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Abstract A
Missing values frequently occur in real-world time series datasets, significantly affecting the precision and
reliability of data analysis and machine learning models. This research project aims to explore the types of
missing data occurrences and examine various imputation methods. The approaches considered will range
from simple statistical techniques to more complex methods such as regression models, neural networks, and
LSTM models. The effectiveness of these imputation techniques will be assessed using atmospheric pollution
data, with a particular focus on PM10 and PM2.5 levels. Each method s performance will be evaluated based
on accuracy, consistency, and its impact on subsequent predictive models. The findings indicate that LSTM
models are the most effective, while regression and MLP models, though less accurate, offer faster alterna-

tives. Conversely, mean imputation results in the highest error values.
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Introduction

Air pollution is widely recognized as one of the leading threats
to both environmental stability and public health today. It stems
from various human activities — industrial processes, trans-
portation, agriculture —and natural events like wildfires and
dust storms. Regular exposure to polluted air has been shown
to cause various health problems, especially affecting the lungs
and heart. Fine particles, known as PM2.5, are particularly dan-
ger- ous because they are small enough to enter deep into the
lungs and even reach the bloodstream. This can trigger inflam-
mation throughout the body and worsen conditions such as asth-
ma, chronic bronchitis, or cardiovascular diseases [1]. In recent
years, research has also suggested a link between air pollution
and damage to the brain, potentially contributing to cognitive
decline and developmental disorders in children [2].

Beyond its health effects, air pollution also harms the environ-
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ment. It plays a role in acid rain, reduces crop yields, and ac-
celerates climate change. For these reasons, gaining a deeper
understanding of how pollution works and how it affects us is
key to creating solutions that protect people and the planet alike.

The Polish air quality index is one of the most important indi-
cators for determining the level of air quality in Poland. It is
calculated based on 1-hour results of measurements of the fol-
lowing air concentrations: sulfur dioxide (SO2), nitrogendioxide
(NO2), particulate matter (PM10), particulate matter (PM2.5),
and ozone (O3). The map presented in Figurel displays air
quality levels across Poland using a colour-coded index rang-
ing from green (very good) to dark red (very bad). The highest
concentrations of poor air quality (red and orange markers) are
observed in the southern and southwestern regions, particularly
near Wroctaw and the Czech border.
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Figure 1: Polish Air Quality Index

Imputing missing values in air pollution data is essential to en-
sure accurate monitoring of environmental conditions and de-
tection of harmful pollution levels. Incomplete data can lead to
incorrect health risk assessments and hinder timely public health
responses. Predictive models for air quality and climate heav-
ily depend on consistent data, and missing values can reduce
their accuracy and reliability. Additionally, com- plete datasets
support better policy-making and more effective strategies for
pollution control and public safety.

Literature Review

Missing Values in Time Series

Missing values in time series refer to absent or unrecorded ob-
servations at specific time points in a temporal dataset, which
can disrupt the continuity and integrity of time- dependent anal-
ysis. These gaps may arise due to sensor failures, transmission
errors, or irregular data collection and pose significant challeng-
es for forecasting, modelling, and anomaly detection [3].

Type of Missing Data

We can distinguish three types of missing data.

e Missing Completely at Random (MCAR): Missing values
occur independently of both observed and unob- served
data. In this case, the probability of data being missing is
the same for all observations.

Example: A random sensor logging error causes PM10 values

to be missed every 1000th reading, regardless of environmental

conditions or pollution levels.

e Missing at Random (MAR): The missingness is related only
to observed data. This means other variables in the dataset
can explain the probability of missing values.

Example: PM2.5 measurements are frequently missing during

rainy weather, which is logged in the dataset. Thus, the missing-

ness can be modelled using weather conditions.

*  Missing Not at Random (MNAR): The probability of miss-
ingness depends on the unobserved data, making it more
challenging to model or impute.

Example: NO2 concentrations become extremely high during

industrial incidents, and the sensors tend to malfunction precise-

ly at these critical levels. The miss- ing data depends on the un-
measured extreme values themselves.

Dealing With Missing Values
Handling missing values is a critical step in data prepro- cessing,
as it can significantly influence the outcome of any analysis or
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model [4]. Below

* Ignoring: One of the simplest approaches is ignoring miss-
ing values during analysis. This method involves proceed-
ing with computations without accounting for the missing
entries. However, we must be sure that omitting these val-
ues will not cause the models to malfunction.

*  Deletion: This method involves removing either the vari-
ables (columns) or observations (rows) that contain missing
values. While it ensures a clean dataset, deletion can result
in significant information loss and reduced sta- tistical pow-
er, particularly if missingness is widespread.

e Imputation: It refers to filling in missing values with esti-
mated ones based on available data. This approach retains
the dataset’s structure and size. It can range from basic sta-
tistical methods to advanced techniques involving regres-
sion models, machine learning, or deep learning algorithms.

Methodology

Mean Imputation

In a mean substitution, the mean value of a variable is used in
place of the missing data value for that same variable. The the-
oretical background of the mean substitution is that the mean is
a reasonable estimate for a randomly selected observation from
a normal distribution. However, with missing values that are not
strictly random, especially in the presence of great inequality
in the number of missing values for the different variables, the
mean substitution method may lead to inconsistent bias [5].

Regression

Regression imputation using an iterative imputer with Bayesian
Ridge regression estimates missing values by mod- elling each
variable as a linear function of the others in multiple rounds.
Bayesian Ridge adds regularization through priors, improving
stability and handling multicollinearity. This iterative approach
refines estimates with each pass, but it may still introduce bias
or underestimate variability, especially if data relationships are
nonlinear or the model assumptions are violated [6].

Neural Networks

Using a Multi-Layer Perceptron (MLP) for data imputa- tion in-
volves framing the problem as a supervised learning task, where
the MLP learns to predict missing values based on patterns in
available historical data. In time series, a common approach is
to use a sliding window to transform sequences of past obser-
vations into input features for the model [7]. The MLP, being
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a feedforward neural network, captures complex nonlinear re-
lationships in the data but does not inherently model temporal
dependencies, which can be partially addressed through input
engineering. Although MLPs are simpler than recurrent mod-
els like LSTM, they are efficient and effective for datasets with
short-term dependencies and relatively low missingness.

LSTM Recurrent Deep Network

LSTM networks introduce a memory cell and a set of gating
mechanisms—input, output, and forget gates—that regulate the
flow of information. These gates allow the network to retain or
discard information over time, making LSTM models particu-
larly effective for tasks involving time-series forecast- ing, nat-
ural language processing, and signal classification [8]. LSTM
networks are widely used for imputing missing val- ues in time
series by transforming the data into lagged input- output pairs,
enabling the model to predict missing values based on temporal
context. They are particularly effective in capturing both short-
and long-term dependencies and outperform traditional methods
under moderate to high miss- ingness. However, LSTMs require
careful tuning and more computational resources and struggle

with input sequences that contain missing values unless prepro-
cessed [9].

Dataset

The GIOS Air Quality Archive provides access to a compre-

hensive database of air pollution measurements collected across

Poland by the State Environmental Monitoring network. This in-

cludes two key pollutants of health and environmental concern:

*  PMI0 (Particulate Matter < 10 micrometres): Coarse parti-
cles that can penetrate the respiratory system, con- tributing
to respiratory issues and cardiovascular diseases.

*  PM2.5 (Particulate Matter < 2.5 micrometres): Fine par- ti-
cles capable of reaching the lungs and bloodstream, strong-
ly linked to heart and lung conditions.

These data are included as time series measured every hour at
about 170 stations (depending on the year) in 2000-2023. An
analysis was carried out to realize how much data is missing in
the data below, resulting in the histograms presented in Figures
2 and 3.

Table 1: Comparison of Maximum Missing Interval Statistics (PM10 & PM..5)

Pollution PMao PM:.s
Max Interval (hrs) 2426.00 2426.00
Min Interval (hrs) 1.00 2.00
Mean Interval (hrs) 140.36 189.36
Median Interval (hrs) 64.00 74.50
Count of Stations 176.00 92.00

As shown in Table I both datasets show significant missing in-
tervals, with some gaps lasting over 100 days, which can se-
verely impact imputation accuracy [10]. Long and irregular gaps

challenge standard methods like mean imputation or iterative
imputation significantly when multiple stations are affected si-
multaneously.
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Figure 2: Missing Values Count in PM10 Data of Year 2023
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Figure 3: Missing Values Count in PM2.5 Data of Year 2023
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As seen in both cases, most of the data contains less than 250
missing data. The average number of missing data is about 280
in both pollution cases, which is about 3% of the year. However,
there are also cases of stations where the number of missing data
exceeds 1460, equivalent to 2 months of no measurements and
may significantly impact subsequent data analyses. Another crit-
ical aspect of missing data analysis is the time intervals in which
data is missing. It is much easier to predict a single missing val-
ue than a longer interval because of the possibility of taking in-
formation from the context of the surrounding measurements.

Results
To check the accuracy of the previously mentioned methods,

randomly selected values from the available time series will
be marked as artificially missing when using the imputation
method. Then, the new values will be compared with metrics:
SMAPE, MAE, and RMSE [11].

Tables II-1V present the performance of four imputation meth-
ods: Mean, Regression, MLP, and LSTM, applied to PM10
and PM2.5 datasets under varying levels of artificially induced
missingness: 0.5%, 3%, and 20%. These levels cor- respond to
typical missing durations in air quality datasets, with 0.5% (2
days) representing near-median gap lengths, 3% (11 days) ap-
proximating the average number of missing observations, and
20% (2 months) capturing the most extended missing intervals.

Table 2: Performance Metrics for PM10 and PM2.5 and 0.5% Missing Data

Model PMio PMa.s
SMAPE MAE RMSE SMAPE MAE RMSE
(%) (ng/m?) (ng/m?) (%) (ng/m?) (ng/m?)
Mean 31.93 5.52 9.12 32.10 4.50 7.24
Reg 20.81 3.05 4.78 15.77 2.37 5.63
MLP 19.07 2.78 3.75 16.31 2.15 4.20
LSTM 9.88 2.09 2.83 9.06 1.95 2.60

At minimal missingness, the LSTM model yields the most ac-
curate predictions across all metrics for both pollutants. This
demonstrates the model’s capability to effectively utilize recent

temporal context for short-gap recovery, outperforming statisti-
cal approaches.

Table 3: Performance Metrics for PM10 and PM2.5 and 3% Missing Data

Model PMio PMa:.s
SMAPE MAE RMSE SMAPE MAE RMSE
(%) (ng/m?) (ng/m?) (%) (ng/m?) (ng/m*)
Mean 32.24 5.56 9.14 34.77 5.67 9.74
Reg 21.35 3.33 5.82 15.37 2.29 4.79
MLP 21.57 3.10 4.68 15.62 2.50 4.83
LSTM 11.76 2.56 3.38 11.34 242 3.25

When the missing rate increases to a level of dataset average
loss, LSTM continues to show superior accuracy, particularly
in SMAPE and RMSE. At the same time, MLP also performs

competitively, highlighting the benefits of non-linear learning in
moderate data loss scenarios.

Table 4: Performance Metrics for PM10 and PM2.5 with 20% Missing Data

Model PMo PM.:.s
SMAPE MAE RMSE SMAPE MAE RMSE
(%) (ng/m?) (ng/m?) (%) (ng/m°) (ng/m?)
Mean 33.31 5.65 9.41 36.28 5.86 10.72
Reg 21.98 3.36 5.67 16.06 2.35 4.90
MLP 21.76 3.47 5.96 17.05 2.63 5.31
LSTM 14.37 3.11 4.18 14.12 3.10 3.10

With a missing rate representative of extreme data gaps, all
methods experience reduced accuracy, yet LSTM maintains its
lead across all metrics. This confirms its effectiveness in learn-
ing long-term temporal dependencies, making it the most robust
method under severe missingness conditions.

Conclusions
The article presents and compares different solutions of the sys-
tem forecasting missing data of air pollution PM10 and PM2.5.
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An essential point of this research is the analysis of the occur-
rence of missing data, their length and quantity, and testing
methods on different configurations of missing data.

The experimental results reveal that LSTM models consis- tent-
ly deliver the best performance, particularly in moderate to se-
vere missingness scenarios. LSTM’s capacity to learn and lever-
age temporal dependencies allows it to achieve the lowest errors
across nearly all conditions, validating its suitability for time
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series imputation tasks in environmental datasets.

In contrast, mean imputation performs poorly across all levels of
missingness, exhibiting the highest errors and failing to capture
even basic temporal structure. This result highlights the risks of
relying on naive statistical methods in contexts where the data
exhibits strong time-dependent behaviour.

Regression-based and MLP imputations, while not as ef- fective
as neural models, consistently outperform mean im- putations
and show particular promise in low and moderate missingness
scenarios. It represents a viable lightweight al- ternative when
computational resources are limited, or model interpretability is
prioritized.

Additionally, during the testing process, analyzing individ- ual
errors and imputation processes for individual research stations,
it can be noticed that using the same method on data from differ-
ent stations, the error results can differ significantly. To carry out
further research, one can focus on more complex relationships
in terms of patterns of missing data occurrence, which can help
capture the models’ ability to apply more effective imputation.
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