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Introduction
Annual influenza outbreaks constitute a major public health con-
cern worldwide. The World Health Organization estimates that 
there are about one billion cases of seasonal influenza annually, 
with up to 650,000 respiratory deaths [1]. In the United States, 

the Centers for Disease Control and Prevention (CDC) estimates 
that seasonal influenza leads to 9 to 41 million illnesses, 100,000 
to 710,000 hospitalizations, and 5,000 to 51,000 deaths annual-
ly, between 2010 and 2023 [2]. We have previously compared 
the disease burden of the influenza A pandemic 2009-10 and 
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Abstract 
Objectives
We compare two statistical models for establishing “baseline” mortality attributable to pneumonia and influenza in 
the United States during the non-epidemic seasons 2013-14 through 2018-19. We aim to provide robust estimates of 
the burden of mortality from pneumonia and influenza during non-epidemic years in the United States, and to detail 
methodology for characterization of baseline mortality.

Methods 
We obtained data on United States mortality attributable to pneumonia and influenza for the epidemiological seasons 
2013-14 through 2018-19 from the U.S. National Center for Health Statistics Mortality Surveillance System. The data 
comprise weekly national mortality totals attributable to pneumonia and influenza, separately for adults 18 to 64 years 
old and adults aged 65 and older. We fit both generalized linear models and generalized linear mixed models to the mor-
tality data; in contrast to the former models, the mixed models explicitly incorporated additional random components 
associated with intrinsic year to year variability in the mortality patterns. We also invoked a randomization procedure 
to ascribe uncertainty bounds to the summary descriptions of the mortality experience. 

Results
The generalized linear models are analogous to averaging the mortality patterns over the 6 seasons, but failed to pro-
vide adequate representations of the annual mortality patterns. The generalized linear mixed models provided superior 
fits to the observed mortality data, but with a tradeoff of rather large uncertainty bounds on the mortality experience.

Conclusions
Summary estimates of “baseline” mortality attributable to pneumonia and influenza should be accompanied with an 
assessment of how well these summary measures represent the observed mortality experience, and metrics reflective of 
the variability inherent in the estimates.
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seasonal influenza 2010-19 in the United States, using the CDC 
metrics of illnesses, medical visits, hospitalizations, and deaths 
[3]. Among our conclusions, we found that determination of a 
baseline influenza mortality profile in the United States over the 
2010-19 decade was not straightforward. We return to this is-
sue in the current work, with the goal of establishing baseline 
(non-epidemic) annual respiratory mortality profiles in the Unit-
ed States.

Average mortality profiles are invaluable from a public health 
perspective. Surveillance systems can utilize them to monitor 
changes in mortality patterns, thereby identifying unusual spikes 
or trends that require immediate attention or intervention. Iden-
tification of high-risk groups (e.g., the elderly) can prioritize 
allocation of resources, or shape public health messaging to en-
courage preventive behavior or vaccination. Mortality rates can 
inform policy decisions aimed at reduction of influenza trans-
mission and mortality. Average mortality profiles are thus crucial 
metrics for assessing the disease burden of influenza and steer-
ing efforts to mitigate its public health impact.

In the following section, we introduce a statistical framework for 
establishing baseline mortality attributable to pneumonia and in-
fluenza in the United States. We report on the adequacy of these 
modeling efforts in the results, and conclude with lessons drawn 
and recommendations arising from our findings.

Methods
We obtained data on United States mortality attributable to in-
fluenza and pneumonia from the U.S. National Center for Health 
Statistics Mortality Surveillance System [4]. These data are 
weekly mortality totals attributable to influenza and pneumonia 
for the influenza seasons 2013-14 through 2018-19, separately 
for adults aged 65 and older, and adults aged 18 through 64. For 
each epidemiological season, the weekly mortality totals begin 
with calendar week 40 and continue through calendar week 39 
of the subsequent year. We also obtained related population data 
derived from the U.S. Census Bureau, as our analyses reflect 
mortality rates and not absolute numbers. All data are freely 
available to any interested parties [5].

In order to characterize the pneumonia and influenza mortali-
ty patterns over the epidemiological seasons 2013-14 through 
2018-19, we initially investigated generalized linear models 
(GLMs). GLMs constitute extensions of linear regression mod-
els to settings in which a nonlinear relationship exists. In partic-
ular, the response (dependent variable) can have a distribution 
other than normal (e.g., Poisson), with parameters including a 
mean a coefficient vector b defines a linear combination 
Xb of the predictors X; and, a link function f defines the mod-
el as f (Xb . Generalized linear models have been widely 
studied in the statistics literature, so we will not review them 
here in any detail, and refer the interested reader to resources 
with more comprehensive treatments [6-8]. But we here high-
light input parameters we used to fit GLMs to the mortality data 
in Matlab v2018a.

Our model specification, in Wilkinson notation, is simply
		  Mortality ~ Week
where Mortality is a 312x1 vector of weekly pneumonia and 
influenza mortality from the 6 seasons encompassing 2013-14 

through 2018-19, and  Week (also 312x1) is a categorical vari-
able, taking the values 1 through 52 for each season (a fixed 
effect, in regression parlance) [9]. We specify the distribution of 
the response variable (mortality) as Poisson, link function as log, 
and include an Offset variable log (population at risk). 

The mortality counts should be somewhat proportional to the 
size of the population at risk, and the inclusion of this offset 
together with a log link function causes the model to satisfy this 
theoretical constraint. Essentially, with the inclusion of the off-
sets, we are analyzing rates as derived from the counts. We fit 
separate GLMs to the mortality data from individuals 18 to 64 
and individuals 65 and older – separate Mortality vectors and 
offsets for these two cohorts, other parameters remaining the 
same.

We found that the GLMs did not provide suitable representa-
tions for the mortality patterns: although the GLMs provided 
average representations of the mortality patterns over the 2013 
through 2019 experience, the averages failed to model accurate-
ly the season-to-season variability in mortality, as well as dif-
ferences in phases (e.g., times of peak mortality) across the sea-
sons. We therefore formulated generalized linear mixed models 
(GLMMs), which explicitly incorporated random components 
into the GLM formulations, in particular, random effects for the 
weekly fixed effects. The models therefore took on the following 
form:
Mortality ~ Week + (Week | Season).

In this formulation, we have included random effects terms rep-
resented by (Week | Season): for each week, there is a fixed ef-
fect estimate, but we are also allowing random variation in these 
coefficients from season to season. In other words, Week is also 
a random factor within the grouping variable Season. Model 
specification is similar to the GLMs, but with additional argu-
ments: we selected the covariance pattern, that is, the pattern of 
the covariance matrix of the random effects, as diagonal (diago-
nal entries not necessarily equal, and off-diagonal entries set to 
0), and the method of estimating model parameters as REMPL 
(restricted maximum pseudo likelihood).

Differences in Akaike’s information criterion (AIC) indicated 
that, formally, the GLMMs provided much improved fits to the 
observed mortality patterns compared with the corresponding 
GLMs; the graphs of the observed versus fitted models, as well 
as examination of the residuals (observed – fitted), corroborate 
the improvement in fits with the GLMMs. We do not wish to 
rely solely on statistical arguments here, but in keeping with our 
theme that you can observe a lot just by watching, the visual 
evidence in the plots of fits and residuals should be persuasive.

It is not straightforward to predict responses of a generalized 
linear mixed model if a grouping variable (here, season) has lev-
els that are not in the original data. To overcome this difficulty, 
we instead rely on a randomization procedure to incorporate the 
random effects attributable to seasons into a prediction region. 
Separately for both age cohorts (18 to 64 and 65+), we generated 
n=1500 random responses from the fitted GLMM models, that 
is, 1500 randomly generated versions of the observed Mortality 
312x1 vectors. 
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We then took the 9000 seasons’ randomly generated respons-
es (1500 randomly generated responses x 6 years per random 
response), and determined the 95% central regions from these 
responses. Importantly, these 95% randomization intervals in-
corporate the random effects variability representative of season 
to season variability in the mortality patterns as well as the vari-
ability due to parameter estimation uncertainty (fixed effects).

Results
As mentioned in the Methods, we acquired data on weekly 
mortality from pneumonia and influenza in the United States 
between the years 2013-14 and 2018-19, separately for individ-
uals aged 18 to 64 years and those 65 years and older. Through 
appropriate modeling, we attempted to find consistent and con-
sonant patterns in these pre-pandemic mortality data. Explicit 
details of the modeling schemes are given in the Methods.  

Our simple initial approach to modeling mortality utilized gen-
eralized linear model (GLMs) with fixed effects representing the 
weeks. In Figure 1A we depict the observed data for the 18 to 
64-year olds along with the corresponding GLM fit; the similar 
figure for the 65-year olds and older is given in Figure 2A. The 
GLM fits are deterministic, and essentially represent weighted 
averages of the observed mortality curves, with slight trends re-
flecting increasing sample sizes (numbers of individuals at risk) 
from 2012 through 2019. Neither GLM fit passes the eye test: in 
particular, mortality peaks are consistently underestimated, and 
temporal shifts in phases are largely missed. In Figures 1B and 
2B we plot the residuals (observed - fitted) for the GLMs: clear-
ly, the magnitudes of the residuals are indicative of inadequate 
fits.

We then examined generalized linear mixed effects models 
(GLMMs), in which we added random effects representing the 
year to year variability in the weeks to the GLM models. There-
after, we found much improved fits to the 18 to 64-year-old data 
(Figure 3), as well as to the 65 and older data (Figure 4). In 
particular, the GLMM fits are remarkably congruent with the 
observed data, with the residuals from the GLMMs well over 
10-fold smaller than from the GLMs (cf. Figures 3B and 4B vs. 
1B and 2B respectively).

A “baseline” or “typical” mortality curve characterizing the 
2013-14 through 2018-19 experience would be represented by 
the GLM models (Figures 1A and 2A): by their nature these are 
indeed summary curves, but fail to capture the nuances in the 
mortality patterns. With the inherent season to season variability 
in peaks and valleys as well as phase differences, we instead 
chose to invoke a randomization procedure that incorporates 
week to week and season to season components of variability to 
characterize this mortality experience. Figures 5 (18 to 64-year 
olds) and 6 (65 and older) show the randomization 95% bounds 
derived from the GLMMs, along with the observed mortality 
data. The randomization bounds are quite wide, though this 
should not be surprising given the magnitudes of the season to 
season changes in mortality patterns.

Discussion
Let us recast Yogi Berra’s dictum as, you can learn a lot by ob-
serving. Averaging mortality from pneumonia and influenza over 
several recognized non-epidemic years is per se an inadequate 

representation of the observed experience, since the years are far 
from homogeneous (in terms of both amplitude and phase). In 
non-epidemic years, these differences are random and not pre-
dictable, and are best captured in mixed models that explicit-
ly incorporate these sources of random variation. At play here 
is a basic dictum of Statistics 101, namely, statistical estimates 
should be accompanied with measures of the uncertainty intrin-
sic to the estimates.

Although our focus has been on aspects of modeling the mor-
tality profiles, the huge disparity in pneumonia and influenza 
mortality between adults 18 to 64 years old and the elderly aged 
65 and older has not escaped our notice. Our graphs, through 
different mortality (y-axis) scales, deemphasize this disparity, 
but we would be remiss in failing to recognize that pneumo-
nia and influenza mortality during these non-epidemic seasons 
impacts the elderly disproportionately. We have commented on 
this disparity previously, as well as, the stark contrast with the 
age-specific mortality rates observed in the United States during 
the 1918-19 influenza epidemic [10, 11]. Clearly, mitigating the 
mortality risk from pneumonia and influenza among the elderly 
is a vital public health imperative.

We remark that our models are not very parsimonious, as we are 
treating the individual weeks as both fixed and random effects 
in the GLMM framework. We explicitly chose our models to 
reflect the observed data very closely, so that subsequent em-
phasis could be placed on intrinsic season to season variability. 
This variability is incorporated in Figures 5 and 6, where our 
uncertainty bounds from a randomization-based approach ex-
plicitly incorporate contributions from both fixed and random 
effects. The bounds are rather wide, as the underlying epidemio-
logical seasons do vary greatly in both phase and amplitude. At 
play here is the bias-variance tradeoff [12]. one might term our 
GLMMs as complex and sophisticated, achieving high accuracy 
(low bias) at the cost of high variance.

We emphasize that with data from other or additional years, 
these profiles will likely be altered, perhaps dramatically. In this 
regard, we have chosen a window of 6 non-epidemic seasons 
for our analyses, as there is no consensus concerning optimal 
window size for establishing baseline mortality.

An early ingenious approach to modeling non-epidemic level 
weekly mortality data for pneumonia and influenza was intro-
duced by Serfling [13]. This approach entailed linear regression, 
with the number of weekly cases regressed on a linear trend 
and trigonometric terms (sines and cosines) describing seasonal 
changes, thereby determining “a standard curve of expected sea-
sonal mortality”. The method is not at all computationally inten-
sive, as the orthogonality of the regressors greatly simplifies the 
least squares fitting [14].

And, the mathematical fact that the trigonometric functions suit-
ably normalized constitute a complete orthonormal system over 
any closed finite interval ensures that any resulting Fourier series 
expansion can be made sufficiently accurate with enough terms. 
Nevertheless, with the ready availability of modern computing 
resources, Serfling’s model is not commonly implemented as 
originally formulated, but extensions to the generalized linear 
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model setting with Poisson regression are straightforward [15]. 
As such, the method remains popular to this day [16, 17].  We 
remark that, although the trigonometric functions are complete, 
any derived Fourier series expansion may well involve higher 
order terms, for which practical interpretation might remain elu-
sive [18].  
 
We conclude with a salient cautionary note: Although we have 

limited our presentation to mortality attributable to pneumonia 
and influenza, our arguments obtain mutatis mutandis to all-
cause mortality. Reports assessing excess all-cause mortality 
need to consider how baseline all-cause mortality is estimated, 
and whether the variability in the baseline estimation procedure 
is accounted for. 

Figure Legends

Figure 1:  A. Weekly mortality from pneumonia and influenza among individuals aged 18 to 64 years in the United States in the 6 ep-
idemiological seasons 2013-14 through 2018-19, along with the fitted data from a generalized linear model. See Methods for details.

B. Histogram of residuals (observed - fitted) from the data and generalized linear model depicted in Figure 1A. The histogram uses 
probability density function scaling: The area of each bar is the relative number of observations, and the sum of the bar areas is 
equal to 1.

Figure 2:  A. Weekly mortality from pneumonia and influenza among individuals aged 65 years and older in the United States in 
the 6 epidemiological seasons 2013-14 through 2018-19, along with the fitted data from a generalized linear model. See Methods 
for details.
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B. Histogram of residuals (observed - fitted) from the data and generalized linear model depicted in Figure 2A. The histogram uses 
probability density function scaling: The area of each bar is the relative number of observations, and the sum of the bar areas is 
equal to 1.

Figure 3: A. Weekly mortality from pneumonia and influenza among individuals aged 18 to 64 years in the United States in the 6 
epidemiological seasons 2013-14 through 2018-19, along with the fitted data from a generalized linear mixed model. See Methods 
for details.

B. Histogram of residuals (observed - fitted) from the data and generalized linear model depicted in Figure 3A. The histogram uses 
probability density function scaling: The area of each bar is the relative number of observations, and the sum of the bar areas is 
equal to 1.
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Figure 4: A. Weekly mortality from pneumonia and influenza among individuals aged 65 years and older in the United States in the 
6 epidemiological seasons 2013-14 through 2018-19, along with the fitted data from a generalized linear mixed model. See Methods 
for details.

B. Histogram of residuals (observed - fitted) from the data and generalized linear mixed model depicted in Figure 4A. The histogram 
uses probability density function scaling: The area of each bar is the relative number of observations, and the sum of the bar areas 
is equal to 1.

Figure 5: Weekly mortality from pneumonia and influenza among individuals aged 18 to 64 years in the United States, separately 
for each epidemiological season. Also depicted is a 95% randomization interval derived from the generalized linear mixed model fit 
to the 6 seasons, accounting for variability in the estimates of both fixed and random effects in the model. See Methods for further 
details.
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Figure 6: Weekly mortality from pneumonia and influenza among individuals aged 65 years and older in the United States, sepa-
rately for each epidemiological season. Also depicted is a 95% randomization interval derived from the generalized linear mixed 
model fit to the 6 seasons, accounting for variability in the estimates of both fixed and random effects in the model. See Methods 
for further details.
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