

Pollutant Emissions in the Poultry Farms Environment: A Literature Review

Lyria Bouzeriba¹, Sassi Sellaoui², Rachid Adjroudi¹ and Nadir Alloui^{2*}

¹*Veterinary and Agricultural Sciences Institute, Batna 1 University, 05000, Algeria*

²*Laboratory Environment, Health and Animal Production, Batna 1 University, 05000, Algeria*

***Corresponding author:** Nadir Alloui, Laboratory Environment, Health and Animal Production, Batna 1 University, 05000 Algeria.

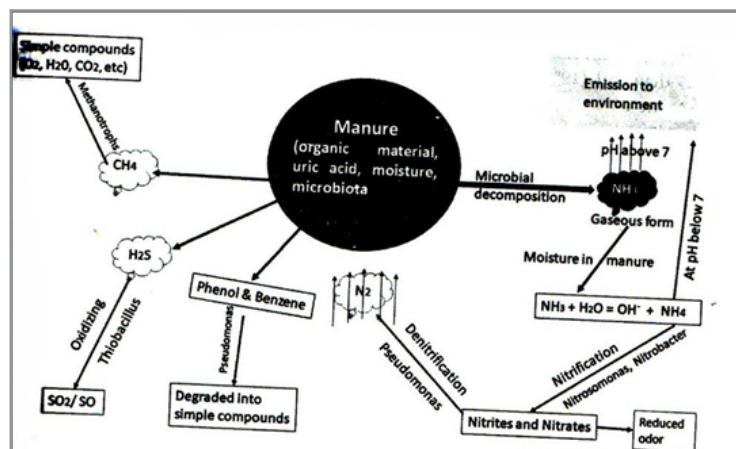
Submitted: 11 December 2025 **Accepted:** 17 December 2025 **Published:** 23 December 2025

doi <https://doi.org/10.63620/MKJAES.2025.1103>

Citation: Bouzeriba, L., Sellaoui, S., Adjroudi, R., & Alloui, N. (2025). *Pollutant Emissions in the Poultry Farms Environment: A Literature Review*. *J of Agri Earth & Environmental Sciences*, 4(6), 01-06.

Abstract

The combination of intensive poultry production and certain environmental factors in poultry houses can sometimes lead to poor indoor air quality and pollutant emissions. Gases present in the indoor air of poultry houses, such as ammonia (NH₃), methane (CH₄), hydrogen sulfide (H₂S), carbon dioxide (CO₂) but also dust, are of particular importance given their adverse effects on production performance and poultry health. The gases originate from biodegradation of fecal matter accumulated under anaerobic conditions inside poultry houses. Regular assessment of indoor air quality allows for planning waste disposal and thus ensures clean air for poultry and workers. In today context, all operations carried out to optimize environment in poultry farms are of capital importance to guarantee the welfare and poultry health.


Keywords: Poultry House, Air Pollutants, Environment, Welfare.

Introduction

Given the increasing demand for white meat and derived products, there is currently an intensification of animal production in general, particularly in the poultry sector. This growth in animal production has been accompanied by the development of farming techniques, which has led to an increase in pollutant emissions into the atmosphere [1]. It is now estimated that nearly half of the mass of feed and water used in livestock farming is lost in gaseous form during animal production and effluent management [2]. Pollutant emissions from livestock farms have been the subject of numerous publications [3-8]. They are characterized by temporal and spatial variability, which makes their estimation complex. The methods for quantifying these emissions depend on various objectives as well as the financial resources available to farmers [9]. The measurement of pollutant concentrations can be carried out using physical methods [10], such as absorption spectroscopy, or chemical methods, such as gas chromatography or bubbling. These methods are generally used within well-defined processes, such as source emission measurements, remote source measurements, or mass balance calculations [11]. Additionally, emission measurements often

rely on observing concentration differences between the inside and outside of buildings [12]. Many so-called "operational" measurement devices are used. However, they are often costly and/or complex to implement. The methodologies applied also influence the representativeness of the measurements. Indeed, they can lead to significant differences in results [13]. Proposing a set of reference measurement strategies adapted to the diversity of farming systems has therefore become a current concern, requiring a better understanding of emissions and the mechanisms behind their formation [12]. Exploring new research avenues is necessary to better understand these mechanisms. Modeling is an option for estimating emissions, but it must also excel in mastering knowledge related to the formation and emission of pollutants. Currently, the typologies used in emission inventory calculations are based on two types of effluents: solid or liquid, i.e., manure or slurry [14]. Furthermore, the development of regulations on gaseous emissions requires the acquisition of references regarding emissions at different stages of the farming system. In this bibliographic article, we will enumerate the different sources of pollution in poultry farming buildings and their consequences on agriculture.

Sources of Pollutant Emissions in Poultry Houses

Biochemical pathways for producing malodorous gases [15]

Poultry housing systems and their manure storage structures contribute significantly to the emission of gases, odors, and dust into the atmosphere. While poultry farming produces methane (CH_4) and nitrous oxide (N_2O) to a lesser extent, ammonia a volatile, polluting, and odorous compound is the primary gas emitted by the poultry industry [16]. It is estimated to account for 9% of methane emissions, 6% of nitrous oxide emissions, and 15% of ammonia emissions related to livestock [17]. Poultry farming also generates fine particles called aerosols [18-20] and contributes significantly to secondary dust emissions [21]. Most particles are suspended inside poultry houses, and up to 50% of ammonia volatilizes there [6]. Ammonia is considered a precursor of secondary particles, which form after the condensation of various chemical compounds in the air [19-20,6]. At high atmospheric concentrations, it causes respiratory diseases in poultry [22-23].

Feed

A study by [24] suggested that feed contributes only minimally to airborne dust in poultry houses. However, [25] attributed 80–90% of dust in caged layer facilities to feed sources. Handling, preparing, and distributing feed in closed poultry houses generate significant amounts of dust [26]. Dust primarily originates from seed coatings and depends on the feed's moisture and fat content [21]. Dust emissions decrease with higher feed moisture levels [27-28]. The form of feed (meal, crumbles, and pellets) also affects dust production [29]. Birds fed with meal produce more dust than those fed pellets [21]. Certain feed ingredients generate more dust than others. Corn-based feeds produce less dust than sorghum- or wheat-based feeds [30]. Barley generates more dust than corn [31].

Feeding Equipment

Feed distribution and handling equipment also contribute to dust formation. In automated feeding systems, large amounts of dust can become airborne when feed spills from troughs or feeders [32]. Wasted feed due to spillage is likely a major factor in dust generation [21]. Feed on the floor can be crushed into smaller particles by trampling and become airborne. A significant increase in particle emissions occurs after feed distribution, with further spikes from repeated passes of feed carts or automated feeders along the cages [33].

Feces

Dried feces are a major source of particles in livestock buildings. The emission factors of particles, particularly PM10, in poultry buildings vary depending on the type of manure. They tend to be higher for manure than for droppings [34]. Dry droppings can emit up to 8% of dust particles in poultry housing. The key factor lies in the dry matter content of the feces. It is closely linked to the internal environment of the building (temperature, humidity, and ventilation) as well as the frequency of manure removal [35]. [24] reported a significant contribution of crystalline dust to airborne dust in poultry houses, likely originating from mineral crystals formed from urinary components.

Animals

Animals themselves are a significant source of dust, with 2–12% of dust particles in poultry housing coming from the animals. This dust arises from skin flakes, down, or feathers [36, 26]. The quantities released depend on both the number of animals and their weight [37, 35]. They are also related to animal activity, which itself depends on the poultry genotype [38]. Moreover, dust becomes airborne primarily due to animal movement, which generates large amounts of dust from feed, feces, and litter [21]. The movement of animals creates air turbulence around them, dispersing settled particles and increasing particle concentration [39]. Similarly, stocking density has a major effect on dust production and emission, as it directly influences animal activity and also affects hen temperature, thereby increasing airborne microorganism concentrations [40]. Dust production increases with the age and weight of birds [41-42]. Up to the sixth week of growth, respirable aerosol concentrations in poultry houses increase with bird weight [43, 8]. The main reason for this rise is likely the increased surface area of various dust sources—such as feed quantity, feces, or the skin surface of hens as animals grow [44, 21].

Poultry House

The amount of dust in the air of livestock buildings is heavily influenced by the housing system [45-47]. Studies indicate that layer hens housed in aviaries consistently exhibit higher concentrations of airborne dust compared to cage systems, where hens have little or no access to litter [39]. The type of building and manure management methods also affects particle emissions, particularly PM10 [48]. The nature of the particles, which origi-

iate from the building structure, depends on the construction materials used. These materials are responsible for most of the mineral fraction of particles produced indoors, which can also come from the external environment. The exterior of the build-Biological, physical and chemical pollutants removed from 1 m³ of poultry house ventilation air (Herbut, 1997)

Season	Microflora [colonies/m ³]	Dust [mg/m ³]	Ammonia [ppm]
Spring	37600	4,7	7,0
Summer	22500	2,2	10,0
Autumn	16500	7,4	9,0
Winter	59900	0,7	8,0

Factors Influencing Particle Formation in Poultry Farms

Several factors affect particle concentration in the air of poultry buildings: air temperature, relative humidity, ventilation rate, animal activity, stocking density, bird species and age, feed type and structure, and feeding method [27]. However, it is the combination of some of these factors that causes variations in dust levels [18]. Studies conducted in poultry houses have shown that total temperature and relative humidity significantly influence total particle concentrations [50]. The evolution of emitted particle quantities reveals that increases in dust levels are accompanied by decreases in humidity [43]. Indeed, a relative humidity of 70% or higher can contribute to low particle concentrations due to high equilibrium humidity [39]. Conversely, relative humidity below 60%, especially in cold ambient temperatures, promotes an increase in airborne particles [36]. This observation can be explained by the fact that any decrease in air humidity leads to drying, which raises dust levels in the ambient air of buildings. However, relative humidity can affect the ability to remove particles from surfaces where they settle, as well as the viability of airborne microorganisms. Air temperature is the factor with the greatest impact on air quality. Indeed, it directly influences, through ventilation, the dry matter content of manure, which promotes increased dust emissions [17]. [43] described low dust production at 10°C, with quantities peaking between 15.6°C and 21°C and decreasing as temperatures approached 37.3°C. Small differences between outdoor and indoor temperatures are normally associated with higher ventilation rates, further demonstrating the strong influence of ventilation speeds on dust concentrations [42, 51].

Ventilation

One of the factors that largely determines the concentrations and emissions of particles in livestock buildings is the ventilation rate. Positively linked to temperature and negatively to relative humidity, ventilation influences the distribution of particles in the airspace of livestock buildings [27]. Primarily designed to control temperature and humidity, ventilation systems, through these two parameters, affect particle concentrations, especially in winter, when they are higher due to low ventilation rates [52]. However, an increase in the ventilation rate does not necessarily lead to a proportional reduction in dust concentration in livestock buildings [44]. This seems to be primarily caused by a low sedimentation rate of particles when associated with high ventilation rates. Sedimentation is effective for larger particles.

Microclimate

Weather conditions are one of the parameters influencing the variability of particle emission factors in poultry buildings. These include daily variations as well as seasonal variations

ing can therefore be a source of dust when its air tightness is inadequate, particularly around air inlets. Dust then transfers from the outside to the inside of the building [49].

Biological, physical and chemical pollutants removed from 1 m³ of poultry house ventilation air (Herbut, 1997)

[53], where the ventilation rate is closely linked to the climate or season. Due to higher ventilation rates in summer compared to winter, lower concentrations and higher emission rates can be expected in summer, while higher concentrations and lower emission rates can be expected in winter [41]. Several studies have demonstrated higher mass concentrations of dust in winter than in summer [54, 39,42]. In contrast, [47] report that PM10 emission factors are higher in warm periods (spring-summer) than in cold periods (autumn-winter). In the same context, [55] attribute PM formation rates to enhanced ventilation in warm periods, which creates increased turbulence and raises the suspension of particles in the buildings air.

Activities Conducted in the Poultry House

Daily tasks carried out in poultry buildings, such as feed distribution, egg collection, cleaning activities, or simply the intervention of the farmer or workers in manure removal, are likely to generate significant amounts of dust, as they influence bird activity and promote the formation and suspension of particles [49,35]. It is important to note that the smaller the particles, the more they adhere to surfaces, and it is the airflows created by animal activity and human activity that are likely to suspend these particles in the air and keep them in that state [56].

Ammonia Emission Sources in Poultry Farming

Ammonia (NH₃) emissions from poultry farming facilities have become a major concern due to the negative effects of excessive release into the atmosphere [57-58]. These emissions are linked to livestock manure and contain nitrogen (N) excreted by the animals [11]. This nitrogen may be mineral nitrogen contained in the organic matter of the manure before any decomposition, or it may result from the secondary decomposition of moistened organic matter [59]. Ammonia emissions are therefore dependent on the management and fate of animal manure at different stages of a farm. They occur inside the poultry house and depend on factors such as housing systems, indoor climate control, and animal activity [60-61],[6,13]. Emissions also occur during manure storage, where nitrogen and carbon content depends on storage duration and treatment type [62,6,13,17]. Additionally, ammonia is emitted during manure spreading and is influenced by the nature of organic matter, as well as manure redistribution during grazing [59]. Emission estimates for a given situation must also account for local environmental conditions [63-64].

Effects of Poultry Houses Characteristics and Environmental Conditions on Pollutant Emissions

In laying hen houses, indoor air quality is essential for maintaining a healthy environment for workers and plays a crucial role in egg production [65-66]. Key indoor environmental factors in-

clude pollutant gas concentrations, temperature, relative humidity, light intensity, and airflow [67]. Environmental parameters in poultry houses, such as temperature and humidity, vary with the age of the birds (ITAVI, 1997). To maintain an optimal indoor temperature at minimal energy cost, humidity levels should be kept between 55% and 75% [68]. However, high humidity levels can contribute to pathogen spread and the release of harmful gases like ammonia.

Environmental conditions depend on farming systems and their management. Thus, emissions of certain gases vary significantly depending on farm type, design, and building management [20]. Ammonia emissions factors tend to increase with aviary systems and decrease in conventional cage systems [69]. According to [66], dust levels in floor-raised systems are higher than in cage systems and exhibit greater variability. Among cage systems, furnished cages have higher dust levels than conventional cages, with the highest levels found in aviary systems. Ventilation, used to dilute pollutant concentrations by supplying fresh air, plays a major role in ammonia emissions. In hot conditions, increased ventilation rates due to rising temperatures enhance airspeed over manure surfaces, which can temporarily increase NH₃ emissions (Méda, 2011). Ammonia volatilization depends on air movement near the emitting surface. However, in the long term, ventilation reduces NH₃ emissions by drying out manure [70,63]. High ammonia levels (above 25 ppm) in poultry houses can negatively affect production performance and bird health, leading to respiratory issues, poor weight gain, reduced egg production, and higher feed conversion ratios [23,71-72].

Conclusions

The design and equipment of a poultry house must ensure the well-being of the animals and optimal production while minimizing the emission of gases and dust into the atmosphere. These polluting emissions are closely linked to farming practices that influence their formation and release. Therefore, for emission estimates to reflect reality and for progress in reduction to be effective, it is necessary to specify the typology of farming systems, hence the importance of distinguishing their specificities in terms of structural characteristics and farming management. Gaseous emissions are automatically linked to manure, while dust is primarily related to feed, though this does not mean they are the only sources of emissions in poultry farming. The modernization of farming buildings has led to improved living conditions for the animals. Pollutants emitted by the poultry industry are harmful not only to the animals but also to the human environment. They can lead to ecological disasters, especially in the field of agriculture. The application of dietary interventions (enzymes, probiotics, prebiotics, plant extracts, herbs, spices, and essential oils) could be a promising strategy for mitigating the emission of noxious gases. In addition to improving sustainability, it would also improve the production performance and health of the poultry.

Ethical Considerations

Not applicable

Conflict of Interest

The author declares that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

1. Roman, M., Roman, K., & Roman, M. (2019). Methods of estimating particulate emissions in agriculture exemplified by animal husbandry. *Proceedings of the ISC Hradec Kralove*, 9(2), 260–268.
2. Robin, P., Amand, G., Aubert, C., Babela, N., & Brachet, A. (2010). Reference procedures for measuring gaseous pollutant emissions from livestock buildings and livestock effluent storage (Final report, Contract No. 06-74-C0018). INRA.
3. Rokicki, E., Kolbuszewski, T. (1996). Animal hygiene (pp. 5–151). Warsaw University of Life Sciences (SGGW) Development Foundation. (In Polish)
4. Intergovernmental Panel on Climate Change. (2007). Report of the IPCC expert meeting on emission estimation of aerosols relevant to climate change (pp. 1–34). Geneva, Switzerland.
5. Mosquera, J., Winkel, A., Groenestein, C. M., Aarnink, A. J. A., & Oginck, N. W. M. (2012). Greenhouse gas emissions from animal housing in the Netherlands. Biosystems Engineering.
6. ADEME. (2012). Agricultural particle emissions into the air: Current situation and levers for action. https://www.cancer-environment.fr/app/uploads/2023/ADEM-2012_Emissions_agricoles_PM.pdf (In French)
7. Food and Agriculture Organization of the United Nations. (2017). Global livestock environmental assessment model (GLEAM). Rome, Italy. <https://www.fao.org/gleam/en/>
8. Wathes, C. M. (1999). Aerial emissions from poultry production. *World's Poultry Science Journal*, 54, 241–251. Yoder, M. F., & Van Wicklen, G. L. (1988). Respirable aerosol generation by broiler chickens. *Transactions of the ASAE*, 31, 1510–1517.
9. Li, H., Xin, H. (2010). Lab-scale assessment of gaseous emissions from laying-hen manure storage as affected by physical and environmental factors. *Transactions of the ASABE*, 53(2), 593–604.
10. CORPEN. (2001). Ammonia emissions from agricultural sources into the atmosphere: State of knowledge and prospects for reducing emissions. Ministry of Agriculture and Forestry, Paris. (In French)
11. Gac, A., Deline, F., Bloteau, T. (2007). National inventory of gaseous emissions (CH₄, N₂O, NH₃) linked to the management of animal waste: Bibliographic data and results for poultry farming. In *Proceedings of the 7th Poultry Research Day* (pp. 124–127). Tours, France. (In French)
12. ADEME. (2010). Reference procedures for measuring gaseous pollutant emissions from livestock buildings and livestock effluent storage. <https://hal.inrae.fr/hal-02602954> (In French)
13. Hassouna, M., Eglin, T. (2015). Measuring gas emissions in livestock farming: Greenhouse gases, ammonia and nitrogen oxides. INRA–ADEME. (In French)
14. Ponchard, P., Robin, P., Hassouna, M. (2013). Issues and assessment of gas emissions in poultry farms. In *Proceedings of the 10th Poultry and Palmiped Research Days in Foie Gras*. La Rochelle, France. (In French)
15. Garda, A., Hasliza, A. H., Pavan, K., Awis, Q. S., & Mohd, H. M. Z. (2024). Controlling odour emissions in poultry production through dietary interventions: Prospects and challenges. *World's Poultry Science Journal*, 80(4), 1101–

16. CITEPA. (2010). Inventory of atmospheric pollutant emissions in France: Sectoral series and extended analyses (SECTEN format). Interprofessional Technical Center for the Study of Atmospheric Pollution, Paris. (In French)

17. CORPEN. (2006). Ammonia and nitrogen greenhouse gas emissions in agriculture. Ministry of Agriculture and Forestry, Paris. (In French)

18. Wathes, C. M., Holden, M. R., Sneath, R. W., White, R. P., & Phillips, V. R. (1997). Concentrations and emission rates of aerial ammonia, nitrous oxide, methane, carbon dioxide, dust, and endotoxin in UK broiler and layer houses. *British Poultry Science*, 38(1), 14–28.

19. Carey, J. B., Lacey, R. E., Mukhtar, S. (2004). A review of literature concerning odors, ammonia, and dust from broiler production facilities: II. Flock and house management factors. *Journal of Applied Poultry Research*, 13, 509–513.

20. Roumeliotis, T. S., Van Heyst, B. J. (2008). Summary of ammonia and particulate matter emission factors for poultry operations. *Journal of Applied Poultry Research*, 17, 305–314.

21. Aarnink, A. J. A., Ellen, H. H. (2007). Processes and factors affecting dust emissions from livestock production. In *Proceedings of the International Conference on Improving Air Quality*. Maastricht, the Netherlands.

22. Al Mashhadani, H. E., Beeck, M. M. (1985). Effect of atmospheric ammonia on the surface ultrastructure of the lung and trachea of broiler chicks. *Poultry Science*, 64(11), 2056–2061.

23. Alloui, N., Alloui, M. N., Bennoune, O., Bouhentala, S. (2013). Effect of ventilation and atmospheric ammonia on the health and performance of broiler chickens in summer. *World's Poultry Research Journal*, 3(2), 54–56.

24. Aarnink, A. J. A., Roelofs, P. F. M. M., Ellen, H. H., & Gunnink, H. (1999). Dust sources in animal houses. In *Proceedings of the International Symposium on Dust Control in Animal Production Facilities*. Aarhus, Denmark.

25. Godbout, S. (2008). Emerging environmental issues in animal production (Final report). IRDA. Presented at the Agro-Environmental Conference, Drummondville.

26. Maghirang, R. G., Riskowski, G. L., Christianson, L. L., Manbeck, H. B. (1995). Dust control strategies for livestock buildings: A review. *ASHRAE Transactions*, 101(Pt. 2), 1161–1168.

27. Cambra-López, M., Aarnink, A. J. A., Zhao, Y., Calvet, S., & Torres, A. G. (2010). Airborne particulate matter from livestock production systems: A review of an air pollution problem. *Environmental Pollution*, 158, 1–17.

28. Meda, B., Hassouna, M., Aubert, C., Robin, P., Dourma, J. Y. (2015). Influence of rearing conditions and manure management on ammonia and greenhouse gas emissions from poultry houses. *World's Poultry Science Journal*, 67, 441–456.

29. Picard, M., Le Fur, C., Melcion, J. P., Bouchot, C. (2013). Granulometric characteristics of feed: The poultry perspective. *INRA Animal Production*, 117–130. (In French)

30. Heber, A. J., Stroik, M., Faubion, J. M., Willard, L. H. (1988). Size distribution and identification of aerial dust particles in swine finishing buildings. *Transactions of the ASAE*, 31(3), 882–887.

31. Thaler, R. C., Aarnink, A. J. A., Koch, K., Sauber, T. E. (2002). Effect of grain type, milling method, and diet form on dust production in a laboratory dust generator. *Journal of Animal Science*, 80(Suppl. 1), 178.

32. Li, H., Xin, H., Liang, Y., Gates, R. S., Wheeler, E. F., & Heber, A. J. (2005). Comparison of direct versus indirect ventilation rate determinations in layer barns using manure belts. *Transactions of the ASABE*, 48(1), 367–372.

33. Rousset, N., Guingand, N., Dezat, E., Lagadec, S., Jegou, J. Y., Dennery, G., Chevalier, D., Boulestreau-Boulay, A. L., Dabert, P., Berraute, Y., Allain, E., Maillard, P., Adji, K., Hassouna, M., Robin, P., Ponchon, P., & Aubert, C. (2014). Bedding in livestock farming: Identification, testing, and evaluation of techniques or practices for improved bedding management. *Innovations Agronomiques*, 34, 403–415. (In French)

34. GEREP. (2014). Guide for the assessment of air emissions of ammonia, methane, particulate matter (PM10), and nitrous oxide for French pig and poultry farming. Ministry of Ecological and Inclusive Transition, Paris. (In French)

35. Mostafa, E. (2012). Air polluted with particulate matter from livestock buildings. In *Air quality: New perspective* (pp. 288–292). Tech Janeza Trdine, Rijeka, Croatia.

36. Djerou, Z. (2006). Influence of rearing conditions on performance in broiler chickens (Doctoral thesis). Mentouri Constantine University, Algeria. (In French)

37. Armand, E. C. (2005). Study of the carriage of respiratory pathogens in mulard ducks and clinical consequences (Doctoral thesis). National Veterinary School, Toulouse. (In French)

38. Ellen, H. H., Drost, H. (1997). Technical possibilities for reducing dust concentrations in poultry houses (Report R9703). Practical Research into Poultry Farming, Beekbergen. (In Dutch)

39. Takai, H., Pedersen, S., Johnsen, J. O., Metz, J. H. M., Groot Koerkamp, P. W. G., Uenk, G. H., Phillips, V. R., Holden, M. R., Sneath, R. W., Short, J. L., White, R. P., Hartung, J., Seedorf, J., Schroder, M., Linkert, K. H., & Wathes, C. M. (1998). Concentrations and emissions of airborne dust in livestock buildings in Northern Europe. *Journal of Agricultural Engineering Research*, 70(1), 59–77.

40. Sauter, E. E. A., Petersen, C. C. F., Steele, E. E. E., Parkinson, J. J. F., Dixon, J. J. E., & Stroh, R. R. C. (1981). The airborne microflora of poultry houses. *Poultry Science*, 60(3), 569–574.

41. Redwine, J. S., Lacey, R. E., Mukhtar, S., Carey, J. B. (2002). Concentration and emissions of ammonia and particulate matter in tunnel-ventilated broiler houses under summer conditions in Texas. *Transactions of the ASAE*, 45(4), 1101–1109.

42. Al Homidan, A., Robertson, J. F. (2003). Effect of litter type and stocking density on ammonia, dust concentrations, and broiler performance. *British Poultry Science*, 44, 7–8.

43. Grub, W., Rouo, C. A., Howes, J. R. (1965). Dust problems in poultry environments. *Transactions of the American Society of Agricultural and Biological Engineers*, 8, 338–339.

44. Gustafsson, G. (1999). Factors affecting the release and concentration of dust in pig houses. *Journal of Agricultural Engineering Research*, 74(4), 379–390.

45. Seedorf, J., Hartung, J., Schroder, M., Linkert, K. H., Phillips, V. R., Holden, M. R., Sneath, R. W., Short, J. L., White, R. P., Pedersen, S., Takai, H., Johnsen, J. O., Metz, J. H.

M., Groot Koerkamp, P. W. G., Uenk, G. H., & Wathes, C. M. (1998). Concentrations and emissions of airborne endotoxins and microorganisms in livestock buildings in Northern Europe. *Journal of Agricultural Engineering Research*, 70(1), 97–109.

46. Ellen, H. H., Bottcher, R. W., Von Wachenfels, E., Takai, H. (2000). Dust levels and control methods in poultry houses. *Journal of Agricultural Safety and Health*, 6(4), 275–282.

47. Michel, V., Huonnic, D. A. (2003). Comparison of welfare, health, and production performance of laying hens reared in cages or in aviaries. *British Poultry Science*, 44(5), 775–776.

48. Costa, A., Guarino, M. (2008). PM₁₀ and fine particulate matter concentration and emission from three different types of laying hen houses. In *Proceedings of the International Conference* (September 15–17). Ragusa, Italy.

49. Lim, T. T., Heber, A. J., Ni, J.-Q., Gallien, J. X., & Xin, H. (2003). Air quality measurements at a laying hen house: Particulate matter concentrations and emissions. In H. Keener (Ed.), *Air Pollution from Agricultural Operations III* (pp. 249–256). *Proceedings of the October 12–15 Conference*.

50. Vucemilo, M., Matkovic, K., Vinkovic, B., Macan, J., Varnai, V. M., Prester, L. J., Granic, K., & Orct, T. (2008). Effect of microclimate on the airborne dust and endotoxin concentration in a broiler house. *Czech Journal of Animal Science*, 53(2), 83–89.

51. Zhao Y., Aarnink A.J.A., Hofschreuder P., Groot Koerkamp P.W.G. (2009). Evaluation of an impaction and a cyclone pre-separator for sampling high PM10 and PM2.5 concentrations in livestock houses. *Journal of Aerosol Science*, 40(10), 868–878.

52. Zhang Y. (2004). *Indoor Air Quality Engineering*. CRC Press, Boca Raton, Florida, 618 pp.

53. Sun G., Guo H.Q., Peterson J. (2010). Seasonal odour, ammonia, hydrogen sulphide, and carb on dioxide concentrations and emissions from swine grower-finisher rooms. *Journal of the Air & Waste Management Association* 60(4), 471–480.

54. Hinz T., Linke S. (1998). A comprehensive experimental study of aerial pollutants in and emissions from livestock buildings. Part 2. Results. *Journal of Agricultural Engineering Research*. 70(1), 111–118.

55. Qi R., Manbeck H.B., Maghirang R.G. (1992). Dust net generation rate in a poultry layer house. *Transactions of the ASAE* 35(5), 1639–1645.

56. Pedersen S., Takai H. (1999). Dust response to animal activity. In: *Proceedings Int. Symposium on Dust Control in Animal Production Facilities*, 30 May - 2 June. Aarhus, Denmark. p 306–309.

57. Liang Y, Xin H, Wheeler E.F, Gates R.S, Li H, Zajaczkowski P, Topper A, Casey K.D, Behrends B.R & Zajaczkowski F.J. (2005). Ammonia Emissions from U.S. Laying Hen Houses in Iowa and Pennsylvania. *Transactions of the ASAE*; 48(5): 1927–1941.

58. Coufal C.D., Chavez C., Niemyerand P.R. & Carey J.B. (2006). Nitrogen emissions from broilers measured by mass balance over eighteen consecutive flocks. *World's Poultry Science Journal*, 85: 384–391.

59. Peigne J. (2003). Method for evaluating agri-biological practices on air quality using agri-environmental indicators. Thesis, INRA, 155p. (in French).

60. Robin P., De Oliveira P.A., Kermarrec C. (1999). Production of ammonia, nitrous oxide, and water by different pig litters during the growth phase. *Porcine Research Days in France*, pp. 111–115. (in French).

61. CORPEN. (2003). Estimation of nitrogen, phosphorus, potassium, copper, and zinc emissions from pigs: Influence of feeding practices and animal housing on the nature and management of excrement. Ministry of Agriculture and Forestry, Paris. (In French)

62. Steinfeld, J. H., Pandis, S. N. (2006). *Atmospheric chemistry and physics: From air pollution to climate change* (2nd ed.). Wiley.

63. Hartung, J., Phillips, V. R. (1994). Control of gaseous emissions from livestock buildings and manure stores. *Journal of Agricultural Engineering Research*, 57, 179–189.

64. Miola, E. C. C., Rochette, P., Chantigny, M. H., Angers, D. A., Aita, C., Gasser, M. O., Pelster, D. E., & Bertrand, N. (2014). Ammonia volatilization after surface application of laying-hen and broiler-chicken manures. *Journal of Environmental Quality*, 43(6), 1864–1872.

65. Choinière, Y., Munroe, J. A. (1993). Impact of air quality on the health of people working in livestock buildings. Ontario, Canada. https://www.agrireseau.net/documents/Document_93238.pdf (In French)

66. Rousset, N., Huneau-Salaün, A., Guillam, M. T., Ségala, C., & Le Bouquin, S. (2016). Qualité de l'air en élevage des poules pondeuses et impact sur l'environnement et la santé des éleveurs. *Innovations Agronomiques*, 49, 215–230. (In French)

67. Kilic, I., Yaslioglu, E. (2014). Ammonia and carbon dioxide concentrations in a layer house. *Asian-Australasian Journal of Animal Sciences*, 27(8), 1211–1218.

68. Boita, A., Verger, M., Lecere, Y. (1983). *Practical guide for breeding farmyard birds and rabbits*. Éditions Solar, Paris. (In French)

69. Shepherd, T. A., Zhao, Y., Li, H., Stinn, J. P., Hayes, M. D., & Xin, H. (2015). Environmental assessment of three egg production systems—Part II: Ammonia, greenhouse gas, and particulate matter emissions. *Poultry Science*, 94(3), 534–543.

70. Groot Koerkamp, P. W. G. (1994). Review of emissions of ammonia from housing systems for laying hens in relation to sources, processes, building design, and manure handling. *Journal of Agricultural Engineering Research*, 59, 73–87.

71. Cavalchini, L. G., Cerolini, S., Mariani, R. (1990). Environmental influences on laying hen production. In B. Sauveur (Ed.), *Poultry farming in the Mediterranean* (pp. 153–172). CIHEAM, Montpellier. (In French)

72. Kenneth, D. C., Gates, R. S., Wheeler, E. F., Zajaczkowski, J. S., Topper, P. A., Xin, H., & Liang, Y. (2003). Ammonia emissions from broiler houses in Kentucky during winter. In *Proceedings of the International Symposium on Gaseous and Odor Emissions from Animal Production Facilities*. Horsens, Jutland, Denmark.