It is estimated that DrugBank contains approximately 5,000 
small molecules, of which over 800 have been approved by the 
FDA. The Protein Databank (PDB) is a global resource that 
contains a substantial amount of three-dimensional information 
about experimentally determined biological macromolecules. It 
is evident that one of the structures contained within the Pro-
tein Data Bank (PDB) is that of a protein-ligand complex. The 
structure under consideration contains approximately 120,000 
biological macromolecular structures, as well as 20,000 bound 
ligand molecules. Swiss-Prot is a database containing essential 
protein sequences. These sequences are manually annotated with 
descriptors, including functional information and post-transla-
tional modifications. The BIND database is a comprehensive re-
pository of protein complex information and biomolecular inter-
actions. BindingDB has measured binding affinity information 
of proteins considered to be targets for drugs. Furthermore, it has 
been demonstrated that the substance under scrutiny contains in 
excess of one million binding points.

Whilst docking is underway, it is imperative to predict how in-
termolecular complexes are formed between a target and a li-
gand. The objective of these algorithms is to identify the most 
optimal target-ligand poses. Despite the utilisation of compu-
tational methods, the process of docking a target structure to a 
molecule remains a challenging procedure. Notwithstanding the 
target flexibility being disregarded, a considerable number of 
methodologies persist by which a target may be docked. The 
implementation of docking algorithms is contingent upon the 
prior identification of a target protein structure and a potential 
drug binding site, as well as the determination of small mole-
cules that bind to this site. The identification of these molecules 
is facilitated by the use of small molecule libraries. The central 
tenet of molecular docking is the prediction of the binding mode 
and binding affinity of a protein-ligand complex. The process 
of obtaining and evaluating thousands of possible protein-ligand 
binding poses is a key aspect of the methodology. The one with 
the lowest energy is considered to be the best.

In order to achieve optimal screening results, it is imperative 
to undertake meticulous target and ligand preparations prior to 
the docking process. In the context of experimental methods, 
the hydrogen atoms of the structures are not typically present. 
However, their presence, along with the location of the bonds, is 
crucial for the efficacy of docking algorithms. Furthermore, the 
utilisation of target protein structures in the absence of prelim-
inary processing can give rise to a number of potential issues, 
including the absence of residues, atom clashes, crystallographic 
waters, and alternate locations. 

In target preprocessing, missing atoms, like hydrogen, are added 
to remove atom clashes. In ligand preprocessing, on the other 
hand, ligand three-dimensional geometries are predicted. Pro-
tonation states of the structures also play a key role in docking 
poses, since they influence how ligands bind to the binding site. 

SPROBE is an exemplary program used for preprocessing pro-
teins for protein–ligand docking. LigPrep, on the other hand, 
makes it possible to obtain all-atom, 3D structures of ligands. 
Another program worth mentioning is PRODRG, a web-based 
ligand topology generating server. It allows to generate 3D co-
ordinates for ligands, which, compared to other methods, are of 
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equal or even better quality. 

Molecular Flexibility
Molecular flexibility is defined as the factor that quantifies the 
size and complexity of a molecule's conformational space (given 
the solvent, temperature and pressure). It significantly contrib-
utes to many molecular properties and is necessary to reduce a 
conformational ensemble to meaningful representatives [35]. It 
is primarily related to the presence of single bonds in a molecule, 
typically carbon sp3 – carbon sp3 bonds. Molecular flexibility 
increases with the number of single bonds [36]. 

The calculation technique can vary depending on the compound 
being worked on. The most common methods are the Rotatable 
Bond Count and the Kier Phi Index. The major drawback of the 
Rotatable-Bond count method is the requirement for a clear and 
ideally easily computable definition of which bonds are rotat-
able. The Kier ϕ index, on the other hand, provides a contin-
uous description of flexibility based on information from the 
molecular graph. While it is an improvement on the number of 
rotatable bonds, the Kier ϕ index does not resolve all issues. For 
example, it is ineffective when estimating the size of the confor-
mational space of a molecule. Unlike other flexibility metrics, 
Torsion Angular Bin Strings (TABS) make it possible to directly 
estimate the upper bound of the number of conformers. This is 
a highly desirable feature in the field of conformer generation. 

Qsar Analysis 
Quantitative Structure-Activity Relationships (QSAR) is the 
term given to this concept. QSAR modelling represents a ma-
jor computational approach to drug discovery, and its ability to 
identify bioactive compounds, as well as novel compounds, has 
grown significantly [37]. In the field of QSAR methods, it is 
hypothesised that structurally similar molecules tend to demon-
strate analogous biological activity. In two-dimensional quan-
titative structure-activity relationship (QSAR) methods, there 
is a direct correlation between biological activity and physical 
and chemical properties, including electronic, hydrophobic and 
steric features of compounds. Conversely, in 3D QSAR meth-
ods, not only are physical and geometric features of active drug 
molecules introduced, but also quantum chemical features. In 
the domain of ligand-based drug design (LBDD), a predomi-
nant alternative to structure-based drug design (SBDD), QSAR 
represents a computational approach that models the correlation 
between structural characteristics of ligands that bind to a target 
and the resultant biological activity. The success of QSARs is 
contingent on the selected descriptors, as well as the ability of 
these models to predict biological activity. The absence of suffi-
cient activity data for the extraction of patterns invariably results 
in the failure of a QSAR model. It is important to note that a par-
ticular structural element within QSAR warrants particular con-
sideration; namely, the volume of the binding site. The binding 
pocket volume exerts a considerable influence on the biological 
activity. Once this feature has been ascertained, the process of 
eliminating molecules that are too large to fit into the binding 
pocket is facilitated. This procedure can be carried out in the 

early stages of the drug discovery process.

In the domain of epigenetic drug discovery, QSAR modelling 
plays a pivotal role. As chemogenomics datasets for epigenetic 
targets increase in size, the application of QSARs to the detec-
tion of new bioactive compounds has also increased. For in-
stance, BET inhibitors have been the subject of study through 
the utilisation of QSAR modelling approaches. In a particular 
study, these models were utilised to predict six potential multi-
target bromodomain inhibitors. In a separate study, lysine meth-
yltransferase DOTL1 inhibitors were proposed on the basis of 
3D-QSAR, molecular docking and dynamics studies. This re-
sulted in the computer-assisted design of two compounds that 
displayed inhibition at micromolar levels in confirmatory assays. 

QSAR models function on the basis of statistics that connect 
activities of target drug interactions with various molecular de-
scriptors. These models provide a mathematical description of 
the activity response of a target, which binds a ligand, as com-
pared to the structural features of the ligand. QSAR information 
is gathered by calculating the correlation between experimen-
tally defined biological activity and several properties of small 
ligand binders. Activity and descriptor data are obtained from 
a known drug molecule to build a mathematical QSAR model 
so that the descriptors can predict the activity of each molecule.

Furthermore, QSAR relationships may be implemented to pre-
dict the activity of new drug molecule analogs. The most com-
mon methods of quantifying the activity of a drug molecule are 
the use of the inhibitory concentration (IC₅₀) and the inhibition 
constant (Ki). The distinguishing feature of QSAR models is 
their capacity to discern both the positive and negative effects of 
a specific feature of a drug molecule on its activity. QSAR meth-
ods have been successfully employed with various drug targets, 
including carbonic anhydrase, thrombin and renin. 

Statistical methodologies have been incorporated within the 
framework of linear QSAR to select molecular descriptors that 
are instrumental in predicting biological activity. Multivariable 
linear regression (MLR) is utilised to identify molecular descrip-
tors exhibiting a satisfactory correlation with target-ligand bio-
logical activity. The utilisation of MLR is contingent upon the 
assumption that the activity-descriptor relation is linear, a sup-
position that is not universally valid. It is evident that a number 
of machine learning (ML) approaches have been developed for 
the purpose of generating QSAR models, with the objective of 
addressing the non-linear fitting issue.

The following examples illustrate drugs that have been devel-
oped through the utilisation of ligand-based drug discovery 
methodologies: As indicated in, zolmitriptan is utilised as a mi-
graine treatment, norfloxacin is employed in the management of 
urinary tract infections, and losartan is prescribed for hyperten-
sion. ToxCast and External-AA are two such datasets that are 
utilised in the development of QSAR models, with the objective 
of enhancing their efficacy [38].

Table 1: Values of molecular descriptors [39].
•	 A.	 Percentage of molecular descriptors that obey the Lipinski’s rule of five (Ro5)
•	 B.	 Percentage of molecular descriptors that obey Veber’s rule
•	 C.	 Percentage based on combined count of hydrogen bond donors and acceptors
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The Following Molecular Descriptors can be Divided into two 
Groups.
•	 Group 1 (bioavailability group): Molecular weight (MW), 

number of donor atoms for hydrogen bonds (nHD), num-
ber of acceptor atoms for hydrogen bonds (nHA), calculat-
ed partition coefficient between octanol and water (clogP), 
number of rotatable bonds (RBN) and topological polar sur-
face area (TPSA).

•	 Group 2 (binding affinity group): Number of aromatic rings, 
aromatic ratio, fraction of sp³ carbon atoms, and hydrogen 
bond counts (nHD and nHA).

Since the descriptors in Group 1 are directly associated with 
bioavailability, ‘drug-likeness’ rules should be considered. Ac-
cording to Lipinski's rule of five, drug candidates should possess 
the following biophysical properties for better bioavailability: a 
molecular weight of less than 500 Da; a calculated logP of less 
than five; five or fewer hydrogen bond donors; and 10 or fewer 
hydrogen bond acceptors. Veber’s rule for bioavailability states 
that a drug candidate should have 10 or fewer rotatable bonds 
and fewer than 12 hydrogen bond donors or acceptors in total. 
TPSA demonstrates the sum of the surfaces of all polar atoms 
in a molecule and can be used to predict drug absorption and 
transport properties. Molecules with a TPSA greater than 140 Å² 
perform poorly at permeating cell membranes.

Five-member heterocycles containing between one and four he-
teroatoms, that is, nitrogen, oxygen or sulfur, have found their 
application in antibacterials used in therapy [40]. Heteratoms 
contribute significantly to nanoporous carbon, which is em-
ployed for energy storage thanks to its properties such as high 
surface area, hierarchical porosity and exceptional electrochem-
ical properties. These distinctive properties can be combined 
with the individual doping of heteroatoms, such as sulfur, nitro-
gen, oxygen and boron, to achieve high energy storage capacity 
and stability [41, 42]. 

The number of aromatic and non-aromatic rings is a significant 
factor in determining the drug-like properties of compounds 
[43]. It is noteworthy that a considerable proportion of chem-

icals exhibit partial or complete aromatic character, attribut-
able to the ring framework undergoing enhanced stabilisation 
through the delocalisation of π-electrons. It is generally accepted 
that the stability of compounds such as benzene is attributable 
to the equal numbers of π-electrons in their aromatic rings. Di-
potassium cyclopentagallate represents a distinctive instance of 
a five-membered aromatic ring that is stabilised exclusively by 
two π-electrons, a configuration that is ordinarily uncommon 
and constrained. This compound provides compelling evidence 
that aromatic stabilization is significantly more complex than 
previously assumed, with a minimum of π-electrons required in 
a five-atom ring fragment [44]. 

Protein kinase inhibitors (PKIs) are a therapeutic modality em-
ployed in the treatment of cancer-associated diseases. A chemo-
informatic analysis was conducted on 2,139 PKIs, which result-
ed in the following findings: PKIs are flat molecules with high 
aromatic ring counts. Furthermore, a linear relationship has been 
identified between the number of aromatic rings and the average 
of weighted hydrogen count.

ADME Properties Prediction
The term ADME properties is an acronym for the four processes 
of absorption, distribution, metabolism and excretion. It is im-
perative to acknowledge the significance of ADME properties in 
determining pharmacokinetic profiles, a factor that exerts a sub-
stantial influence on both the efficacy and safety of substances 
[45]. These elements are of paramount importance, as they serve 
to determine the viability of a drug candidate. In the context of 
pre-clinical and clinical research, the potential for minimising 
the occurrence of deleterious effects in animal models and hu-
man subjects is enhanced by the judicious filtration of ADME 
properties of drug candidates during the preliminary phases of 
drug development. This tool has been demonstrated to be of 
significant benefit in the field of pharmacokinetics, with studies 
showing that it can facilitate faster, safer and more effective drug 
development [46].

The ADME properties are pivotal in determining the biological 
processes that are integral to the assessment of a drug's phar-
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macokinetic (PK) parameters. These parameters have a direct 
impact on the efficacy and safety of drugs [47]. The process of 
developing a bioactive compound into a pharmaceutical drug in-
volves a series of rigorous and varied methodologies. A range of 
factors must be given full consideration, including but not lim-
ited to pharmacokinetics, drug interactions, efficacy and safety. 
The financial investment required is substantial. It has been es-
tablished that ADME properties are the primary factor contrib-
uting to the unsuccessful progression of bioactive compounds 
towards new drug status. Consequently, the prediction of these 
properties is of paramount importance. In the domain of drug 
discovery, the acknowledgement of ADME properties is instru-
mental in ensuring the safety of a drug, as well as its interactions 
with other medications. This is particularly pertinent in the con-
text of drug-drug interactions (DDI). A range of computational 
methodologies have been utilised for the purpose of predicting 
ADME properties, including machine learning and artificial in-
telligence (AI). In the domain of drug discovery, both methods 
are employed to enhance chemical libraries, prioritise hits from 
biological screens and optimise the ADME properties of lead 
molecules. Machine learning (ML) has become an indispensable 
tool in predicting ADME properties. Machine learning (ML) al-
gorithms are trained on molecular structures and the associated 
ADME assay data to develop quantitative structure-property re-
lationship (QSPR) models [48, 49].

The scientific study of drugs that are absorbed, distributed, me-

tabolised and excreted (Fig. 4) in a body has seen notable ad-
vancements over the years. The advent of PBPK modelling can 
be attributed to the findings of these studies. PBPK models have 
been demonstrated to be effective in predicting the behaviour 
of drugs in various populations. PBPK modelling is a sophis-
ticated computational approach that is employed to predict the 
ADME properties of drugs in the human body. The software 
facilitates the creation of a virtual human body that replicates 
the behaviour of drugs under various scenarios. PBPK models 
have been instrumental in preventing extensive animal testing 
and human trials. The employment of models facilitates the de-
livery of personalised treatment regimens, with considerations 
including patient age, hepatic function, and genetic variations. 
Furthermore, they facilitate the assessment of potential inter-
actions between drugs, particularly in instances where they are 
metabolised by the same enzymes.

QikProp is an ADME programme that predicts physically cru-
cial and pharmaceutically valid descriptors for small drug-like 
molecules. VolSurf is a valuable instrument employed for the 
calculation of ADME properties and the generation of ADME 
models. These models can be utilised subsequently to predict 
the behaviour of novel molecules or to identify molecules with 
analogous ADME properties. FAF-Drugs2 is a tool designed for 
the screening of ADME and toxicity properties. It is capable of 
calculating physicochemical properties, as well as toxic and un-
stable groups, and the key functional components.

Figure 4: ADME Opportunities and Applications
Bioavailability is defined as the rate and proportion of the ad-
ministered dose (by any route of administration) which enters 
the bloodstream in the form of an active substance/drug (unal-
tered), which then serves its purpose at the site of action. Bio-
availability is influenced by a multitude of factors. These include 
the physicochemical properties of the medication itself, its po-
tential interactions with other substances, and its ADME prop-
erties.

It is hypothesised that when an active pharmaceutical substance 
is administered intravenously, it will exhibit 100% bioavailabil-

ity. However, when the medication is delivered differently, then 
bioavailability (F) is defined as the mass of the drug delivered to 
the plasma divided by the total mass of the drug administered. 

The formula for calculating the percentage of the drug that is 
delivered to the plasma is as follows:
F = mass of the drug delivered to the plasma ÷ total mass of the 
drug administered
The importance of bioavailability in medicinal chemistry is il-
lustrated by macrocyclization, a process that regulates drug-like 
properties while ensuring adequate bioavailability. Macrocycles 
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are of significant importance due to their structural diversity and 
ability to reach high selectivity and affinity towards demanding 
targets that are frequently not addressable by small molecules 
[50].

In addition, the term 'drug-likeness' is typically defined in the 
context of Lipinski's rule-of-five (Ro5) and ADME application 
[51]. The concept of drug-likeness provides significant guide-
lines in terms of drug discovery at early stages [52]. With the 
exception of Ro5, the degree of drug-likeness can be determined 
by means of a quantitative estimate of drug-likeness (QED). The 
system is characterised by its intuitive nature, transparency, and 
straightforwardness, which renders it highly applicable in a wide 
range of practical settings. The values of QED range from zero 
to one. In this context, zero signifies all properties being unfa-
vourable, whereas one signifies that all properties are favour-
able. The combination of the individual desirability functions 
(d) into the QED is possible by taking the geometric mean of the 
individual functions. The calculation of QED can be conducted 
in accordance with the following equation:

 (1)                     
QED – Quantitative Estimate of Drug-likeness;
n – number of physicochemical properties considered in the cal-
culation;
di  – normalized value of the i-th property relative to its optimal 
range;

The ability to define the parameters that define drug-likeness is 
a common skill amongst medicinal chemists. For instance, the 
combination of PSA <75 Å2 with LogP >3 has been demonstrat-
ed in several studies from large pharmaceutical companies. The 
aforementioned combination has been demonstrated to increase 
the risk of in vivo toxicity [53]. 

Conclusion
The findings from the analyses unambiguously demonstrate that 
the integration of chemoinformatics with medicinal chemistry, 
bioinformatics and pharmacology currently constitutes the foun-
dation for the rational design of novel bioactive compounds. The 
interdisciplinary nature of this approach enables the concurrent 
utilisation of computational methods, databases, spectroscopic 
techniques and in silico models to expedite the drug discov-
ery process while diminishing experimental expenses. It is im-
perative that both natural products (NPs) and their secondary 
metabolites demonstrate significant pharmacological potential, 
encompassing anticancer, anti-inflammatory, and antiparasitic 
properties. The structural and functional diversity of NPs ren-
ders them a valuable source of inspiration for medicinal chem-
istry. However, the absence of a uniform classification of these 
substances, coupled with the challenges inherent in nomencla-
ture, underscores the imperative for the establishment of global 
standards. Such standards are deemed essential for facilitating 
the exchange of knowledge and the conduct of systematic re-
search.
Another significant aspect pertains to the utilisation of comput-
er-aided methods (CADD), encompassing structures derived 
from molecular docking, QSAR modelling and ADME proper-

ty prediction. These methodologies facilitate the evaluation of 
the bioactivity and safety of potential pharmaceutical agents in 
the early stages of research. The efficacy of this methodology 
is demonstrated by the use of structural modelling in the devel-
opment of HIV-1 protease inhibitors or antimalarial drugs. Of 
particular importance in this context is the issue of molecular 
flexibility and conformational dynamics of proteins. These have 
hitherto been marginalised, yet it is becoming evident that they 
are crucial for realistic modelling of ligand-receptor interactions. 
The employment of contemporary machine learning algorithms 
and artificial intelligence in predicting pharmacokinetic proper-
ties and identifying structural determinants of biological activity 
signifies a landmark advancement in personalising therapy and 
mitigating clinical failures.

The potential for future research and innovation lies in the inte-
gration of high-throughput technologies, large-scale modelling, 
and the integration of omic data. This integration will, in the 
future, enable the creation of personalised compound libraries 
and the dynamic design of natural product analogues for specif-
ic populations or even individuals. Another significant area of 
research is the development of digital pharmacology, which em-
ploys PBPK and QSPR models to facilitate virtual simulations 
of drug behaviour within the body. These simulations account 
for genetic factors, age, comorbidities and drug interactions. 
The utilisation of secondary plant metabolites in the creation 
of innovative biopharmaceuticals holds significant promise, as 
does their application in other industries, including energy (bio-
terpenes as alternative fuel sources) and materials engineering 
(heteroatom nanostructures in energy storage).

In view of these findings, it can be concluded that the future 
of chemoinformatics and medicinal chemistry will be shaped 
by hybrid research strategies in which artificial intelligence 
algorithms, nanotechnology and large-scale databases will be 
integrated into a single, coherent ecosystem of innovative drug 
discovery, focused on speed, efficiency and ethicality of the 
process. This approach has the potential to become not only a 
breakthrough in precision medicine, but also a tool for combat-
ing global health problems such as antibiotic resistance, tropical 
diseases and lifestyle diseases.
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