

Exploring Magnetic Resonance Imaging Technology: Magnet Types, Imaging Innovations, and Advances in Diagnostic Precision

Mohamed Moumaris

Institute of Science and Technology, Research and Development Company, France

***Corresponding author:** Mohamed Moumaris, Research and Development Company, 14 avenue René Boylesve 75016 Paris, France, Tel: +33762122825.

Submitted: 19 December 2025 **Accepted:** 22 December 2025 **Published:** 27 December 2025

 <https://doi.org/10.63620/MKJLSST.2025.1007>

Citation: Moumaris, M. (2025). Exploring Magnetic Resonance Imaging Technology: Magnet Types, Imaging Innovations, and Advances in Diagnostic Precision. *J of Life Sci Sys Tech*, 1(2), 01-04.

Abstract

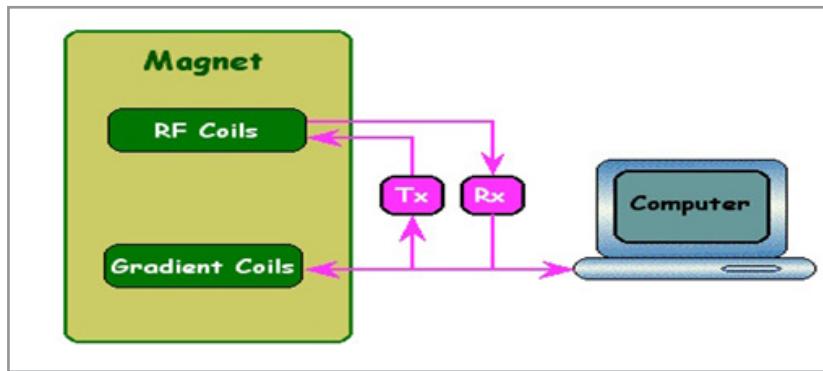
Magnetic Resonance Imaging (MRI) is a vital non-invasive diagnostic technology that relies on advanced magnetic, gradient, and radiofrequency systems to produce high-quality medical images. This article reviews key MRI components, including superconducting magnets, gradient coils, and shimming techniques, and highlights recent innovations in ultra-high-field MRI that enhance signal-to-noise ratio and spatial resolution. Technological advances such as insertable gradient coils, improved shielding, and high-field 7-Tesla systems are discussed, emphasizing their role in improving diagnostic precision and enabling earlier detection of neurological and musculoskeletal disorders.

Keywords: Magnetic Resonance Imaging, Ultra High Field MRI, CAS-srDFT Method, Gradient coils, 7-Tesla MRI, Avanced Diagnostics.

Abbreviations

CASSCF: Complete active space self-consistent field
CAS-srDFT: Choosing a complete active space-density functional theory
HF-srDFT: Hartree Fock-srDFT
MRI: Magnetic Resonance Imaging
RF: Radiofrequency
srDFT: Short range-density functional theory
SNR: Systems enhance signal-to-noise ratio
UHF: Ultra High Field

own challenges, sometimes as a result of eddy currents. Advances in MRI systems, such as insertable gradient coils, will improve precision in neuroimaging. MRI systems use copper antennas to receive signals, and then shielding is used to minimize interference from other signals. Superconducting magnets need necessary maintenance; otherwise, they are at risk of quenching. Advancements in shoulder imaging, such as 7-Tesla systems, improvements in MRI arthrography, and the acquisition of three-dimensional images, contribute to the early detection of osteoarthritis.


An MRI, an essential tool for identifying abnormalities, is equipped with a powerful magnet, coils, and computers. Accurate adjustment enables the obtaining of quality images and ensures the safety of patients and professionals [1, 2]. MRI magnetic field gradient coils enable clear imaging along the X, Y, and Z axes. These coils work with magnetic field correctors, such as passive and active shims, to adjust the B0 field. Passive shims make simple corrections, while active shims, which use special coils, provide precise adjustments to maintain image

Introduction

Magnetic Resonance Imaging (MRI) has a multitude of magnetic components, all designed to enhance image quality and ultimately the accuracy of images. Gradient coils create accurate 3D images. Superconducting magnets can sometimes exhibit field issues, which can be corrected with active and passive shims. Ultra High Field (UHF) MRI systems enhance the signal-to-noise ratio and resolution of MRI imaging, but come with their

quality in clinical situations. UHF MRI encounters challenges such as Lorentz forces, vibroacoustics, eddy currents, and nerve stimulation. Advanced gradient and shim technologies can solve these issues. Innovations, such as insertable gradient coils, enhance imaging accuracy and flexibility. Ultra-High Field MRI

systems enhance imaging resolution and aid in the diagnosis and treatment of nerve disorders. Ongoing advances in MRI technology yield higher quality images, which benefit patient care (Figure 1) [3, 4].

Figure 1: Essential Components of a Magnetic Resonance Imaging (MRI) System. This image is licensed under creative commons attribution.

Copper antennas are essential in MRI to capture and emit the radio waves necessary to obtain detailed images. Shielding devices, such as Faraday cages, block radio waves. Different types of shielding protect against interference from the magnetic field. If the liquid helium contained in the superconducting electromagnets of the MRI machine vaporizes, a "quenching" phenomenon can occur. Immediate action is needed to avoid equipment damage. Recent NMR studies have focused on calculating shielding constants using gauge-including atomic orbitals within a hybrid srDFT model, specifically HF-srDFT. The CAS-srDFT approach, which uses a complete-active-space wave function, works better than standard DFT and CASSCF methods when exact exchange functionals are needed for precise results. For organometallic compounds with static correlation, CAS-srDFT is more accurate than CASSCF and HF-srDFT for complex system modeling. This method could help advance research on organometallic compounds by providing accurate calculations of shielding constants [5-7].

MRI produces detailed images of the body by observing the behavior of hydrogen atoms in tissues. It uses strong magnetic fields and resonance energy to excite these atoms. Special coils collect signals and transform them into detailed images, which helps with diagnosis and treatment. An MRI system consists of a main magnet, shim coils to maintain field uniformity, a gradient system for spatial encoding, and an RF system for signal reception and transmission. All of these components are controlled by computers. The magnet is cooled with liquid helium for accuracy. Normal imaging at 3-Tesla provides clear images, and 7-Tesla MRI offers even finer details for better diagnosis. Efforts are being made to reduce metal artifacts, which can obscure images. New methods now allow for proper imaging, even with metal implants. New biochemical imaging can detect early osteoarthritis. Finding these problems early means that treatment can start sooner, which can slow the progression of osteoarthritis [8, 9, 10].

MRI technology has become one of the most important tools in modern medical imaging. Its principle is based essentially on powerful magnets, each with a specific role, to create clear and detailed images of the body. The main superconducting magnet,

along with the gradient and radiofrequency coils, works together to produce reliable images for radiologists, enabling accurate diagnosis and treatment. Progress has been made, particularly with ultra-high-field MRI systems. These devices provide sharper images while correcting long-standing problems such as noise and uneven fields, thanks to improvements in gradient design and shim technology. With higher Tesla systems, radiologists can now visualize complex structures more clearly and detect early signs of degenerative problems (11- 40).

Conflicts of Interest

The author confirms that this article's content has no conflict of interest.

Acknowledgments

The author acknowledges Mrs. Norri Zahra and Mr. Regragui Moumaris. The author thanks Prof. Nisen Abuaf (Sorbonne University and AP-HP) and Tech. Said Youssouf Chanfi (Sorbonne University). The author thanks Ing. Jean-Michel Bretagne (AP-HP). The author thanks Clr. Marie-Hélène Maës and SG. Monique Abuaf (Research and Development Company)..

References

1. Serai, S. D., Ho, M. L., Artunduaga, M., Chan, S. S., & Chavhan, G. B. (2021). Components of a magnetic resonance imaging system and their relationship to safety and image quality. *Pediatric Radiology*, 51(5), 716-723.
2. Kwok, W. E. (2022). Basic principles of and practical guide to clinical MRI radiofrequency coils. *Radiographics*, 42(3), 898-918.
3. Winkler, S. A., Schmitt, F., Landes, H., de Bever, J., Wade, T., Alejski, A., et al. (2018). Gradient and shim technologies for ultra-high-field MRI. *NeuroImage*, 168, 59-70.
4. Gao, Y., Mareyam, A., Sun, Y., Witzel, T., Arango, N., Kuang, I., et al. (2020). A 16-channel AC/DC array coil for anesthetized monkey whole-brain imaging at 7 T. *NeuroImage*, 207, 116396.
5. Jørgensen, F. K., Kjellgren, E. R., Jensen, H. J. A., & Hedegård, E. D. (2022). Multiconfigurational short-range density functional theory for nuclear magnetic resonance shielding constants with gauge-including atomic orbitals. *Journal of*

Chemical Physics, 157(16), 164106.

6. Kjellgren, E. R., & Jensen, H. J. A. (2021). Multi-configurational short-range density functional theory can describe spin-spin coupling constants of transition metal complexes. *Journal of Chemical Physics*, 155(8), 084102.
7. Erba, A., Desmarais, J. K., Casassa, S., Civalleri, B., Donà, L., Bush, I. J., et al. (2023). CRYSTAL23: A program for computational solid-state physics and chemistry. *Journal of Chemical Theory and Computation*, 19(20), 6891-6932.
8. La Rocca Vieira, R., Rybak, L. D., & Recht, M. (2012). Technical update on magnetic resonance imaging of the shoulder. *Magnetic Resonance Imaging Clinics of North America*, 20(2), 149-161.
9. Sebro, R., Oliveira, A., & Palmer, W. E. (2014). MR arthrography of the shoulder: Technical update and clinical applications. *Seminars in Musculoskeletal Radiology*, 18(4), 352-364.
10. Gustas, C. N., & Tuite, M. J. (2014). Imaging update on the glenoid labrum: Variants versus tears. *Seminars in Musculoskeletal Radiology*, 18(4), 365-373.

Theses & Reports

11. Moumaris, M. (2007). Magnetic resonance imaging at the Hôtel-Dieu of Paris (Thesis). Paris-Descartes University, Paris, France.
12. Moumaris, M. (2005). Identification of a new molecule to monitor apoptosis (Thesis). Sorbonne-Paris-Nord University, Paris, France.
13. Moumaris, M. (2003). Biomedical research, the law of bioethics relating to the donation and use of elements and products of the human body (Thesis). Paris-Descartes University, Paris, France.
14. Moumaris, M. (1996). Membranes érythrocytaires dans le paludisme: Modèle d'étude : Souris-Plasmodium berghei anka (Thesis). Université Pierre et Marie Curie, Paris, France.
15. Moumaris, M. (1992). Lyme disease: Serological study (Thesis). University of Orleans and Regional Hospital Center of Orleans, Paris, France.

Journal Articles (Moumaris)

16. Moumaris, M. (2025). Advancing cancer immunotherapy: The promise and challenges of CAR-NK cell therapy. *Journal of Biotechnology and Bioprocessing*, 6(4), 2766-2314.
17. Moumaris, M. (2025). Organelle adaptations in Plasmodium: The targets for malaria treatments. *International Journal of Zoo & Animal Biology*, 8(1), 000640.
18. Moumaris, M. (2024). Cell membrane compartmentalization and membrane dynamics during Plasmodium infection. *International Journal of Zoo & Animal Biology*, 7(6), 000637.
19. Moumaris, M. (2024). Advancements in magnetic resonance imaging: Transforming non-invasive diagnosis and treatment monitoring in radiology. *Journal of Life Science Research and Review*, 2(5), 1-3.
20. Moumaris, M. (2024). Plasmodium's secret: How a complex endomembrane system drives malaria's deadly efficiency. *International Journal of Zoo & Animal Biology*, 7(6), 000631.
21. Moumaris, M. (2024). Malaria's hidden weapon: How Plasmodium transforms red blood cells to evade and invade. *International Journal of Zoo & Animal Biology*, 7(6), 000629.
22. Moumaris, M. (2024). Advancements in diagnosing and treating Plasmodium knowlesi: Challenges and innovations. *International Journal of Zoo & Animal Biology*, 7(5), 000622.
23. Moumaris, M. (2024). Confronting Plasmodium knowlesi: Challenges and strategies in malaria healthcare. *International Journal of Zoo & Animal Biology*, 7(4), 000607.
24. Moumaris, M. (2024). Unraveling the enigma: Tackling Plasmodium knowlesi malaria in Southeast Asia. *International Journal of Zoo & Animal Biology*, 7(2), 000585.
25. Moumaris, M. (2024). Lyme disease: A zoonosis tick-borne Borrelia bacterium [4/4]. *International Journal of Zoo & Animal Biology*, 7(1), 000549.
26. Moumaris, M. (2024). Unlocking the potential: Overcoming challenges in CAR-T cell therapy for cancer treatment. *Journal of Biotechnology and Bioprocessing*, 5(2), 2766-2314.
27. Moumaris, M. (2023). Revolutionizing malaria research: CRISPR unveils new frontiers. *Journal of Biotechnology and Bioprocessing*, 4(5), 2766-2314.
28. Moumaris, M. (2023). Lyme disease: A zoonosis tick-borne Borrelia bacterium [3/4]. *International Journal of Zoo & Animal Biology*, 6(4), 000500.
29. Moumaris, M. (2023). Lyme disease: A zoonosis tick-borne Borrelia bacterium [2/4]. *International Journal of Zoo & Animal Biology*, 6(2), 000465.
30. Moumaris, M. (2022). Lyme disease: A zoonosis tick-borne Borrelia bacterium [1/4]. *International Journal of Zoo & Animal Biology*, 5(6), 000425.
31. Moumaris, M., Bretagne, J. M., & Abuaf, N. (2020). Nanomedical devices and cancer theranostics. *The Open Nanomedicine and Nanotechnology Journal*, 6, 1-11.
32. Moumaris, M., Bretagne, J. M., & Abuaf, N. (2019). Biological membranes and malaria parasites. *The Open Parasitology Journal*, 7, 1-18.
33. Moumaris, M., Bretagne, J. M., & Abuaf, N. (2018). Hospital engineering of medical devices in France. *The Open Medical Devices Journal*, 6, 10-20.
34. Moumaris, M., Rajoely, B., & Abuaf, N. (2015). Fluorescein isothiocyanate-dextran can track apoptosis and necrosis induced by heat shock of peripheral blood mononuclear cells and HeLa cells. *Open Biological Sciences Journal*, 1, 7-15.
35. Moumaris, M., Rajoely, B., & Abuaf, N. (2012). The naïve B cells are the lymphocytes with the highest anionic phospholipid binding ratios. *The Open Immunology Journal*, 5, 27-35.
36. Moumaris, M., & Abuaf, N. (2002). Use of labeled dextran for in-vitro assessment of increased cell permeability, cell death and apoptosis. *Bulletin Officiel de la Propriété Industrielle*, 2811682, A3.
37. Moumaris, M., Benoliel, S., Rouquette, A. M., Rajoely, B., & Abuaf, N. (2000). Phospholipid binding proteins on the plasma membrane of lymphocytes. *Journal of Autoimmunity*, 15(2), 81-271.

Conference Papers

38. Moumaris, M., et al. (1999). Characterization of B-cells adhering to lamellar phospholipids. In French Congress of Antiphospholipid Antibody, Paris, France.

39. Sabolovic, D., Moumaris, M., Miltgen, F., Sestier, C., & Halbreich, A. (1995). A subpopulation of red blood cells induced by bleeding or mosquito sucking. In Chinese National Congress of Medical Biophysics, Shanghai, China.

40. 40. Sabolovic, D., Moumaris, M., Miltgen, F., Sestier, C., & Halbreich, A. (1995). Characterisation of a subpopulation of red blood cells as a preferential target for malaria invasion. French Congress of Electrophoresis, Pasteur Institute, 19(7), 1215-1219.

Copyright: © 2025 Mohamed Moumaris. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.