

World Journal of Sensors Network Research

A Review of Water Resources Evaluation using GIS and Remote Sensing Techniques

Baker, A. T^{1*}., Olla, O. O²., Bello, L, A²., Ilevbaoje, O. O²., Salman, S. I²., & Nurudeen, H².

¹Department of Civil Engineering Science, University of Johannesburg, South Africa

*Corresponding author: Baker A. T., Department of Civil Engineering Science, University of Johannesburg, South Africa.

Submitted: 19 October 2024 Accepted: 25 November 2024 Published: 02 December 2024

di https://doi.org/10.63620/MKWJSNR.2024.1012

Citation: Baker, A. T., Olla, O. O., Bello, L. A., Ilevbaoje, O. O., Salman, S. I., & Nurudeen, H. (2024). A review of water resources evaluation using GIS and remote sensing techniques. Wor Jour of Sens Net Res, 1(1), 01-03.

Abstract

Water resource management is crucial for sustainable development and environmental conservation. Geographic Information Systems (GIS) and Remote Sensing (RS) technologies have revolutionized the assessment and management of water resources by providing valuable tools for data analysis, visualization, and decision-making. This paper reviews the application of GIS and RS techniques in evaluating water resources, focusing on their contributions to hydrological modeling, water quality assessment, and monitoring of water availability. The paper also discusses challenges and future directions in the field, highlighting the importance of integrating these technologies with traditional methods for comprehensive water resource management.

Keywords: Water Resources, GIS, Remote Sensing, Hydrological Modelling, Water Quality Assessment

Introduction

Water is a fundamental resource essential for various human activities, ecosystem functioning, and agricultural production [1]. Sustainable management of water resources is critical to ensure availability for current and future generations while preserving environmental integrity. However, the increasing demand for water coupled with climate change and environmental degradation, poses significant challenges to water resource management. According to Evsahibloglu (2015) geographic Information Systems (GIS) and Remote Sensing (RS) technologies offer powerful tools for assessing and managing water resources by providing spatially explicit data, analysis capabilities, and decision support systems. This paper aims to evaluate the effectiveness of GIS and RS techniques in water resource management, focusing on their applications in hydrological modeling, water quality assessment, and monitoring of water availability. Geographic Information Systems (GIS) and remote sensing technologies have revolutionized the way water resources are assessed, monitored, and managed. Applications of GIS in Water Resources Evaluation: GIS facilitates the integration of spatial data related to hydrology, topography, land use, and climate, enabling comprehensive analysis and visualization of water resources. Key applications include watershed delineation, hydrological modeling, flood mapping, and groundwater assessment. GIS-based decision support systems aid in optimal water allocation, infrastructure planning, and disaster management.

Remote Sensing Techniques for Water Resources Assessment: Remote sensing platforms, such as satellites and aerial drones, provide valuable data for monitoring water bodies, land cover changes, and hydrological processes. Remote sensing imagery is utilized for mapping surface water extent, detecting water quality parameters, and assessing vegetation health. Advanced sensors, including multispectral and hyperspectral imagers, enhance the capability to monitor water resources with high spatial and temporal resolutions.

Integration of GIS and Remote Sensing: The synergy between GIS and remote sensing enables comprehensive analysis and monitoring of water resources at various spatial and temporal scales. Remote sensing data serve as inputs for GIS-based models, improving the accuracy of hydrological simulations and water resource assessments. Furthermore, GIS facilitates the visualization and dissemination of remote sensing-derived information to stakeholders, policymakers, and the public. Despite their immense potential, the application of GIS and remote sensing techniques in water resources evaluation faces several challenges, including data availability, processing complexities,

Page No: 01 www.mkscienceset.com Wor Jour of Sens Net Res 2024

²Department of Land and Water, National Centre for Agricultural Mechanization, Nigeria

and the need for skilled manpower. Future research should focus on developing advanced algorithms for automated feature extraction, enhancing data fusion techniques, and improving the accessibility of remote sensing data. Additionally, integrating

emerging technologies such as machine learning and artificial intelligence with GIS and remote sensing can further enhance the accuracy and efficiency of water resource assessments.

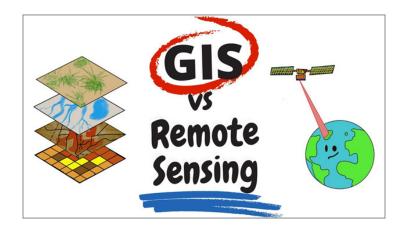


Figure 1: shows the image of GIS vs Remote Sensing as applicable to assessment of water resource management.

Figure 1: Image of Remote sensing Vs GIS

Source: ACGS India

Objective

This review aimed to consolidate current advancements in GIS and RS applications in water resource evaluation, highlight their methodologies, and discuss potential areas for improvement.

Overview of GIS and Remote Sensing Techniques Geographic Information Systems (GIS)

GIS is a technology that captures, stores, analyzes, and visualizes spatial and geographic data. Its ability to integrate diverse datasets makes it indispensable for water resource evaluation. Key GIS applications include:

- · Watershed delineation.
- Hydrological network mapping.
- Groundwater modeling

Remote Sensing (RS)

Remote sensing involves acquiring data about the Earth's surface using satellite or airborne sensors. RS techniques enable large-scale monitoring of surface water, snow cover, and vegetation. Popular RS platforms include:

- Satellite Sensors: Landsat, MODIS, Sentinel.
- Airborne Systems: LiDAR, UAV-based sensors.
- Microwave Sensors: RADARSAT, SMOS (for soil moisture).

Applications of GIS and Remote Sensing in Water Resources Hydrological Modeling

- RS-derived datasets like Digital Elevation Models (DEMs) and precipitation maps feed into hydrological models for runoff prediction and flood risk assessment.
- GIS aids in delineating watersheds and analyzing river basins.

Groundwater Assessment

- RS techniques, such as thermal imaging, are used to locate groundwater recharge zones.
- GIS integrates hydrogeological and geophysical data for groundwater potential mapping.

Water Quality Monitoring

- RS data from hyperspectral sensors provide insights into water quality parameters, such as chlorophyll concentration and turbidity.
- GIS allows visualization and trend analysis of water quality data

Drought and Flood Assessment

- RS-based indices like the Normalized Difference Water Index (NDWI) and Standardized Precipitation Index (SPI) help monitor drought conditions.
- Flood inundation mapping combines RS data with GIS for real-time flood management.

Methodologies in GIS and RS for Water Resources

Data Integration and Analysis

The integration of RS data into GIS involves preprocessing (e.g., georeferencing, radiometric correction) and subsequent spatial analysis. This fusion enables multi-criteria decision analysis for water resource management.

Advanced Hydrological Models

- GIS-RS integration supports models such as SWAT (Soil and Water Assessment Tool) and HEC-HMS (Hydrologic Engineering Center-Hydrologic Modeling System).
- Machine learning algorithms in GIS improve prediction accuracy.

Hydrological Modelling

Hydrological modeling plays a crucial role in understanding the behavior of water systems, predicting water availability, and assessing the impacts of land use and climate change on water resources [2]. GIS-based hydrological models integrate spatial data on terrain, land cover, soil properties, and precipitation to simulate the movement of water through the landscape. Remote sensing data, such as satellite imagery and aerial photographs, provide valuable inputs for model calibration, validation, and scenario analysis. gave examples of GIS-based hydrological models to include the Soil and Water Assessment Tool (SWAT),

the Hydrological Simulation Program-FORTRAN (HSPF), and the Distributed Hydrology Soil Vegetation Model (DHSVM). These models enable researchers and water managers to simulate streamflow, groundwater recharge, sediment transport, and pollutant loading under different land management practices and climate scenarios [3].

Water Quality Assessment

Water quality study is the process of determining the chemical, physical and biological characteristics of waterbodies and identifying the possible contamination sources that degrade the quality of water [4]. Degradation of the quality of water resources may result from waste discharges, pesticides, heavy metals, nutrients, microorganisms, and sediments.

Maintaining water quality is essential for human health, ecosystem integrity, and sustainable development. GIS and RS techniques facilitate the assessment of water quality by integrating spatial data on land use, land cover, topography, and hydrology with in-situ measurements and water quality parameters obtained from satellite sensors [5].

Reported that remote sensing imagery, such as multispectral and hyperspectral data, can detect changes in water quality indicators, including chlorophyll-a concentration, turbidity, dissolved oxygen, and nutrient levels [6].

Monitoring of Water Availability

Monitoring water availability is essential for water resource planning, drought management, and disaster response [7]. GIS and RS technologies offer cost-effective solutions for monitoring surface water bodies, groundwater levels, snow cover, and soil moisture content over large spatial extents and temporal scales. Satellite-based remote sensing platforms provide synoptic views of water bodies, allowing for the estimation of surface area, volume, and changes in water levels. Microwave remote sensing techniques, such as Synthetic Aperture Radar (SAR), can penetrate cloud cover and vegetation to monitor soil moisture and groundwater dynamics [8, 9].

Challenges and Future Directions

Reported that despite their numerous benefits, GIS and RS techniques face several challenges in the evaluation of water resources [10]. These include data availability and quality issues, technical limitations, and the need for capacity building and interdisciplinary collaboration. Future research directions include the integration of advanced modeling techniques, such as machine learning and artificial intelligence, the development of standardized protocols for data collection and analysis, and the enhancement of spatial resolution and temporal frequency of remote sensing data.

Conclusion

GIS and Remote Sensing have significantly advanced the field of water resources evaluation by providing comprehensive tools for monitoring, analysis, and management. Despite challenges, their integration with emerging technologies promises a future of sustainable water management. This review highlights the necessity of continuous innovation and collaboration among stakeholders to address global water challenges. GIS and RS technologies play a vital role in evaluating water resources by providing valuable tools for hydrological modeling, water quality assessment, and monitoring of water availability. However, addressing existing challenges and embracing emerging technologies are essential to enhance the effectiveness and applicability of GIS and RS in water resource management. Furthermore, GIS and remote sensing have emerged as indispensable tools for water resources evaluation, offering unprecedented capabilities for data analysis, monitoring, and decision-making. By leveraging these technologies, stakeholders can better understand hydrological processes, mitigate water-related risks, and promote sustainable water management practices. Continued research and innovation are essential to overcome existing challenges and unlock the full potential of GIS and remote sensing in water resources assessment.

References

- 1. Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., & Allen, R. (2017). The future of evapotranspiration: Global requirements for ecosystem functioning, carbon, and climate feedback. Water Resources Research, 53(4), 2618-2626.
- 2. Dwarakish, G. S., Ganasri, B. P. (2015). Impact of land use change on hydrological systems: A review of current modelling approaches. Cogent Geoscience, 1(1), Article 1115691.
- 3. Viljoen, S. J. (2007). Creation of a hydrological modelling environment to assist in the decision-making of water-related activities. Central University of Technology, Free State, Faculty of Engineering and Information Technology. Retrieved from https://hdl.handle.net/11462/96
- 4. Vasistha, P., Ganguly, R. (2020). Water quality assessment of natural lakes and its importance: An overview. Materials Today: Proceedings, 32(4), 544-552.
- 5. Hall, J., Hossain, A. K. M. A. (2020). Mapping urbanization and evaluating its possible impacts on stream water quality in Tennessee, using GIS and remote sensing. Sustainability, 12(5), 1980.
- 6. Gholizadeh, M. H., Melesse, A. M., Reddi, L. (2016). A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors, 16(8), 1298.
- 7. Vargas, J., Paneque, P. (2019). Challenges for the integration of water resource and drought-risk management in Spain. Sustainability, 11(2), 308.
- 8. Wagner, W., Blöschl, G., Pampaloni, P., Calvet, J. C. (2007). Operational readiness of microwave remote sensing of soil moisture for hydrologic applications. Hydrology Research Journal, 38(1), 1-20.
- 9. Wilson, J. P., Mitasova, H., Wright, D. (2000). Water resource applications of geographic information systems. Journal of the Urban and Regional Information Systems Association, 12(2), 61-73.
- Evsahibloglu, A. N. (2015). Integration of remote sensing technology to geographic information system for sustainable planning of water resources. Proceedings of the Fourth International Conference on Agro-Geoinformatics, 25-87.

Copyright: ©2024 Baker, A. T., et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.