

World Journal of Applied Mathematics and Statistics

The Parameters of Reed-Muller Projective m[®] Codes

Pemha Binyam Gabriel Cedric

University of Douala, Faculty of Science, Department of Mathematics and computer sciences, Douala Cameroon

*Corresponding author: Pemha Binyam Gabriel Cedric, University of Douala, Faculty of Science, Department of Mathematics and computer sciences, Douala Cameroon.

Submitted: 15 February 2025 Accepted: 21 February 2025 Published: 26 February 2025

doi https://doi.org/10.63620/MKWJAMS.2025.1001

Citation: Pemha, B. G. C. (2025). The Parameters of Reed-Muller Projective mΘ Codes. Wor Jour of Appl Math and Sta, 1(1), 01-10.

Abstract

Reed-Muller codes were originally introduced by Muller in 1954, then Irving Reed gave a decoding method the same year. These codes, of lengths a power of 2, were the first family of codes for which it was pos-sible to decode an infinite number of errors. The finite field underlying the Reed-Muller codes is $F2 = \{0, 1\}$. By replacing this field with the m Θ finite field $F2Z = \{0, 1, 12Z, 32Z\}$, the study of Reed-Muller codes on F2Z becomes the m Θ Reed-Muller codes. The generalized Reed-Muller codess were intro-duced by Kasami, Lin and Peterson a Weldon. They showed that GRM codes are cyclic and thereby determined the minimum distance. The m Θ generalized Reed-Muller codes were developed by Pemha and Tsimi in 2022. Projective Reed-Muller codes are first introduced by Lachaud in 1988 and the dimensions and minimum distances of Projective Reed-Muller codes are determined by Sørensen in 1991. In this paper, we intend to define and to present a notion of Reed-Muller Projective m Θ Reed-Muller codes, in oth- ers words the Projective Reed-Muller codes on the m Θ field FqZ, q prime or prime power. The nature of the number q will determine the type of Projective Reed-Muller codes. The exact parameters of the Reed-Muller Projective m Θ codes are derived and the dual are characterized. It is shown that the Reed-Muller Projective m Θ codes are an extension of Projective Reed-Muller codes such that the set of m Θ invariants C (Reed-Muller Projective m Θ codes are m Θ cyclic and the generator polynomial is characterized.

Keywords: Chrysippian Modal Θ -Valent Logic, $m\Theta$ set, $m\Theta$ Generalized Reed-Muller Codes, $m\Theta$ Minimum Weight, Reed-Muller Projective $m\Theta$ Codes.

Introduction

Projective Reed-Muller codes are a class of linear error-correcting codes, con-structed from Reed-Muller codes, and having interesting properties in terms of minimum distance and dimensionality relative to the code length [8, 10]. Classical Reed-Muller codes are defined over affine vector spaces, while the projectively normalized versions are defined over projective vector spaces [7, 9]. This projective normalization allows for some improved characteristics of the codes.

The main properties of projective Reed-Muller codes are: Better minimum distance than affine Reed-Muller codes of the same dimension and length; higher dimensionality than affine Reed-Muller codes of the same length and rich algebraic structure enabling in-depth mathematical analysis [11].

The purpose of the paper is to: provide an explicit construction of Reed- Muller projective $m\Theta$ codes and derive their fundamental parameters, such as their dimension and minimum distance; investigate the algebraic properties of these codes, including their automorphism group and compare the performance of these projective $m\Theta$ codes to classical Reed-Muller codes.

This paper recalls, in section II, the Generalized Reed-Muller Codes by its generator matrix over GF (qm, r) and the canonical construction of modal Θ -valent fields, modal Θ -valent pseudo fields as defined in [1]. Section III gives exact definition of m Θ Generalized Reed-Muller Codes. The parameters of Reed-Muller Projective m Θ codes are characterized in section IV. It is shown that a subclass of Reed-Muller Projective m Θ codes is m Θ cyclic.

Preliminaries

The Modal Θ -Valent set Structure and the Algebra of (FpZ, F α)

Definition 1. [2, 3] Let Me be a non-empty set, I be a chain whose first and last elements are 0 and 1 respectively, $(F\alpha)$ αEI_* where $I_* = I \setminus \{0\}$ be a family of applications form E to E.

A $m\Theta$ set is the pair $(E, (F_{\alpha})_{\alpha \in I_*})$ simply denoted by (E, F_{α}) satisfying the following four axioms:

- $\bigcap_{\alpha} F_{\alpha}(E) = \bigcap_{\alpha \in I_{+}} \{F_{\alpha}(x) : x \in E\} \neq \emptyset;$
- ∀α, β ∈ I_{*}, if α ≠ β then F_α ≠ F_β;
- ∀α, β ∈ I_{*}, F_α ∘ F_β = F_β;
- $\forall x, y \in E$, if $\forall \alpha \in I_*$, $F_{\alpha}(x) = F_{\alpha}(y)$ then x = y.

 $m\Theta$ sets are considered to be non-classical sets which are compatible with a non-classical logic called the chrysippian $m\Theta$ logic.

Definition 0.2. [4] Let $C(E, F_{\alpha}) = \bigcap_{\alpha \in I_{*}} F_{\alpha}(E)$. We call $C(E, F_{\alpha})$ the set of $m\Theta$ invariant elements of the $m\Theta$ set (E, F_{α}) .

Let $p \in \mathbb{N}$, a prime number. Let us recall that if $a \in \mathbb{F}_{p\mathbb{Z}}$.

$$\mathbb{F}_{p\mathbb{Z}} = \mathbb{F}_p \cup \{x_{p\mathbb{Z}} : \neg (x \equiv 0 \, (mod p))\}; \quad \mathbb{F}_p = \{0, 1, 2, \cdots, p-1\}.$$

2.2. Generalized Reed-Muller codes over $\mathbb{GF}(q^m, r)$ [5]

Let ξ be a primitive element of $\mathbb{GF}(q^m, r)$, then $\mathbb{GF}(q^m, r) = \{0, 1, \xi, \xi^2, \dots, \xi^{q^m-2}\}$. The field $\mathbb{GF}(q^m, r)$ can be viewed as an m-dimensional vector space over $\mathbb{GF}(q, r)$ with $1, \xi, \xi^2, \dots, \xi^{m-1}$ as basis elements, so,

$$\xi^j = \sum_{i=0}^{m-1} a_{ij} \xi^i \quad 0 \le j \le q^m - 2.$$

Where $a_{ij} \in \mathbb{GF}(q^m, r)$, $0 \le i \le m-1$, $0 \le j \le q^m-2$, since $\mathbb{GF}(q^m, r)$ can be considered a vector space over the field $\mathbb{GF}(q, r)$, with $1, \xi, \xi^2, \dots, \xi^{m-1}$ as basis elements. The matrix $G_q(r, m)$ can then be rewritten as

$$G_q(r, m) = \begin{pmatrix} v_I \\ v_0 \\ v_1 \\ \vdots \\ v_{m-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ a_{00} & a_{01} & a_{02} & \cdots & a_{0,n-1} \\ a_{10} & a_{11} & a_{12} & \cdots & a_{1,n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{m-1,0} & a_{m-1,1} & a_{m-1,2} & \cdots & a_{m-1,n-1} \end{pmatrix}$$

In other words, the elements of $\mathbb{GF}(q^m, r)$ can be written in the vector from as

$$\xi^{j} = \begin{pmatrix} a_{0j} \\ a_{1j} \\ \vdots \\ a_{m-1,j} \end{pmatrix}; \quad j = 0, 1, \dots, q^{m} - 2.$$

Let $n = q^m$. The vector space $GF(q^m, r)$ has n elements which are often call points. Let

$$P_0 := (0, 0, \dots, 0), P_j := (a_{0,j-1}, a_{1,j-1}, \dots, a_{m-1,j-1}); j = 0, 1, \dots, n-1.$$

Then P_0, P_1, \dots, P_{n-1} is an enumeration of the points of $GF(q^m, r)$. Under this enumeration, a q-ary Reed-Muller code $RM_q(r, m)$ of order r is defined as in [5]

$$RM_q(r, m) = \{(f(P_0), f(P_1), \dots, f(P_{n-1})), | f \in \mathbb{F}_q[X_1, \dots, X_m], deg(f) \le r\}.$$

2.3. Canonical construction of modal Θ -valent fields $(m\Theta f)$ and modal Θ -valent pseudo fields $(m\Theta pf)$. [6]

Let p be a prime number, $k \neq 0$ a positive integer, $q = p^k$ and \mathbb{F}_q a finite field with q elements.

Modal Θ -valent fields $(m\Theta f)$

Consider that k=1, so q=p. $\mathbb{F}_p=\frac{\mathbb{Z}}{p\mathbb{Z}}$ is the prime field of characteristic p and of p elements. The modal Θ -valent quotient ring $(m\Theta qr)$ $\mathbb{F}_{p\mathbb{Z}}$ as the modal Θ -valent quotient $\frac{\mathbb{Z}_{p\mathbb{Z}}}{p\mathbb{Z}_{p\mathbb{Z}}}$.

Let
$$\mathbb{F}_{p\mathbb{Z}}^* = \mathbb{F}_{p\mathbb{Z}} - \{0\}$$
. $\forall x \in \mathbb{F}_{p\mathbb{Z}}^*$, $\exists x' \in \mathbb{F}_{p\mathbb{Z}}^* / x \cdot x' = \frac{1_{p\mathbb{Z}}}{p\mathbb{Z}_{p\mathbb{Z}}}$.

 $\mathbb{F}_{p\mathbb{Z}}$ has p^2 elements but has no proper sub $m\Theta$ ring verifying the preceding property for $\mathbb{F}_{p\mathbb{Z}}^*$.

For which reason, $\mathbb{F}_{p\mathbb{Z}}$ is the prime $m\Theta f$ with p^2 elements. \mathbb{F}_p is the prime sub field of the $m\Theta$ invariants of $\mathbb{F}_{p\mathbb{Z}}$.

Modal Θ -valent pseudo fields $(m\Theta pf)$

Consider that $k \neq 1$, so $q = p^k$. Let then $\mathbb{F}(p^k \mathbb{Z}, 1)$ denote the quotient $m\Theta r \mathbb{F}_{p^k \mathbb{Z}} = \frac{\mathbb{Z}_{p\mathbb{Z}}}{p^k \mathbb{Z}_{p\mathbb{Z}}}$ and let

$$O(p^k,\,1) = O_{p^k} = \{\frac{a}{p^k \mathbb{Z}_{p\mathbb{Z}}}:\, a \in \mathbb{Z}_{p\mathbb{Z}},\, s(a)/p^k\} = \{\frac{a}{p^k \mathbb{Z}}:\, a \in \mathbb{Z},\, a/p^k\}.$$

Let
$$\mathbb{F}^*(p^k\mathbb{Z}, 1) = \mathbb{F}(p^k\mathbb{Z}, 1) - O(p^k, 1); k \in \mathbb{N}^*.$$
 Then $\forall x : x \in \mathbb{F}^*(p^k\mathbb{Z}, 1), \exists x' : x' \in \mathbb{F}^*(p^k\mathbb{Z}, 1) : x \cdot x' = \frac{1_{p\mathbb{Z}}}{p^k\mathbb{Z}_{p\mathbb{Z}}}.$

So we call $\mathbb{F}_{p^k\mathbb{Z}}$ a $m\Theta$ pseudo field $(m\Theta pf)$. $\mathbb{F}_{p^k\mathbb{Z}}$ has p^{k+1} elements and is of characteristic p^k . It has no proper sub $m\Theta pf$ with the same as the preceding properties for $\mathbb{F}^*(p^k\mathbb{Z}, 1)$. Finally, $\mathbb{F}(p^k\mathbb{Z}, 1)$ is the prime $m\Theta pf$ with p^{k+1} elements.

Nomenclature 0.1. We call:

- • F_{qZ}[X₀, X₁, · · · , X_m] m⊖ Ring of polynomials in X₀, X₁, · · · , X_m with coefficients in F_{qZ}.
- F_{qZ}[X₀, X₁, · · · , X_m]^ν∪{0} mΘ Vectorspace of polynomials in X₀, X₁, · · · , X with coefficients in F_{qZ} and of degree ν.
- F_{qZ}[X₀, X₁, · · · , X_m]_h ∪ {0} mΘ Vectorspace of homogeneous polynomials in X₀, X₁, · · · , X_m with coefficients in F_{qZ}.
- F_{qZ}[X₀, X₁, · · · , X_m]^ν_h ∪ {0} mΘ Vectorspace of homogeneous polynomials in X₀, X₁, · · · , X_m with coefficients in F_{qZ} and of degree ν.
- A^m(F_{gZ}) m-dimensional affine space over F_{gZ}.
- P^m(F_{qZ}) m-dimensional projective space over F_{qZ}.

3. Reed-Muller projective $m\Theta$ Codes

3.1. Generalized $m\Theta$ Reed-Muller Codes [1]

If m is a positive integer, we denote by \mathbb{B}_m^{Θ} the $\mathbb{F}_{p\mathbb{Z}}$ -algebra of the $m\Theta$ functions from $\mathbb{F}_{p\mathbb{Z}}^m$ to $\mathbb{F}_{p\mathbb{Z}}$ and by $\mathbb{F}_{p\mathbb{Z}}[X_1, \cdots, X_m]$ the $\mathbb{F}_{p\mathbb{Z}}$ -algebra of $m\Theta$ polynomials over $\mathbb{F}_{p\mathbb{Z}}$ in m variables.

We consider the morphism of \mathbb{F}_p -algebras (from the \mathbb{F}_p -algebra of polyno-

mials over \mathbb{F}_p in m variables to the \mathbb{F}_p -algebra of the functions from \mathbb{F}_p^m to \mathbb{F}_p

$$\varphi : \mathbb{F}_p[X_1, \cdots, X_m] \longrightarrow \mathbb{B}_m.$$

Definition 0.3. One $m\Theta$ extends $\varphi : \mathbb{F}_p[X_1, \dots, X_m] \longrightarrow \mathbb{B}_m$, a morphism of \mathbb{F}_p -algebras, to $\varphi^{\Theta} : \mathbb{F}_{p\mathbb{Z}}[X_1, \dots, X_m] \longrightarrow \mathbb{B}_m^{\Theta}$ if $(\mathbb{F}_{p\mathbb{Z}}[X_1, \dots, X_m], F_{\alpha})$ and $(\mathbb{B}_{m}^{\Theta}, F_{\alpha}')$ are the $m\Theta$ set, such that $\forall \alpha \in I_{*}, \varphi \circ F_{\alpha} = F_{\alpha}' \circ \varphi$. A $m\Theta$ morphism of \mathbb{F}_p -algebras is a morphism

$$\varphi^{\Theta} : \mathbb{F}_{p\mathbb{Z}}[X_1, \cdots, X_m] \longrightarrow \mathbb{B}_m^{\Theta}$$

such that the following diagram be commutative:

$$\begin{split} \mathbb{F}_{p}[X_{1}, \cdots, X_{m}] & \xrightarrow{\varphi} \mathbb{B}_{m} \\ spec_{p\mathbb{Z}} \Big| & \bigvee_{spec_{p\mathbb{Z}}} spec_{p\mathbb{Z}} \\ \mathbb{F}_{p\mathbb{Z}}[X_{1}, \cdots, X_{m}] & \xrightarrow{\omega^{\Theta}} \mathbb{B}_{m}^{\Theta} \end{split}$$

Thus by definition, $\forall P \in \mathbb{A}^m(\mathbb{F}_{p\mathbb{Z}})$

$$\varphi^\Theta(P) = \left\{ \begin{array}{ll} \varphi(P) & \text{if } P \in \mathbb{A}^m(\mathbb{F}_p) \\ 1_{p\mathbb{Z}} \varphi(s(P)) & \text{if } not \end{array} \right.$$

We consider now the $m\Theta$ -morphism of $\mathbb{F}_{p\mathbb{Z}}$ -algebras $\varphi^{\Theta}: \mathbb{F}_{p\mathbb{Z}}[X_1, \dots, X_m] \longrightarrow \mathbb{B}_m^{\Theta}$ which associates to $P \in \mathbb{A}^m(\mathbb{F}_{p\mathbb{Z}})$ the $m\Theta$ function $f^{\Theta} \in \mathbb{B}_m^{\Theta}$ such that:

$$\forall X = (X_1, \dots, X_m) \in \mathbb{F}_{p\mathbb{Z}}^m, \quad f^{\Theta}(X) = P(X_1, \dots, X_m)$$

The $m\Theta$ morphism φ^{Θ} is onto and its kernel is the ideal generated by the

polynomials $X_1^{p^2} - X_1, \dots, X_m^{p^2} - X_m$. So, for each $f \in \mathbb{B}_m^{\Theta}$, there exists a unique $m\Theta$ polynomial $P \in \mathbb{A}^m(\mathbb{F}_{p\mathbb{Z}})$ such that the degree of P in each variable is at most $p^2 - 1$ and $\phi^{\Theta}(P) = f^{\Theta}$.

The support of f^{Θ} is the set $\{X \in \mathbb{F}_{p\mathbb{Z}}^m : f^{\Theta}(X) \neq 0\}$ and we denote by $|f^{\Theta}|$ the cardinal of its support, and is the $m\Theta$ Hamming weight of f^{Θ} .

Definition 0.4. ($m\Theta$ Generalized Reed-Muller codes)

For $0 \le r \le m(p^2 - 1)$, the rth order $m\Theta$ generalized Reed-Muller code of length p^{2m} is:

$$RM_p^{\Theta}(r, m) := \{ (f^{\Theta}(P_0), \cdots, f^{\Theta}(P_{n-1})) / f^{\Theta} \in \mathbb{F}_{p\mathbb{Z}}[X_1, X_2, \cdots, X_m], \ deg(f^{\Theta}) \le r \}$$

 $\mathbb{F}_{p\mathbb{Z}}$ is a $m\Theta$ field. Let p^k be a power of a prime number p. We saw in section 2 that F_{p^kZ} is not a mΘ field. Now, we want to define a generalized Reed-Muller codes on $\mathbb{F}_{p^k\mathbb{Z}}$.

Let p be a prime number, k a positive integer and $\mathbb{F}_{p^k\mathbb{Z}}$ a pseudo $m\Theta$ field $(m\Theta pf)$. $\mathbb{F}_{p^k\mathbb{Z}}$ has p^{k+1} elements and is of characteristic p^k .

In this case, $\mathbb{B}_m^{ps\Theta}$ is the pseudo $m\Theta$ $\mathbb{F}_{p^k\mathbb{Z}}$ -algebra of the $m\Theta$ functions from $\mathbb{F}_{p^k\mathbb{Z}}^m$ to $\mathbb{F}_{p^k\mathbb{Z}}$ and by $\mathbb{F}_{p^k\mathbb{Z}}[X_1,\cdots,X_m]$ the pseudo $m\Theta$ $\mathbb{F}_{p^k\mathbb{Z}}$ -algebra of $m\Theta$ polynomials over $\mathbb{F}_{v^k\mathbb{Z}}$ in m variables.

We consider the $m\Theta$ morphism $\mathbb{F}_{p^k\mathbb{Z}}$ -algebras $\varphi^{\Theta}: \mathbb{F}_{p^k\mathbb{Z}}[X_1, \cdots, X_m] \longrightarrow \mathbb{B}_m^{ps\Theta}$ which associates to $P \in \mathbb{A}^m(\mathbb{F}_{p^k\mathbb{Z}})$ the $m\Theta$ function $f^{\Theta} \in \mathbb{B}_m^{ps\Theta}$ such that:

$$\forall X = (X_1, \dots, X_m) \in \mathbb{F}_{n^k \mathbb{Z}}^m, \quad f^{\Theta}(X) = P(X_1, \dots, X_m)$$

So, for each $f \in \mathbb{B}_m^{ps\Theta}$, there exists a unique $m\Theta$ polynomial $P \in \mathbb{A}^m(\mathbb{F}_{p^k\mathbb{Z}})$ such that the degree of P in each variable is at most $p^{k+1}-1$ and $\varphi^{\Theta}(P)=f^{\Theta}$.

Definition 0.5. (pseudo $m\Theta$ Generalized Reed-Muller codes)

For $0 \le r \le m(p^{k+1}-1)$, the rth order pseudo $m\Theta$ generalized Reed-Muller code of length $p^{m(k+1)}$ is:

$$RM_{p^k}^{\Theta}(r, m) := \{(f^{\Theta}(P_0), \dots, f^{\Theta}(P_{n-1})) / f^{\Theta} \in \mathbb{F}_{p^k \mathbb{Z}}[X_1, X_2, \dots, X_m], deg(f^{\Theta}) \le r\}$$

Thus by definition, $\forall P \in \mathbb{A}^m(\mathbb{F}_{p\mathbb{Z}})$

$$\varphi^{\Theta}(P) = \left\{ \begin{array}{ll} \varphi(P) & \text{if } P \in \mathbb{A}^m(\mathbb{F}_p) \\ 1_{p\mathbb{Z}} \varphi(s(P)) & \text{if } not \end{array} \right.$$

We consider now the $m\Theta$ -morphism of $\mathbb{F}_{p\mathbb{Z}}$ -algebras $\varphi^{\Theta} : \mathbb{F}_{p\mathbb{Z}}[X_1, \dots, X_m] \longrightarrow \mathbb{B}_m^{\Theta}$ which associates to $P \in \mathbb{A}^m(\mathbb{F}_{p\mathbb{Z}})$ the $m\Theta$ function $f^{\Theta} \in \mathbb{B}_m^{\Theta}$ such that:

$$\forall X = (X_1, \dots, X_m) \in \mathbb{F}_{p\mathbb{Z}}^m, \quad f^{\Theta}(X) = P(X_1, \dots, X_m)$$

The $m\Theta$ morphism φ^{Θ} is onto and its kernel is the ideal generated by the

polynomials $X_1^{p^2} - X_1, \dots, X_m^{p^2} - X_m$. So, for each $f \in \mathbb{B}_m^{\Theta}$, there exists a unique $m\Theta$ polynomial $P \in \mathbb{A}^m(\mathbb{F}_{p\mathbb{Z}})$ such that the degree of P in each variable is at most $p^2 - 1$ and $\phi^{\Theta}(P) = f^{\Theta}$. The support of f^{Θ} is the set $\{X \in \mathbb{F}_{p\mathbb{Z}}^m : f^{\Theta}(X) \neq 0\}$ and we denote by

 $|f^{\Theta}|$ the cardinal of its support, and is the $m\Theta$ Hamming weight of f^{Θ} . Definition 0.4. ($m\Theta$ Generalized Reed-Muller codes)

For $0 \le r \le m(p^2 - 1)$, the rth order $m\Theta$ generalized Reed-Muller code of length p^{2m} is:

$$RM_p^{\Theta}(r, m) := \{ (f^{\Theta}(P_0), \dots, f^{\Theta}(P_{n-1})) / f^{\Theta} \in \mathbb{F}_{p\mathbb{Z}}[X_1, X_2, \dots, X_m], deg(f^{\Theta}) \le r \}$$

Observation:

 $\mathbb{F}_{p\mathbb{Z}}$ is a $m\Theta$ field. Let p^k be a power of a prime number p. We saw in section 2 that $\mathbb{F}_{p^k\mathbb{Z}}$ is not a $m\Theta$ field. Now, we want to define a generalized Reed-Muller codes on $\mathbb{F}_{p^k\mathbb{Z}}$.

Let p be a prime number, k a positive integer and $\mathbb{F}_{p^k\mathbb{Z}}$ a pseudo $m\Theta$ field $(m\Theta pf)$. $\mathbb{F}_{p^k\mathbb{Z}}$ has p^{k+1} elements and is of characteristic p^k .

In this case, $\mathbb{B}_m^{ps\Theta}$ is the pseudo $m\Theta$ $\mathbb{F}_{p^k\mathbb{Z}}$ -algebra of the $m\Theta$ functions from $\mathbb{F}_{p^k\mathbb{Z}}^m$ to $\mathbb{F}_{p^k\mathbb{Z}}$ and by $\mathbb{F}_{p^k\mathbb{Z}}[X_1,\cdots,X_m]$ the pseudo $m\Theta$ $\mathbb{F}_{p^k\mathbb{Z}}$ -algebra of $m\Theta$ polynomials over $\mathbb{F}_{p^k\mathbb{Z}}$ in m variables.

We consider the $m\Theta$ morphism $\mathbb{F}_{p^k\mathbb{Z}}$ -algebras $\varphi^{\Theta}: \mathbb{F}_{p^k\mathbb{Z}}[X_1, \cdots, X_m] \longrightarrow \mathbb{F}_m^{ps\Theta}$ which associates to $P \in \mathbb{A}^m(\mathbb{F}_{p^k\mathbb{Z}})$ the $m\Theta$ function $f^{\Theta} \in \mathbb{F}_m^{ps\Theta}$ such that:

$$\forall X = (X_1, \dots, X_m) \in \mathbb{F}_{p^k \mathbb{Z}}^m, \quad f^{\Theta}(X) = P(X_1, \dots, X_m)$$

So, for each $f \in \mathbb{B}_m^{ps\Theta}$, there exists a unique $m\Theta$ polynomial $P \in \mathbb{A}^m(\mathbb{F}_{p^k\mathbb{Z}})$ such that the degree of P in each variable is at most $p^{k+1}-1$ and $\varphi^{\Theta}(P)=f^{\Theta}$.

Definition 0.5. (pseudo $m\Theta$ Generalized Reed-Muller codes)

For $0 \le r \le m(p^{k+1}-1)$, the rth order pseudo $m\Theta$ generalized Reed-Muller code of length $p^{m(k+1)}$ is:

$$RM_{p^k}^{\Theta}(r, m) := \{(f^{\Theta}(P_0), \dots, f^{\Theta}(P_{n-1})) / f^{\Theta} \in \mathbb{F}_{p^k \mathbb{Z}}[X_1, X_2, \dots, X_m], deg(f^{\Theta}) \le r\}$$

choose P and $P' \in \mathbb{A}^n(\mathbb{F}_{a\mathbb{Z}} \setminus \{0\})$ such that $Q = p^{\Theta}(P)$ and $Q' = p^{\Theta}(P')$. Then,

$$\begin{split} g^\Theta(Q) = g^\Theta(Q') &\iff g^\Theta \circ p^\Theta(P) = g^\Theta \circ p^\Theta(P') \\ &\iff \pi^\Theta \circ h^\Theta(P) = \pi^\Theta \circ h^\Theta(P') \end{split}$$

 $\exists \lambda \in \mathbb{F}_p \setminus \{0\} \text{ such that } h^{\Theta}(P) = \lambda h^{\Theta}(P') = h^{\Theta}(\lambda P') \Longrightarrow P = \lambda P'. \text{ Hence}$ $p^{\Theta}(P) = p^{\Theta}(\lambda P') = p^{\Theta}(P') \Longrightarrow Q = Q'.$

Finally, for all $m\Theta$ injective linear map $h^{\Theta} : \mathbb{A}^n(\mathbb{F}_{q\mathbb{Z}} \setminus \{0\}) \longrightarrow \mathbb{A}^m(\mathbb{F}_{q\mathbb{Z}} \setminus \{0\})$ induces a $m\Theta$ projective map $g^{\Theta} : \mathbb{P}(\mathbb{F}_{q\mathbb{Z}}^n) \longrightarrow \mathbb{P}(\mathbb{F}_{q\mathbb{Z}}^m)$.

4. The properties of Reed-Muller Projective $m\Theta$ Codes

The most difficult parameter to calculate is the minimum distance. The

natural idea is to use the knowledge from the affine situation of the minimum distance of $RM_p^{\Theta}(r, m)$ codes. We start with some necessary notation and some lemmas.

Notation 0.1. If $F(X) = \sum c_{i_0i_1\cdots i_m} X_0^{i_0} X_1^{i_1} \cdots X_m^{i_m}$ is a polynomial in $\mathbb{F}_{q\mathbb{Z}}[X_0, X_1, \cdots, X_m]$, denoted by $\bar{F}(X)$ the reduced form of F(X), so the polynomial we get by in any term replacing any factor $X_j^{i_j}$, where $t_j = a(q-1) + b$, $0 < b \le q-1$, with X_j^b .

If $M \subset \mathbb{F}_{q\mathbb{Z}}[X_0, X_1, \dots, X_m]$ is any set of polynomials denote by \overline{M} the corresponding set of reduced polynomials. So, $\overline{\mathbb{F}_{q\mathbb{Z}}[X_0, X_1, \dots, X_m]}$ denotes the set of all reduced polynomials over $\mathbb{F}_{q\mathbb{Z}}$ in the variables X_0, \dots, X_m . For F homogeneous, we denote by $Z(F)_{\mathbb{F}_{q\mathbb{Z}}}$, when $\mathbb{F}_{q\mathbb{Z}}$ is clear from the context, the algebraic set of zeros of F in $\mathbb{P}^m(\mathbb{F}_{q\mathbb{Z}})$. The degree of $X = Z(F)_{\mathbb{F}_{q\mathbb{Z}}}$ is deg(X) = deg(F).

Lemma 0.1. If $F(X) \in \mathbb{F}_{q\mathbb{Z}}[X_0, X_1, \dots, X_m]$ and $G(X) \in \mathbb{F}_{q\mathbb{Z}}[X_0, X_1, \dots, X_m]_h$ then

- F(P) = F̄(P), for any P ∈ A^{m+1}(F_{pZ});
- 2. $G(P) = \bar{G}(P)$, for any $P \in \mathbb{P}^m(\mathbb{F}_{p\mathbb{Z}})$;
- 3. if F(P) = 0, for any $P \in \mathbb{A}^{m+1}(\mathbb{F}_{p\mathbb{Z}})$, then $\bar{F}(X) = 0$;
- 4. if G(P) = 0, for any $P \in \mathbb{P}^{m+1}(\mathbb{F}_{p\mathbb{Z}})$, then $\bar{G}(X) = 0$.

Proof 0.2. [6, 7]

Lemma 0.2. Let $F(X) \in \mathbb{F}_{q\mathbb{Z}}[X_0, X_1, \dots, X_m]_h^r$ and $H(X) \in \mathbb{F}_{q\mathbb{Z}}[X_0, X_1, \dots, X_m]_h^l$. Assume F(P) = 0, for all $P \in Z(H)_{\mathbb{F}_{q\mathbb{Z}}}$. Then there exists $\tilde{F}(X) \in \mathbb{F}_{q\mathbb{Z}}[X_0, X_1, \dots, X_m]_h^r$ and $G(X) \in \mathbb{F}_{q\mathbb{Z}}[X_0, X_1, \dots, X_m]_h^{r-1}$ such that

$$Z(F)_{\mathbb{F}_{q\mathbb{Z}}} = Z(\tilde{F})_{\mathbb{F}_{q\mathbb{Z}}} \quad and \quad \tilde{F} = HG.$$

Proof 0.3. Assume that $H(X) = X_0$. Let $F(X) = X_0F_1(X) + F_2(X)$, where $F_2(X) \in \mathbb{F}_{q\mathbb{Z}}[X_0, X_1, \cdots, X_m]_h^r$ and $F_1(X) \in \mathbb{F}_{q\mathbb{Z}}[X_0, X_1, \cdots, X_m]_h^{r-1}$. We get that $\bar{F}_2(X) = 0$, such that $\bar{F}(X) = X_0\bar{F}_1(X)$. Then $\tilde{F}(X) = X_0F_1(X)$ has the desired properties.

If $H(X) \neq X_0$, then consider a $\mathbb{F}_{q\mathbb{Z}}$ -linear bijective transformation ϕ that maps H(X) into X_0 . Then write

$$\phi(\tilde{F}) = X_0F_3(X),$$

 $F_3(X) \in \mathbb{F}_{q\mathbb{Z}}[X_0,\, X_1,\, \cdots,\, X_m]_h^{r-1} \ \ and \ \ let \ \ \tilde{F} = \phi^{-1}(\phi(\tilde{F})) = H\phi^{-1}(F_3).$

Lemma 0.3. Let $P = (0, 0, \dots, 1, \omega_{j+1}, \dots, \omega_m) \in \mathbb{P}^m(\mathbb{F}_{q\mathbb{Z}}), 0 \leq j \leq m$. For any $s, 0 < s \leq q-1$, the polynomial

$$F_P^s(X) = X_j^s \prod_{i=0}^{j-1} (X_j^{q-1} - X_i^{q-1}) \cdot \prod_{i=j+1}^m (X_j^{q-1} - (X_i - \omega_i X_j)^{q-1})$$

is indicator function for P and of degree $d = s \mod q - 1$.

The $(q^{m+1}-1)/(q-1)$ polynomials $\overline{F}_P^s(X)$ are a basis for $\overline{\mathbb{F}_{q\mathbb{Z}}[X_0, X_1, \cdots, X_m]_h^d}$, the set of homogeneous polynomials of degree d in reduced form, and any $H \in \overline{\mathbb{F}_{q\mathbb{Z}}[X_0, X_1, \cdots, X_m]_h^d}$ is uniquely written as

$$H(X) = \sum_{P \in \mathbb{P}^m(\mathbb{F}_{a\mathbb{Z}})} H(P)\bar{F}_P^s(X).$$
 (3)

Proof 0.4. $\bar{F}_{P}^{s}(Q) = 1$, if Q = P and $\bar{F}_{P}^{s}(Q) = 0$, if $Q \neq P$, so $\bar{F}_{P}^{s}(X)$ is indicator function for P and $\bar{F}_{P}^{s}(X)$ is homogeneous of degree $m(q-1) + s = s \mod(q-1)$. These functions are linearly independent and any $H \in \overline{\mathbb{F}_{q\mathbb{Z}}[X_0, X_1, \dots, X_m]_h^d}$ can be written as (3).

Remark 0.2. Only PRM $m\Theta$ codes of degree $0 < r \le m(q-1)$ are of any interest, since RM Projective $m\Theta$ codes of order $r \ge m(q-1)+1$ are trivial. Let $c = (c_1, c_2, \cdots, c_m)$ be any word. Choose $F(X) \in \mathbb{F}_{q\mathbb{Z}}[X_0, X_1, \cdots, X_m]_h^r$ such that

$$\bar{F}(X) = \sum_{P_i \in \mathbb{P}^m(\mathbb{F}_{q\mathbb{Z}})} c_i \bar{F}_{P_i}^s(X), \quad s = r \mod (q-1).$$

Then $c_i = F(P_i)$, so c is a $m\Theta$ codeword and the $m\Theta$ code is trivial.

Lemma 0.4. Let $\mathbb{F}_{q\mathbb{Z}}[X_0, X_1, \dots, X_m]$ and $Q \in \mathbb{P}^m(\mathbb{F}_{q\mathbb{Z}})$. Assume $\bar{F}(X)$ has degree $d \leq m(q-1)$ and F(P) = 0 for all $P \in \mathbb{P}^m \setminus Q$. Then F(Q) = 0.

Proof 0.5. Assume $F(Q) \neq 0$. Then $\lambda \bar{F}$ will be an indicator function for Q, $\lambda = F(Q)^{-1}$, and by previous lemma $\lambda \bar{F} = \bar{F}_P^s(X)$ for some $s, 0 < s \leq q - 1$. Now $deg(\bar{F}_P^s(X)) > m(q-1)$ and we have a contradiction.

Now we are able to state and prove the main theorem.

Theorem 0.1. The Reed-Muller projective $m\Theta$ Reed-Muller code $PC_r(m, q\mathbb{Z})$, $1 \le r \le m(q-1)$, is an $[n, k, d]_{q\mathbb{Z}}$ code with

$$n = \frac{q^{m+1} - 1}{q - 1}, \quad k = \sum_{t = r \bmod q - 1; \ 0 < t \le r} \left(\sum_{j=0}^{m+1} (-1)^j \binom{m+1}{j} \binom{t - jq + m}{t - jq} \right);$$

$$d = (q - s)q^{m-r-1}.$$

where r - 1 = u(q - 1) + s, $0 \le s < q - 1$.

Proof 0.6. The length n is $(q^{m+1}-1)/(q-1)$ by definition.

To find the minimum distance we consider a $m\Theta$ codeword $c = (F(P_1), \dots, F(P_n))$ and $F(X) \in \mathbb{F}_{q\mathbb{Z}}[X_0, X_1, \dots, X_m]_h^r$ where r - 1 = u(q - 1) + s; $0 \le s < q - 1$, $r \le m(q - 1) + 1$.

We want to estimate the weight of c, i.e., the number of zeros of F, when F is evaluated in all points of the $m\Theta$ -dimensional projective space. If $|Z(F)_{\mathbb{F}_{q\mathbb{Z}}}|$ denotes the number of zeros of F in $\mathbb{P}^m(\mathbb{F}_{q\mathbb{Z}})$, the claim is

$$|Z(F)_{\mathbb{F}_{q\mathbb{Z}}}| = \frac{q^{m+1} - 1}{q - 1} \text{ or } |Z(F)_{\mathbb{F}_{q\mathbb{Z}}}| \le \frac{q^{m+1} - 1}{q - 1} - (q - s)q^{m - u - 1}.$$
 (4)

We will prove (4) by induction on m.

If m = 1 then deg(F) = s + 1, $0 \le s < q - 1$, and on the projective line $\mathbb{P}^1(\mathbb{F}_{q\mathbb{Z}})$, F has at most s+1 zeros: If $P_{\infty} = (0, 1)$ is zero of F, then $F(1, X_1)$ has degree (in X_1) less than or equal to s.

Assume that (4) is correct for m-1 and consider now the case m: Consider $X = Z(F)_{\mathbb{F}_{q\mathbb{Z}}} \subseteq \mathbb{P}^m(\mathbb{F}_{q\mathbb{Z}})$, the algebraic set of zeros of F, and let F be of degree r, where $r-1 \leq m(q-1)$, r-1 = u(q-1) + s, $0 \leq s < q-1$.

1. If r - 1 = (m - 1)(q - 1) + s, $0 \le s < q - 1$ we would like to prove

$$|Z(F)_{\mathbb{F}_{q\mathbb{Z}}}| = \frac{q^{m+1}-1}{q-1} \text{ or } |Z(F)_{\mathbb{F}_{q\mathbb{Z}}}| \le \frac{q^{m+1}-1}{q-1} - (q-s).$$
 (5)

Assume that (5) is false, i.e., that $0 < |\mathbb{P}^m(\mathbb{F}_{q\mathbb{Z}})\backslash X| = t < q - s$, and let $\mathbb{P}^m(\mathbb{F}_{q\mathbb{Z}})\backslash X = \{P_1, P_2, \cdots, P_t\}$. Let $G_i(X)$, $i = 1, \cdots, t - 1$ be

linear polynomials defining t-1 hyperplanes such that $G_i(P_j) = \delta_{ij}$, $i = 1, \dots, t-1; j = 1, \dots, t$.

Then the polynomial $H(X) = F(X) \prod_{i=1}^{t-1} G_i(X)$ has degree $(m-1)(q-1) + s + t \le m(q-1)$ and $Z(H)_{\mathbb{F}_{q\mathbb{Z}}} = \mathbb{P}^m(\mathbb{F}_{q\mathbb{Z}}) \setminus \{P_t\}$. This contradicts Lemma 0.4.

- 2. If $r \le (m-1)(q-1)$ consider the following two cases.
 - Assume X does not contain (as a set of points) any hyperplane in P^m(F_{qZ}). For any hyperplane π we can consider Y = X ∩ π as an algebraic set in P^{m-1}(F_{qZ}) with deg (Y) = deg (X). We observe that deg (Y) = deg (X) = r ≤ (m − 1)(q − 1), so by the induction hypothesis we have for all F_{qZ}-hyperplanes π that

$$|X \cap \pi| \le \frac{q^{m+1} - 1}{q - 1} - (q - s)q^{m-r-2}.$$

By counting pairs (P, π) , $P \in (\mathbb{P}^m(\mathbb{F}_{q\mathbb{Z}})\backslash X)\cap \pi$, π a $\mathbb{F}_{q\mathbb{Z}}$ -hyperplane, in two different ways, we have

$$|\mathbb{P}^{m}(\mathbb{F}_{q\mathbb{Z}})\backslash X| \cdot \frac{q^{m+1}-1}{q-1} \ge \frac{q^{m+1}-1}{q-1}(q-s)q^{m-r-2};$$
 (6)

since $(q^{m+1}-1)/(q-1)$ is the number of $\mathbb{F}_{q\mathbb{Z}}$ -hyperplanes in $\mathbb{P}^m(\mathbb{F}_{q\mathbb{Z}})$ through a fixed point and $(q^{m+1}-1)/(q-1)$ is the number of $\mathbb{F}_{q\mathbb{Z}}$ -hyperplanes in $\mathbb{P}^m(\mathbb{F}_{q\mathbb{Z}})$.

Equation (6) gives $|\mathbb{P}^m \setminus X| \ge (q-s)q^{m-r-1}$; and we are done.

Assume that X contains the set of points of a hyperplane π = Z(H), H(X) ∈ F_{qZ}[X₀, X₁, · · · , X_m]¹_h. Then by lemma 0.2, we can assume that X = Z(HF₁), F₁(X) ∈ F_{qZ}[X₀, X₁, · · · , X_m]^{r-1}_h. Let X' = Z(F₁) and observe

$$|X| = |X' \setminus (X' \cap \pi)| + |\pi|.$$
 (7)

Since $X' \setminus (X' \cap \pi) \subseteq \mathbb{P}^m(\mathbb{F}_{q\mathbb{Z}}) \setminus \pi \cong \mathbb{A}^m(\mathbb{F}_{q\mathbb{Z}})$, $X' \setminus (X' \cap \pi)$ is an affine algebraic set, the zero set for some polynomial of degree r-1=u(q-1)+s, then, if $\pi=Z(X_0)$, the polynomial defining $X' \setminus (X' \cap \pi)$ is $F_1(1, X_1, \dots, X_n)$ and $deg(F_1)=r-1$. Using a $\mathbb{F}_{q\mathbb{Z}}$ -linear coordinate transformation taking H(X) to X_0 , the gen-

eral situation is reduced to this case.

We have seen that $X' \setminus (X' \cap \pi)$ corresponds to zeros of some polynomial of degree r - 1 = u(q - 1) + s. Using (2) we get

$$|X'\setminus (X'\cap \pi)| \le q^m - (q-s)q^{m-r-1}$$
. (8)

Adding $|\pi|$ to (8) yields $|X| \leq \frac{q^{m+1}-1}{q-1} - (q-s)q^{m-r-1}$. This completes the proof of (4) and gives a lower bound $d \geq (q-s)q^{m-r-1}$. Equality follows since the polynomial

$$F(X) = X_r \prod_{i=0}^{r-1} (X_i^{q-1} - X_r^{q-1}) \prod_{i=1}^{s} (\lambda_i X_r - X_{r+1}),$$

where $\lambda_i \neq \lambda_j$ for $i \neq j$ and $\lambda_i \in \mathbb{F}_{q\mathbb{Z}}^*$, has zeros at all points except those of the form $(0, 0, \dots, 1, a_{r+1}, \dots, a_m)$, where $a_{r+1} \neq \lambda_j$, $j = 1, \dots, s$ and $a_t \in \mathbb{F}_{q\mathbb{Z}}$ for $t = r + 2, \dots, m$. We see that there is exactly $(q - s)q^{m-r-1}$ such points, so F corresponds to a codeword of minimum distance d.

The dimension k of $PC_r(m, q)$ is found by combinatorical reasonning: It follows from Lemma 5 that

$$N(t, m+1, q-1) = \sum_{j=0}^{m+1} (-1)^j \binom{m+1}{j} \binom{t-jq+m}{t-jq}$$

is the number of distinct monomials in X_0, X_1, \dots, X_m of degree t, such that no reduction is possible.

Lemma 0.5. The number of ways one can place t objects in m cells such that no cell contains more than s objects is

$$N(t, m, s) = \sum_{j=0}^{m} (-1)^{j} {m \choose j} {t - j(s+1) + m - 1 \choose t - j(s+1)}$$

Proof 0.7. $\binom{t+m-1}{t}$ is the number of ways one can place t objects in m cells without restrictions.

 $\binom{t-j(s+1)+m-1}{t-j(s+1)}$ is the number of ways one can place t objects in m cells such that j cells contain at least s+1 objects. The principle of exclusion and inclusion now gives the result.

Conclusion

In this paper, we have presented a modal Θ -valent approach of the Reed- Muller Projective m Θ codes. The construction of the parameters of these codes requires the notion of a m Θ Generalized Reed-Muller Codes, chrysip- pian m Θ representation of GF (pZ, r), the classical theory of Projective Reed-

Muller codes. The length of Reed-Muller projective $m\Theta$ codes grows expo- nentially with the code order m, allowing for the construction of very large codes; this makes them interesting candidates for applications requiring high storage or transmission capacity. The high minimum weight of Reed-Muller projective $m\Theta$ codes gives them good error detection and correction capabil- ities; This makes them robust to perturbations and suitable for applications sensitive to errors.

While their parameters are attractive, Reed-Muller projective $m\Theta$ codes do not always achieve the best coding performance compared to other code families; a tradeoff may sometimes need to be made between performance and complexity.

References

- 1. Tsimi, J. A., & Pemha, G. (2021). On the generalized modal Θ-valent Reed-Muller codes. Journal of Information and Optimization Sciences, 42(8), 1885-1906.
- Ayissi Eteme, F. (1984). Anneau chrysippien Θ-valent. Comptes Rendus de l'Académie des Sciences, Paris, 298(1),
- 3. Ayissi Eteme, F. (2009). Logique et algèbre de structure mathématiques modales Θ-valentes chrysippiennes. Hermann

- Eteme, F. A., & Tsimi, J. A. (2011). A modal Θ-valent approach of the notion of code. Journal of Discrete Mathematical Sciences and Cryptography, 14, 445-473.
- 5. Ayissi Eteme, F. (2015). ChrmΘ introducing pure and applied mathematics. Lambert Academic Publishing.
- 6. Lang, S. (1965). Algebra. Addison-Wesley
- 7. Weldon, E. J. (1968). New generalizations of the Reed-Muller codes—Part II: Nonprimitive codes. IEEE Transactions on Information Theory, 14(2).
- 8. Tsimi, J. A., & Youdom, R. (2021). The modal Θ-valent extensions of BCH codes. Journal of Information and Optimization Sciences.
- 9. Kasami, T., Lin, S., & Peterson, W. W. (1968). New generalizations of the Reed-Muller codes. Part I: Primitive codes. IEEE Transactions on Information Theory, 14(2), 189-199.
- 10. Lachaud, G. (1990). The parameters of projective Reed-Muller codes. Luminy Case 916, 217-221.
- 11. Pellikaan, R., & Wu, X.-W. (2004). List decoding of q-ary Reed-Muller codes. Chinese Academy of Sciences, 679-682.

Copyright: ©2025 Pemha Binyam Gabriel Cedric. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.