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Abstract 
Train derailments pose significant risks to safety, infrastructure, and the environment. Understanding the factors 
that contribute to these incidents is crucial for developing effective prevention and mitigation strategies. This 
study employs logistic regression to investigate the predictors of train derailments using the accident dataset 
from the Federal Railroad Administration (FRA). The model identified track type and presence of engineers 
as significant factors influencing derailment risk. Yard tracks, industry tracks and sidings were found to have 
higher odds of derailments compared to main tracks, emphasizing the need for targeted safety measures in 
these areas. Also, the presence of engineers was associated with reduced derailment odds, highlighting the 
importance of skilled crew in ensuring safe operations. This study also employs adaptive boosting, an ensemble 
learning technique to predict derailment accidents. The model accurately predicts 72% of all instances of 
derailment and non-derailment accidents. The learning model also identifies the gross tonnage of the train 
as a key factor in predicting the likelihood of the train derailing. These findings provide valuable insights for 
developing evidence-based interventions by railroad authorities and safety agencies to mitigate derailment 
risks and enhance railway safety.
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Introduction
Among many modes of transportation, the rail system is one of 
the safest, with a relatively low rate of serious accidents com-
pared to road transportation. Train accidents per million miles 
have decreased significantly over the past few decades, demon-
strating the efforts of various stakeholders and technological ad-
vances to improve rail safety. However, in 2023, there were still 
858 fatalities related to railroad linemen in the United States, 
and 5,481 people were injured in various rail accidents, includ-
ing passengers, railroad employees, and others. [1] This shows 
the importance of continuous improvement in rail transporta-
tion safety. Among various safety issues, derailment is one of 
the most serious threats, with more than a thousand derailments 

occurring each year on the U.S. rail transportation network. De-
railment refers to the deviation of a train from the track, which 
may cause serious damage, injury or death. The financial impact 
of derailment can be significant, including costs associated with 
infrastructure repairs, rolling stock damage, and potential envi-
ronmental cleanup. In 2022, the average cost of each derailment 
was estimated to be $5 million, but major derailments can result 
in costs of more than $50 million. Major derailments, while rare, 
can have serious consequences. For example, the 2015 Amtrak 
derailment in Philadelphia killed eight people, injured more than 
200 people, and caused losses of more than $200 million. [2] The 
2023 train derailment in Ohio did not result in direct deaths, but 
of the 51 derailed cars, 11 were tank cars that dumped 100,000 
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US gallons (380,000 L) of hazardous materials, including vinyl 
chloride, benzene residue, and butyl acrylate [3].

The huge property damage, inestimable environmental impact, 
and psychological damage caused by derailment accidents are 
not something that anyone or any organization can ignore, re-
quiring us to continue to study and do our best to reduce the 
occurrence of accidents. Rail safety, especially derailment pre-
vention, is a complex issue that requires a holistic approach. The 
rail industry can significantly reduce the risk of derailment by 
addressing track and infrastructure design, maintenance, vehicle 
monitoring, operation management, and human factors. Ade-
quate training of crew numbers, including the provision of pro-
fessional engineers, also plays a vital role in ensuring safe and 
efficient operations.

Literature Review
This literature review synthesizes recent studies on railway de-
railments, focusing on derailment causes, prediction models, 
mitigation strategies, and emerging technologies.

The causes of railway derailments include track and infrastruc-
ture factors, vehicle factors, and human factors. The study by 
Zhu et al. [4] emphasized the impact of track irregularities on 
vehicle stability, and Li et al. [5] demonstrated that regular main-
tenance and timely repairs can significantly reduce the risk of 
derailment. It shows that the design and construction defects of 
railway tracks and improper routine maintenance will increase 
the risk of derailment. Zhai et al. [6] analyzed the impact of 
wheel-rail contact force on the probability of derailment. The 
study by Chen and Zeng [7] emphasized the importance of ve-
hicle suspension systems in maintaining stability. These studies 
reveal the relationship between train vehicles and derailment 
events, emphasizing the interaction between wheels and tracks 
and the impact of vehicle design on the occurrence of derail-
ment.

Wang et al. [8] studied the over speeding behavior in railway 
operation, and a study found a correlation between over speed-
ing and derailment events. Zhang et al. [8] explored operational 
errors (signal errors and braking errors) to show the relationship 
between daily management and train operation and railway de-
railment. In the field of predictive simulation, machine learning, 
and various emerging technology environments, Xu et al. [10] 
used advanced simulation tools such as multibody dynamics and 
finite element analysis to simulate derailment scenarios. Liu et 
al. [11] used machine learning techniques to predict derailment 
events based on historical data. Automated track inspection 
technologies such as ultrasonic and laser scanning can enhance 
the detection of defects [12]. Wang et al. [9] discussed the ben-
efits of on-board monitoring systems in preventing derailments. 
The implementation of a real- time vehicle monitoring system 
can detect anomalies in advance. Huang et al. [13] showed the 
application of AI in anomaly detection and risk assessment. AI 
and machine learning algorithms can enhance predictive main-
tenance and derailment prevention. Li et al. [14] explored the 
integration of the Internet of Things into railway systems to im-
prove safety.

Railway derailment research covers a wide range of factors, 
from track and vehicle conditions to operational practices and 

human factors. Advances in predictive models, simulations, and 
emerging technologies offer promising avenues for improving 
rail safety. Continuous research and innovation are essential 
to developing effective derailment prevention and mitigation 
strategies and ensuring the safety and reliability of rail systems. 
Current research lacks a complete and comprehensive analysis 
of railway safety accident data. In FRA's nearly fifty years of ac-
cident records, there is still a large amount of data available for 
research that has not been fully mined, such as the relationship 
between accidents and speed, and whether the requirement for 
the number of on-the-job engineers has a positive impact on the 
occurrence and handling of accidents. This is exactly the focus 
of this article.

Methodology
Selected variables with categorical responses are transformed 
into dummy variables with numerical responses, considering the 
statistical method that is being adopted. Factors that influence 
derailment accidents are obtained using the maximum likeli-
hood estimates from the logit function. The next step involves 
using adaptive boosting ensemble leaning technique to predict 
the occurrence of derailment accidents. Based on this, recom-
mendations are made to aid in the management and control of 
rail accidents.

Logistic Regression
This statistical technique allows the prediction of a discrete 
outcome from a set of predictors that may be continuous, dis-
crete, dichotomous, or mixture of them [15]. Discrete variables 
represent countable values, often whole numbers, for instance 
the number of engineers on a train. Continuous variables, on 
the other hand, can take on any value within a range, includ-
ing decimals, such as gross tonnage of a freight train. Dichoto-
mous variables are a specific type of discrete variable with only 
two possible categories, like whether the train has a caboose, or 
whether the train is running on a main line. In this case a yes/no 
response is required. According to Tabachnick and Fidell [15], 
logistic regression (LR) is also suitable when there is a nonlinear 
relationship between the responses of the dependent variables 
(DV) and  at least one of the independent variables (IVs). For 
instance, in this case, the probability of the occurrence of a de-
railment accident may be a little affected by a 10-mph difference 
when a train is travelling at a low speed (e.g. 30 vs. 40), but 
the probability may change more significant with an equivalence 
difference at a high travel speed (e.g. 120 vs. 130).

Logistic regression would also help us investigate which of the 
variables predict the outcome as well as how each of them af-
fects, i.e. increase or decrease the probability of the outcome. 
Higher order interactions (two or more) between predictors are 
not considered in our model to avoid the complications that 
come with it. Plus, there’s no guarantee that the model perfor-
mance will significantly be improved. The model is evaluated 
using the likelihood ratio estimates of the predictors in the full 
model and is run in Python using Google Collaboratory® envi-
ronment. The likelihood ratio test is used to test the significance 
of each predictor to the model at alpha (a) value of 0.05.

Adaptive Boosting Ensemble Learning
Ensemble learning is a machine learning meta-approach that 
combines predictions from several models to improve predictive 



 

www.mkscienceset.comPage No: 03 J of Sup Cha Eng and Log Opt 2025

performance. Boosting algorithms essentially integrate multiple 
weak classifiers into a strong classifier typically using decision 
trees [16]. Boosting methods provide good results for both clas-
sification and regression problems in supervised learning. Ac-
cording to Meng et al. [17], AdaBoost works better in classifica-
tion problems hence it is used as a classifier to determine predict 
the occurrence of a derailment accident.

AdaBoost is a learning model that adjusts each instance by ap-
plying more weight to erroneously categorized instances. Our 
data is structured and large enough for the model to learn and 
be able to predict derailment accidents while reducing bias and 
variation. The prepared data is split into a training set and a test-
ing set in an 80:20 ratio. The algorithm learns the data using 

the training set and then makes predictions. This is achieved 
by fitting a series of weak classifiers to several weighted train-
ing data [18]. Incorrectly predicted observations are assigned a 
greater weight in the next iteration. This process goes on until 
the specified number of models is reached. The final model is 
the weighted sum or a linear combination of the various weak 
learners thereby creating a stronger and more robust classifier 
[19]. The framework for AdaBoost is illustrated in Figure 1. To 
prevent overfitting and assess the generalizability of the model, 
the data is divided into training and testing set (80:20). Also, 
cross-validation and stratification is used in the sampling pro-
cess which repeatedly splits the data into training and validation 
sets to obtain a more robust estimate of model performance.

Figure 1: Framework for AdaBoost method

Analysis and Interpretation
In this section, logistics regression and adaptive boosting are 
used to predict the occurrence of derailment accidents. Factors 
influencing the likelihood of these accidents are also examined 
independently to obtain insights into the relationship between 
the accident and the train's operating conditions.

Data Description
The data used in the analysis is obtained from the FRA Rail 
Equipment Accident/Incident Database from 1975 to 2022 [20]. 
All classes of railroads are considered across all states including 
freight and passenger trains. The data obtained contains 216,141 
observations/incidents and 160 features. The dataset is complex 
with records predominantly in text. Also, it is imbalanced, and 
variables are mostly categorical with high dimensions. The data 
also contain unstructured text used in the narration of incidents. 
The more descriptive representation of the dataset is shown in 
Figure 2.

Feature Elimination
Based on the criteria used by Meng et al. [17], correlated, re-
dundant, and sparse features are removed from the dataset. For 
instance, correlated features are those that are more than 80% 
correlated with one another, e.g. loaded freight cars and gross 
tonnage. Redundant are those whose information is inherent in 
another feature, e.g. state and county. Features with more than 
80% of their values missing are considered sparse and are there-
fore removed from the dataset e.g. Adjunct code 2. Of the 160 
features in the dataset, four are selected for this analysis.

Data Preparation
Outliers within the data are first identified using boxplots. EN-
GINEERS is identified to have several outliers therefore those 
observations were removed from the dataset. The deletion ap-
proach was used to handle missing responses within the features 
selected. The justification for this approach is that it doesn’t sig-
nificantly affect the sample size for the analysis. Lastly, Features 
such as WEATHER, are categorical and are therefore trans-
formed into dummy variables with binary encoding.

Logistic Regression
Assumptions
Before proceeding with the logistic regression, we must ensure 
that all the assumptions related to the procedure are met:
i. Linearity: presence of a linear relationship between the log-
odds of the outcome (Derailment) and the predictors.
ii. Independence of observations: the outcome of one observa-
tion does not influence that of another.
iii. No multicollinearity: this assumption is checked using the 
VIF value and all of them were below 5 suggesting just a moder-
ate correlation which will not be of major concern.
iv. No outliers: to prevent outliers from unduly influencing the 
model estimates, all observations with outlier values were re-
moved from the dataset.
v. Large sample size: sample size is sufficiently large so esti-
mates can be more reliable and ensures that the model general-
izes well to new data
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Figure 2: Description of dataset

The logistic regression procedure was run in Python using the 
Google Collaboratory platform. All predictors are entered into 
the model at the initial stage to improve the overall fit of the 
model to the data, and to capture more of the underlying rela-
tionships between the predictors and the outcome variable. The 
parameter estimates of all the variables as well as their odds ratio 

is presented in TABLE 1 . The coefficients represent the change 
in the log-odds of derailment associated with a one-unit change 
in the predictor, holding other predictors constant. For example, 
the coefficient for "Engineers" is -0.2209, indicating that an in-
crease in the number of engineers is associated with a decrease 
in the log- odds of derailment.

Table 1: Maximum likelihood and Odds Ratio Estimates
Parameter Maximum likelihood estimates Odds ratio of estimates

Coefficient P>|z| Odds Ratio 95% Confidence limits
const 0.7151 0.000 2.044 1.893 2.208

Clear weather -0.0955 0.000 0.909 0.886 0.932
Main track -0.2163 0.000 0.805 0.785 0.827

Gross Tonnage 0.0002 0.000 1.000 1.000 1.000
Engineers -0.2209 0.000 0.802 0.747 0.860

The association of predicted probabilities and observed respons-
es is assessed using various measures like concordance, Somers' 
D, and Gamma. The relatively high percentage of concordant 
pairs (69.75%) and the positive values of Somers' D (0.34) and 
Gamma (0.35) indicate a good discriminatory ability of the mod-
el.

AdaBoost Ensemble Method
Hyperparameter Tuning
There are several parameters that influence the prediction per-
formance of any ensemble model. Hyperparameter tuning is a 
prior step used to find optimal hyperparameter values that pro-
duce the best classification accuracy. Grid search was used to 
find the optimal values for these parameters. The parameters of 
interest in the AdaBoost classifier model are:
i. Base estimator: the algorithm used to train the model. A deci-
sion tree classifier is used as base estimator for our model.
ii. Number of estimators: the number of models that the algo-

rithm trains. This was set at 300, based on the results of the grid 
search.
iii. Learning rate: this is the contribution of each model to the 
weight of the final model. This was set to 1.5, based on the re-
sults of the grid search.

Results
Training and testing of the data is done with a 5-fold cross-vali-
dation while stratifying the response variable into homogeneous 
subgroups to ensure representative sampling and reduction of 
bias.

Four performance criteria are used to assess the model's per-
formance, namely: Accuracy, Precision, Recall, and F1- score. 
Accuracy is the base metric often used to evaluate model perfor-
mance. It is the ratio of correct predictions to the total number of 
predictions. Precision measures the rate of positive prediction. 
It is the ratio of true positives to the sum of true positives and 
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false positives. Recall measures the number of positives classi-
fied correctly out of the total number of positives in the dataset. 
It is also known as Sensitivity. F1-score combines the Precision 
and Recall values into a mean value and is given by:
 

The results of the four evaluation criteria are summarized in 
TABLE 2. The confusion matrix in Figure 3 shows the model’s 
performance in predicting train derailment. AdaBoost performs 
well in predicting derailment accidents with an accuracy of 72%.

Table 2: Classification report of AdaBoost model.
Precision Recall F1-score Support

Derailment 0.73 0.96 0.83 22859
Non-Derailment 0.63 0.16 0.25 9816

Accuracy 0.72 32675
Macro average 0.68 0.56 0.54 32675

Weighted average 0.70 0.72 0.65 32675

Figure 3: Confusion matrix

The Area Under the Curve (AUC) in Figure 4 summarizes the 
model's overall discriminatory power. In this case, the AUC is 
0.68, which is considered a moderate to good performance. It 

suggests that the model has a 68% chance of correctly classi-
fying a randomly chosen derailment instance higher than a ran-
domly chosen non-derailment instance.

Figure 4: ROC curve for derailment prediction

The key factors that influence the prediction of derailment acci-
dents are also investigated. The features and their contribution 
to the AdaBoost prediction are obtained and ranked according to 

their importance. TABLE 3 shows the features and their impor-
tance to the prediction model.
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Table 3: Important features of derailment accidents
Feature Description Importance

TONNAGE Gross tonnage of the train 0.975
MAIN TRACK Type of track the train was travelling on 0.015

CLEAR WEATHER Visibility at the time of accident 0.005
ENGINEERS No. of Engineers on the train 0.005

According to TABLE 3, TONNAGE is the most important factor 
in determining the likelihood of a train to derail while travelling, 
followed track types, which is a distant second. Visibility and 
the number of engineers on the train have little impact in deter-
mining whether a train will be involved in a derailment accident.

Discussion
The logistic regression analysis reveals insightful patterns re-
garding factors associated with train derailments. The mod-
el, demonstrating good fit, highlights significant influences of 
weather, type of track, and presence of engineers. The odds ratio 
estimates provided insights into the direction and magnitude of 
the predictors' effects. Notably, 'Clear weather' and 'Main track' 
were associated with decreased odds of derailment, suggesting 
that derailments are more likely to occur in adverse weather con-
ditions or on tracks other than the main track. Conversely, 'Gross 
Tonnage' exhibited a positive association, implying that heavier 
trains are at a higher risk of derailment.

The presence of engineers is linked to a significant decrease 
in derailment odds, suggesting the importance of skilled crew 
members in mitigating risk. This finding might warrant further 
investigation into the specific mechanisms through which engi-
neers contribute to safety, potentially informing crew training 
and operational procedures. Gross tonnage presents a complex 
relationship with derailment risk. It can be inferred that higher 
gross tonnage elevates derailment odds, probably due to the in-
creased momentum and inertia of heavier trains. This suggests 
a need for balancing speed and cargo weight to optimize safety.

In the second part of the analysis, the ensemble learning model 
demonstrates a clear proficiency in predicting derailments (class 
1) compared to non-derailments (class 0). For the "Derailment" 
class, the model boasts a precision of 0.73, signifying that 73% 
of instances predicted as derailments were indeed correct. The 
recall of 0.96 for this class indicates that the model successfully 
identified 96% of actual derailments. The F1-score of 0.83 pro-
vides a balanced measure of precision and recall, suggesting a 
good overall performance in predicting derailments.

In contrast, for the "non-derailment" class, the model shows 
a precision of 0.63, meaning 63% of instances classified as 
non-derailments were accurate. However, the recall of 0.16 indi-
cates that the model only captured 16% of actual non-derailment 
events. The F1-score of 0.25 for this class reflects a substantially 
lower overall performance compared to the "Derailment" class. 
The overall accuracy of 0.72 implies that the model correctly 
classified 72% of all instances, encompassing both derailments 
and non-derailments. This is further supported by the confusion 
matrix in Figure 3. However, the macro average and weighted 
average metrics, which account for class imbalance, reveal a dis-
crepancy in performance between the two classes. The weighted 
average, which considers the support of each class, highlights 

the model's bias towards predicting derailments due to their 
higher frequency in the dataset.

Summary
To further improve the safety of rail transportation, it is import-
ant to base decisions on data. This is especially important given 
the significant progress that has been made in big data analyt-
ics. This study examined the FRA accident data collected over 
a 47-year period and a dominant occurrence of derailment ac-
cidents is discovered. Researchers carry out two main studies, 
first to identify the factors influencing derailment accidents and 
secondly apply machine learning techniques to predict the oc-
currence of derailment accidents. Logistic regression revealed 
that the number of engineers on board and the type of track are 
the most influential factors in assessing the likelihood of a train 
derailing. Further analysis using adaptive boosting to predict 
its occurrence reveals that the gross tonnage carries the largest 
share of information in predicting the occurrence of a derailment 
accident.

Overall, the ensemble learning model appears to be more ad-
ept at predicting derailments than non- derailments. There's a 
significant room for improvement in identifying non-derailment 
events, as indicated by the lower recall for this class. This im-
balance could be attributed to the data distribution, where derail-
ments might be over-represented compared to non-derailments. 
The model's overall performance is decent, with respectable 
accuracy and strong performance in detecting derailments, 
which is arguably a more critical aspect given the potential con-
sequences of such events. Also, the logistic regression model 
successfully identified several factors significantly associated 
with train derailment. The findings highlight the importance of 
weather conditions, track type, train weight, and crew composi-
tion in influencing derailment risk. These insights could inform 
targeted interventions and strategies to enhance railway safety 
and reduce the incidence of derailments. Further research could 
explore additional predictors, potential interactions between 
variables, and the development of more refined predictive mod-
els to support proactive risk management in the railway industry.
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