

Journal of Psychiatry and Neurochemistry Research

Neuroscience Understanding Behavioral, Feelings and Social Signals

Lakhdar F^{1*}, Benzagmout M¹ & Boujraf S²

¹professor of neurosurgery, Department of neurosurgery, Hassan II hospital, Neuroscience Laboratory, University Sidi Mohammed BenAbdellah, Faculty of medicine, Fez, Morocco

²Professor of biophysics, Neuroscience Laboratory, University Sidi Mohammed BenAbdellah, Faculty of medicine, Fez, Morocco.

*Corresponding author: Lakhdar F, professor of neurosurgery, Department of neurosurgery, Hassan II hospital, Neuroscience Laboratory, University Sidi Mohammed BenAbdellah, Faculty of medicine, Fez, Morocco.

Submitted: 13 October 2023 Accepted: 23 October 2023 Published: 28 October 2023

doi https://doi.org/10.63620/MKJPNR.2023.1016

Citation: Lakhdar, F., Benzagmout, M., & Boujraf, S. (2023). Neuroscience Understanding Behavioral, Feelings and Social Signals. J of Psych and Neuroche Res 1(3), 01-05.

Abstract

Fundamental emotions like anger, disgust, fear, happiness, sadness, and surprise are linked to distinct feelings, facial expressions, and patterns of autonomic activity. Investigating how emotions are represented in the brain is a crucial aspect of cognitive neuroscience research. Emotions in humans can be triggered by various stimuli, including sensory cues like emotional faces or voices, as well as memories of past emotional events, such as a song evoking romantic memories.

Recent research suggests that emotions and cognition are interconnected in the brain, and several brain regions appear to represent emotions at an abstract level. These regions house abstract emotional representations that aid in understanding and assessing others' emotional states, activated by the recollection of emotional events. These abstract representations are found in four brain regions: the PCC, precuneus, MPFC, and the right hemisphere's angular gyrus. Additionally, facial expression paradigms can be used to further explore and comprehend the physiology of facial recognition as a means to analyze emotional states.

Furthermore, the brain can generate emotions based on the mental representation of bodily changes (referred to as "Core affect") and the recollection of past experiences (referred to as "Conceptualization").

Keywords: Emotions, Feeling, Brain, Behavior, Neuroscience

Introduction

Emotional words rely on the process of conceptualization because they necessitate a learned association with emotional categories to convey their affective meaning. In a manner akin to symbolic words, even a neutral, non-emotional stimulus, like a fractal image, can elicit the emotional content it has been linked to in the past. These brain regions appear to store abstract representations of emotions, which can be instrumental in grasping and assessing the emotional states of others. The recognition of emotional signals involves a neural network that encompasses emotion-related brain circuits and more advanced visual processing areas.

In summary, the interconnectedness of language, emotions, and the brain. It emphasizes the role of learned associations in understanding emotional words and how even neutral stimuli can become associated with emotions. Additionally, it suggests the presence of abstract representations of emotions in the brain and the involvement of specific brain regions in recognizing emotional signals.

The Importance of Conceptualization in Understanding Emotional Words and the Activation of Emotional Content Through Symbolic and Neutral Stimuli

Emotional Words and Conceptualization: Emotional words require conceptualization because they rely on learned links to emotional categories to evoke their affections.

Page No: 01

- tive content. This means that the meaning of emotional words is tied to the emotions they represent, and this connection is learned through experiences and associations.
- Neutral Stimuli and Emotional Associations: Even neutral, non-emotional stimuli, such as an image of a fractal, can become associated with specific emotions if they have been paired with those emotions in the past. For example, if an individual consistently sees a fractal in situations that make them feel happy, that fractal image may come to activate the representation of happiness when viewed.
- Abstract Representations of Emotions: certain brain regions carry abstract representations of emotions. These representations are not tied to specific words or objects but are more general concepts of various emotions. These abstract representations could play a role in understanding and evaluating the emotional states of others.
- Brain Network for Recognizing Emotional Signals: The
 recognition of emotional signals is mediated by a brain
 network that involves emotion-related brain circuits. This
 network likely includes areas of the brain responsible for
 processing emotions and higher-level visual representation
 areas that help interpret visual cues related to emotions.

Perception of Faces and Emotional Pictures

Humans across diverse cultures share a common ability to recognize emotional signals conveyed by various facial expressions. The processing of facial expressions and affective images engages complex cognitive processes that significantly influence moods and emotions. Furthermore, analyzing oscillatory responses offers valuable insights into the cerebral dynamics' physiology. A consistent and well-established finding from all the studies reviewed is that the brain exhibits heightened sensitivity to emotional stimuli compared to neutral stimuli, particularly demonstrating increased responsiveness to negative emotional images. Researchers frequently employ facial expression paradigms to investigate the physiology of facial recognition and better understand emotional states.

Studies on facial expression recognition often focus on identification. Researchers utilize face versus non-face stimuli, scrambled versus unscrambled faces, and upright versus inverted faces. Among these, the most commonly used facial expressions include 'happiness,' 'sadness,' 'anger,' 'fear,' 'surprise,' 'disgust,' and 'neutral facial expression,' used to categorize valence (negative, positive, or neutral) or arousal levels (high versus low arousal). When participants are presented with facial expression paradigms (including anger, happiness, and neutral expressions), it tends to elicit stronger occipital delta responses than frontal delta responses. Studies examining alpha oscillatory responses during emotional processes suggest that greater left-frontal activity is associated with higher positive affect, while greater right-frontal activity is linked to greater negative affect. Additionally, some studies have supported the relationship between beta oscillations and the presentation of facial expressions, indicating a significant connection between parietal beta activity asymmetry and attentional responses to angry faces [1].

Calibrating the Developing Brain to Recognize Social Emotional Signals

The scientific interest in the recognition of emotional expres-

sions, which was reignited about 40 years ago when it was discovered, that facial expressions of emotion are universal. It also touches upon various aspects related to the brain systems and development of this capacity.

- Universal Nature of Facial Expressions: Research in this area was revitalized when it was found that facial expressions conveying emotions are universal. This means that certain facial expressions are recognized and associated with specific emotions across different cultures, suggesting a biological basis for emotional expression.
- Neuroimaging and Emotion Recognition: With the advent of neuroimaging techniques, researchers have been able to study the brain systems responsible for recognizing emotions from facial expressions and other social cues. This has become a prominent area of research in cognitive and affective neuroscience.
- Emotion-Related Brain Circuits: specific brain circuits involved in processing emotions, including the amygdala and orbitofrontal cortex. These circuits play a crucial role in the rapid and prioritized processing of emotional signals from faces.
- Early Development of Emotion Processing: The ability to recognize and process emotional expressions begins to emerge early in postnatal life. Infants start developing this capacity when their visual discrimination abilities are refined through experience. This suggests that recognizing emotions from facial expressions is a fundamental aspect of human social development.
- Interconnected Perceptual Representation Areas: there is a close relationship between emotional brain systems, which are predisposed to respond to biologically salient cues, and higher-level visual areas responsible for processing perceptual information. These systems work together to attune to species-typical and salient signals of emotions in the social environment.
- Genetic and Environmental Factors: The influence of genetic and environmental factors on the developmental process of recognizing emotions. These factors may lead to individual differences in sensitivity to certain (especially negative) emotions.

The brain is wired to quickly detect and pay special attention to these expressions, reflecting their importance in human interactions and survival. This enhanced processing is likely associated with specific neural mechanisms and circuits that underlie facial emotion processing [2].

Neural Encoding of Linked Emotions in the Human Brain

Supramodal representations of emotions in the brain: It suggests that the brain may have neural representations of emotions that are not tied to specific sensory modalities (like visual, auditory, or tactile stimuli) and are instead more abstract in nature. These representations allow the brain to process and experience emotions regardless of how they are conveyed. Several studies have been conducted to identify brain regions responsible for these abstract representations of emotions. The passage mentions four brain regions: The Posterior Cingulate Cortex (PCC), the precuneus, the Medial Prefrontal Cortex (MPFC), and the angular gyrus in the right hemisphere.

Among these regions, it is proposed that the PCC, precuneus, and MPFC may contain emotion-specific but modality-independent representations of perceived emotions. In other words, these regions may be involved in processing and representing emotions in a way that is not tied to the specific sensory input (the modality) through which the emotions are perceived. Instead, they abstract the emotional content and may be activated by various types of stimuli, including both emotional stimuli and nonemotional abstract stimuli associated with emotions. The idea behind this research is to better understand how the brain processes and represents emotions, and whether there are specific neural networks that handle emotions in an abstract and supramodal manner, independent of the way emotions are presented to an individual. This type of research can shed light on the fundamental processes underlying our emotional experiences and how they are encoded in the brain [3].

Summary of "The Cognitive-Emotional Brain"

The growing consensus in neuroscience that emotion and cognition are not neatly separated but are deeply intertwined in the brain. It challenges the traditional notion of a specific "emotional brain" and calls for a more integrated understanding of how the brain processes both emotional and cognitive information. How emotion and cognition are processed in the brain? [4].

Reevaluation of Emotional Brain: The traditional idea suggests that there is a specific brain circuit dedicated solely to processing emotions. Recent research in behavioral, neuropsychological, neuroanatomy, and neuroimaging fields indicates that emotions are integrated with cognitive processes in the brain. This means that the functions of the amygdala, a region traditionally associated with emotions, go beyond just emotion processing.

- 1. Integration of Emotion and Cognition: The passage argues that emotion and cognition are intricately linked in the human brain. Cognitive-emotional interactions occur in various parts of the brain, particularly in the lateral prefrontal cortex, which serves as a focal point for these interactions. This integration is not limited to mutual suppression but can take various forms.
- 2. Motivation's Impact on Cognition: The passage high-lights how motivation influences cognitive processes. It suggests that motivation can impact behavior by reducing response conflict or selectively affecting working memory. This contrasts with traditional accounts that describe motivation as a global activation unrelated to specific control demands.
- 3. Affective and Motivational Content's Influence: The passage emphasizes the powerful influence of information with affective or motivational content on perception and cognition. It proposes a dual competition model that outlines how emotional and motivational signals are embedded into perception and cognition through multiple channels in the brain.
- 4. Network Perspective: The passage advocates for a network perspective when studying the brain, where individual regions are viewed as interconnected and working together, rather than trying to compartmentalize specific functions like "emotion" and "cognition" into distinct brain

areas. In this network view, these labels represent behaviors or processes that emerge from the interactions of multiple brain regions.

Cognitive and Behavioral Inhibition in Kindergarten Children Confronting Negative Emotions

That investigated how negative emotional experiences impact the inhibitory mechanisms of kindergarten children, finding that such experiences led to improved inhibitory control (IC) performance compared to neutral emotional experiences. First, negative emotions may enhance focused and goal-oriented attention, improving IC performance to alleviate the negative experience. This narrowing of attention has been observed in prior research on stress and selective attention. Second, the relationship between negative emotions and IC may be influenced by the task's resource demands; in resource-intensive tasks requiring concentration, negative emotions can impair executive functioning [5].

The study offers innovative insights into the brain substrates of IC performance during negative emotional experiences in kindergarten children. It's worth noting that while, on average, children performed better during negative emotional experiences, individual differences exist. Some children may excel in such conditions, while others might struggle. Understanding these individual variations in behavior and brain activity is a promising area for further research. This study expands our knowledge of how young children respond to negative emotional situations, but more investigation is needed to unravel the factors contributing to individual differences in behavior and neural activity.

Brain Mechanisms of Emotions

Emotions are complex psychological and physiological experiences, and understanding their brain mechanisms involves multiple brain regions and networks [6]. While this is a broad and intricate topic, here's an overview of some key brain structures and mechanisms that are associated with emotions:

- 1. Amygdala: The amygdala is often considered the central hub for processing and regulating emotions, particularly fear and anxiety. It's involved in the evaluation of emotional stimuli and the generation of emotional responses. The amygdala communicates with other brain regions to modulate emotional reactions.
- **2. Hippocampus:** The hippocampus plays a role in the formation and retrieval of emotional memories. It's critical for attaching emotional significance to events and situations.
- **3. Prefrontal Cortex:** The prefrontal cortex, especially the ventromedial prefrontal cortex, is involved in regulating and controlling emotional responses. It helps in decision-making, impulse control, and social behavior.
- 4. Cingulate Cortex: The anterior cingulate cortex is involved in processing emotional conflict, pain perception, and emotional regulation. It plays a role in assessing the emotional salience of stimuli.
- 5. Insula: The insula is linked to the subjective experience of emotions and bodily sensations. It integrates bodily signals with emotional experiences and plays a role in emotional self-awareness.
- **6. Hypothalamus:** The hypothalamus is responsible for regulating the body's physiological responses to emotions, such

as changes in heart rate, respiration, and endocrine functions. It connects the brain to the body's stress response systems.

- 7. **Basal Ganglia:** The basal ganglia is involved in the initiation and control of motor functions related to emotional expressions. It contributes to facial expressions, body language, and other non-verbal emotional communication.
- **8. Thalamus:** The thalamus acts as a relay station, transmitting sensory information to various brain regions, including those involved in emotion processing.
- **9. Brainstem:** The brainstem is associated with basic survival-related emotional responses, such as the fight-or-flight response. It regulates autonomic functions like heart rate and respiration.
- 10. Neurotransmitters: Neurotransmitters, such as serotonin, dopamine, and norepinephrine, play a crucial role in regulating mood and emotion. Imbalances in these neurotransmitters are linked to mood disorders like depression and anxiety.
- 11. Neural Networks: Emotions often involve the coordination of multiple brain regions in complex networks. These networks allow for the integration of cognitive and sensory information with emotional responses.
- **12. Limbic System:** The limbic system, which includes the amygdala, hippocampus, and parts of the thalamus, is associated with emotional processing and emotional memory.

It's important to note that the understanding of brain mechanisms of emotions is an evolving field, and research continues to uncover more details about how various brain regions and networks work together to generate and regulate emotional experiences. Emotions are not solely confined to one area of the brain but rather result from the interactions of multiple brain structures and processes.

Exploring Emotions

Over the past six decades, human intracranial electrophysiology (HIE) has been crucial for studying epilepsy and understanding human cognition. HIE has also shed light on the neural representation of emotions, revealing distributed brain networks involved in emotional states. We argue that HIE findings should be integrated into current models of emotion representation in the human brain. HIE's history in studying emotions dates back to the work of Wilder Penfield. Research in this area typically falls into two categories: studies measuring brain activation when subjects view emotionally evocative stimuli, often emotional facial expressions. The study of emotions in the brain is a cornerstone of cognitive neuroscience, defining emotions as mechanisms that adapt the brain and body in response to triggering events. However, in clinical practice, HIE is primarily used to map motor and language functions, with limited attention to social and emotional phenomena. We propose expanding HIE goals to include mapping cognitive functions tailored to individual personality, occupation, interests, and social life [7].

The Emotional Brain

The amygdala plays a significant role in processing social signals of emotion, contributing to memory consolidation, and modulating various cognitive processes. Studies have shown that damage to the amygdala can impair the enhanced memory for emotional aspects of stories, as well as the processing of

faces and other social signals. The amygdala's involvement in the consolidation of long-term emotional memories has been confirmed through PET studies, which revealed its role in predicting the recall of emotional stimuli over extended periods. Research has also highlighted the amygdala's selective response to specific emotions, particularly fear, in both facial expressions and vocalizations. Even when presented subliminally or in blindsight conditions, the amygdala can react to fearful stimuli. However, attention can modulate amygdala activation, indicating the susceptibility of emotional processing to top-down control. The amygdala's role in fear conditioning, where previously neutral stimuli become fear-inducing through association with threats, involves two afferent routes. The first is a direct thalamo-amygdala route, which processes sensory aspects of incoming stimuli and rapidly triggers a conditioned fear response. The second route, thalamo-cortico-amygdala, allows for more complex stimulus analysis and a slower emotional response. While fear conditioning in humans has been less extensively studied, it is evident that the amygdala plays a crucial role in this process

The Nature of Emotion: fundamental emotions—such as anger, disgust, fear, happiness, sadness, and surprise—exist and are linked to distinct feelings, facial expressions, and autonomic responses. However, authors dispute these claims, contending that there is limited evidence for such specificity [9]. They highlight the substantial variation within specific emotions (intra-emotion variation) and substantial overlap between different emotions.

Emotion and the Social World: Emotions are deeply intertwined with social cues and interactions in contemporary human society. The relationship between the social and emotional realms is intricate and reciprocal. Emotional signals can trigger changes in the social environment, which, in turn, can impact how the sender perceives, experiences, or expresses emotions. Emotional experiences are commonly shared and discussed among close companions, who play a vital role in mitigating stress, fostering positive emotions, and mending moods. Maladaptive expressions of negative emotions can lead to negative social consequences like conflict, rejection, and relationship breakdown. In summary, human emotions have a strong social dimension. Several contributors in this Special Issue explore the ways in which emotions dynamically interact between individuals and their social surroundings. While historically, facial expressions have been central to scientific models of emotions, research by Brooks and Freeman underscores that emotion perception is significantly shaped by top-down processes, where prior expectations, including pre-existing knowledge, stereotypes, and contextual information, influence the way we construct our perceptions of emotional and socially relevant cues in the visual processing stream. In essence, our pre-existing thoughts, feelings, and attitudes can fundamentally impact how we perceive others, bias our judgments of them, and alter our behavior.

Interoception and Emotion

Growing evidence highlighting the impact of interoceptive signals on emotional and motivational functions makes it impossible to disregard the role of bodily physiology in emotions as mere byproducts. A comprehensive grasp of these mechanisms is vital due to their impact on both beneficial and harmful mo-

tivational choices and their significance in the prevention and treatment of clinical conditions [10].

Neurobiology of Emotion

What are the most pressing questions in the field of neurobiology concerning emotions? These include inquiries such as: What defines emotions? How do emotions differ from mood, drive, temperament, and personality? Are emotions and drives distinct concepts? How many distinct emotions exist, and what sets them apart, like sadness, anxiety, fear, happiness, and more? Are there fundamental or basic emotions? Is pain a sensation or an emotion? What constitutes suffering? What is meant by stress, and how are these concepts interrelated? Regarding the neurobiology perspective:

- 1) What is the neural basis of emotion?
- 2) Which specific neurobiological systems are involved in different types of emotions, and what brain structures participate in their expression? Is emotion encoded in specific brain regions, or is it a product of the interactions across the entire neural network? How do various emotional brain systems relate to psychiatric disorders?

Furthermore, there's the question of whether distinct neural systems correspond to different emotions and how we bridge the gap between understanding emotional brain reactions and emotional experiences. Additionally, the relationship between emotion and memory, and how emotional experiences lead to enduring behavioral changes, is a key topic. The role of the hippocampal formation in emotion, the exploration of other emotional states (as much research has focused on fear), and the neurochemistry of emotion—especially the role of neuropeptides highly concentrated in areas associated with emotion—require further investigation [11].

The Social Neuroscience of Interpersonal Emotions

Emotions play a vital role in regulating and propelling a person's thoughts, feelings, and actions across various life domains. They range from basic emotions, such as fear, which aids in avoiding potential harm, to complex interpersonal emotions like guilt, which motivates amends for one's mistakes. Interpersonal emotions, like guilt, shame, embarrassment, and pride, necessitate introspection and self-awareness, setting them apart as distinct human emotions. These emotions emerge when we implicitly or explicitly reflect on ourselves and assess our place within the social context, which is why they are often referred to as 'self-conscious emotions' or 'social emotions.' For instance, we feel ashamed of our negative traits or embarrassed by accidental missteps. Interpersonal emotions serve as a driving force behind social behavior, delivering immediate consequences—reinforcement or punishment—for actual or anticipated behavioral outcomes and thus contributing to the maintenance of social order [12].

However, studying interpersonal emotions, particularly using neuroscientific methods, presents several challenges. The differentiation between shame, guilt, and embarrassment is a topic of debate. Researchers have attempted to distinguish between shame and guilt based on situational triggers, the public or private nature of the situation, or the type of appraisal. The prevailing view suggests that shame centers on the core self, while guilt focuses on one's behavior. For instance, if a failure is deemed an accidental mishap,

it tends to induce embarrassment more than shame or guilt. Yet, the specific emotion elicited can vary based on individual appraisal, which can evolve from initial reactions to subsequent emotions. The way these emotions manifest is highly personalized. For instance, feeling shame about failing a math task may depend on whether one considers themselves a math expert. Given that shame involves a threat to one's core self, any experimental induction of shame must consider the interindividual variability in participants' self-concept.

Conclusion

The study of emotions within neuroscience is a complex and ever-evolving field. Researchers grapple with defining and differentiating emotions from related concepts and seek to unravel the neural underpinnings of various emotional states. The social aspect of emotions and the individual nuances within them present intriguing challenges. As this research progresses, it holds promise for enhancing our understanding of human behavior, well-being, and mental health, with potential applications in psychology, psychiatry, and beyond.

References

- 1. Güntekin, B., & Başar, E. (2014). A review of brain oscillations in perception of faces and emotional pictures. Neuropsychologia, 58, 33-51.
- 2. Leppänen, J. M., & Nelson, C. A. (2009). Tuning the developing brain to social signals of emotions. Nature Reviews Neuroscience, 10, 37-47.
- 3. Kim, J., Schultz, J., Rohe, T., Wallraven, C., Lee, S.-W., et al. (2015). Abstract representations of associated emotions in the human brain. The Journal of Neuroscience, 35, 5655-5663.
- 4. Pessoa, L. (2015). Précis on the cognitive-emotional Brain. Behavioral and Brain Sciences, 38, e71.
- 5. Farbiash, T., & Berger, A. (2016). Brain and behavioral inhibitory control of kindergartners facing negative emotions. Developmental Science, 19, 741-756.
- 6. Simonov, P. V. (1997). Brain mechanisms of emotions. Neuroscience and Behavioral Physiology, 27, 405-413.
- 7. Guillory, S. A., & Bujarski, K. A. (2014). Exploring emotions using invasive methods: review of 60 years of human intracranial electrophysiology. Social Cognitive and Affective Neuroscience, 9, 1880-1889.
- 8. Dalgleish, T. (2004). The emotional brain. Nature Reviews Neuroscience, 5, 583-589.
- 9. Shackman, A. J., & Wager, T. D. (2019). The emotional brain: Fundamental questions and strategies for future research. Neuroscience Letters, 693, 68-74.
- 10. Critchley, H. D., & Garfinkel, S. N. (2017). Interoception and emotion. Current Opinion in Psychology, 17, 7-14.
- Blanchard, C., Blanchard, R., Fellous, J. M., Guimarães, F. S., Irwin, W., et al. (2001). The brain decade in debate: III. Neurobiology of emotion. Brazilian Journal of Medical and Biological Research, 34, 283-293.
- Müller-Pinzler, L., Krach, S., Krämer, U. M., & Paulus, F. M. (2017). The Social Neuroscience of Interpersonal Emotions. Current Topics in Behavioral Neurosciences, 30, 241-256.

Copyright: ©2023 Lakhdar F, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.