“Q

£ SCIENCE SET

L — S S—
OPEN ACCESS PUBLISHERS

Review Article

/ World Journal of Artificial Intelligence and Robotics Research

Analysis of Open Source Security Threats
Vernes Vincevi¢
University of Vitez VITEZ, Faculty of Information Technologies, Skolska 23, 72270 Travnik, Bosnia and Herzegovina

*Corresponding author: Vernes Vincevi¢, University of Vitez VITEZ, Faculty of Information Technologies, Skolska 23, 72270 Travnik,
Bosnia and Herzegovina.

Submitted: 26 December 2025 Accepted: 02 January 2026 Published: 05 January 2026

Citation: Vicnevi¢, V. (2026). Analysis of open-source security threats. Wor Jour of Arti inte and Rob Res, 3(1), 01-06.

[Abstract b
This paper analyzes security threats specific to open-source sofiware. Partic- ular attention is given to vulner-
abilities caused by the open nature of the code, lack of centralized control, and dependence on external librar-
ies. Case studies of known vulner- abilities and protection methodologies used in open-source communities
are presented. It will discuss the methods that open source communities apply to prevent security breaches,
and how automated tools contribute to the early detection of problems. The aim of the paper is to provide a
clear overview of the threats and present best practices that can increase the security of open source software
projects. The research methods applied include literature analysis, case studies, and comparative analysis of

security practices.

J

Keywords: Analysis, Threats, Open Source Code, Protection, Security, Software, Security Incidents, Vulnerabilities.

Introduction

In the last few years, open source software has become the foun-
dation of many technological solutions around the world. Due
to its availability, flexibility and joint development, this kind
of software has enabled rapid progress in numerous fields, in-
cluding web development, cloud computing and artificial intel-
ligence. However, the open nature of the code has also opened
up new security challenges, because anyone has the possibility
of accessing the source code - including potentially malicious
users.

The security of open source software has become a particularly
important topic due to the increasing number of threats and inci-
dents that originate precisely from inadequate control of changes
in the code and the lack of standardized security checks. The
motivation for processing this topic stems from the need for a
better understanding of the specific risks that open source car-
ries, as well as the need to analyze the approaches used to reduce
such risks. The issue of security has become crucial not only for
developers and system administrators, but also for organizations
that rely on open-source solutions.

The paper will analyze the main security threats that occur in
open source software, including malicious contributions, vulner-
abilities in external libraries, and the lack of systematic control.

Page No: 01 /

www.mkscienceset.com

The paper will analyze security threats in open source software,
including their sources, characteristics, and typical consequenc-
es. Then, specific cases of security incidents (e.g. Log4Shell and
Heartbleed) will be presented, as well as the protection methods
that have been implemented in communities after these events.
At the end of the paper there is a conclusion summarizing the
most important findings and recommendations.

Overview of Important Security Threats in Open Source
Software

Open source software provides users with access to the source
code, with the freedom to modify and distribute it. While this
approach encourages innovation and transparency, it also opens
up opportunities for security vulnerabilities, especially in cases
where projects do not have a solid quality control and security
structure. Security threats in the open-source environment are
becoming increasingly significant, given that such software in-
creasingly forms the foundation of modern digital services [1].
According to definitions in the literature [2], information system
security includes the protection of data, software components,
and user access. Below we present some of the more important
security threats.

Malicious Commits
In large open source communities, where contributions come

Wor Jour of Arti inte and Rob Res 2026

from different sources, it is possible for an attacker to make ma-
licious changes that appear to be harmless functionality. One of
the most famous cases of compromise occurred in 2018 within
the Node.js event-stream library, when an attacker managed to
inject malicious code with the aim of stealing crypto wallet user
data [3]. Such attacks are often called “supply chain attacks”, be-
cause they target the dependency chain through which malicious
content is transmitted to legitimate applications.

Vulnerabilities in Third-Party Dependencies

According to research conducted by Snyk (2021), more than
80% of security vulnerabilities in open-source software come
from third-party dependencies, rather than from the direct code
of the project itself [4]. These vulnerabilities often go undetected
because developers do not check transitive dependencies — li-
braries that other libraries use.

It is for this reason that an increasing number of projects use au-
tomated tools such as Dependabot, Snyk and OSS-Fuzz, which
analyze the dependency chain and warn of known vulnerabili-
ties.

Abandoned and Poorly Maintained Projects

According to the analysis, the 2022 attack known as the “Col-
ors/Faker incident” shows how risky unmaintained projects can
be. When the author of the popular faker.js library deliberately
released a non-functional version as a form of protest, thousands
of applications around the world were left non-functional [5].

Without constant control and an active community, open-source
projects become vulnerable to unwanted changes, as well as
gradual “code rot”.

Inadequate Authentication and Authorization

Many software projects, especially smaller and individual ones,
do not implement advanced access control mechanisms. Some
solutions even contain hard-coded passwords or inadequate
encryption of user data [6]. Advanced frameworks such as
OAuth2, JWT, and OpenID Connect enable robust identification
systems, but their integration requires knowledge and resources
that many volunteer projects do not have.

Lack of Formal Security Policies

One of the often overlooked aspects of security in open-source
projects is the lack of clearly defined security policies. Security
policies are a set of rules and procedures that define how vul-
nerabilities are handled, who is responsible for addressing them,
and what tools are used to monitor security.

Without formal policies, accountability remains unclear, which
can lead to delays in responding to threats, lack of coordination
within the team, and increased risk of exploitation. The presence
of files such as SECURITY.md in repositories helps define these
procedures and provides users and contributors with a clear view
of the project’s security model.

By introducing basic rules for responsible vulnerability disclo-

Page No: 02 /

www.mKkscienceset.com

sure, as well as procedures for reporting and responding to inci-
dents, a project’s resilience to attacks is significantly increased.

Threats Through Ci/Cd Flows

Modern open-source projects often use CI/CD (Continuous In-
tegration/Continuous Deployment) workflows to automate test-
ing, building, and distributing software. These workflows often
have access to sensitive resources-such as API keys, secret to-
kens, and permissions to publish packages.

Attackers can compromise ‘.yml‘ configurations, add malicious
scripts, or misuse access tokens that are not properly secured.
As GitHub’s research on CI workflow attacks shows [7], attacks
on automated workflows are becoming an increasingly common
exploitation vector.

Recommended security measures include:

» Limiting CI tool privileges (principle of least privilege),

* Using secrets from security vault systems (e.g. HashiCorp
Vault),

* Reviewing all automated scripts and external actions (e.g.
GitHub Actions),

* Audit logs of CI job executions.

Social Engineering in Open-Source Communities

Social engineering attacks involve manipulating community
members to gain trust and the right to modify code. Open-source
communities are particularly vulnerable because they are based
on mutual trust and voluntary contributions.

An example is a case where attackers worked imperceptibly to
build reputation by contributing for months, only to then insert
a vulnerability into a critical project functionality [8]. From a
social engineering and communication standpoint (relevant to
your earlier work on drustveni inzenjering), open-source attacks
demonstrate how social capital, norms, and human psychology
can be weaponized in digital communities, often more effective-
ly than technical exploits.

Typosquatting Attacks

Typosquatting is a type of attack in which an attacker creates a
malicious software package with a name that is very similar to
the name of a legitimate package, relying on user typing errors.
This technique is particularly effective in open-source ecosys-
tems such as npm, PyPI, and RubyGems, where packages are
readily available and often installed automatically.

For example, an attacker could create a package called reqeusts
instead of requests (a popular Python library), and a user who
mistypes the name installs the compromised software. Such
packages can contain malware that steals data, sends information
to the attacker, or compromises the development environment.

According to a 2021 report by ReversingLabs, more than 3,600
suspicious packages were discovered in the npm repository as
part of a survey [9].

Wor Jour of Arti inte and Rob Res 2026

SCORE COMPONENTS

Repo Activity
Raniks acthvity level of repo based on acthve contributors, open ssues,
sa0rs, aned ceher factors.

L

Typosquatting

ingicates liebheod of package huning & timdar name 10 0 eputable
one, and passibly being malicicus
—_— 50

How do we calculate this score?

We use statistical analysis 1o rate packages from 0-10. Highee ratings
typically MUBCAE Sater BACKIGES.

[TerT.

Provenance

indicates whather this package has b strang ink back 1o its source
repo, providing prood of ornigin.
. - 50

Figure 1: Example of a typosquatting package detection tool — Trusty Score shows the suspicious Python package requests5 with
a very low trust level [10].

Figure 1 shows an example of evaluating the requests5 package
using the Trusty Score system. The tool uses statistical analyses
such as Levenshtein distance and repository activity comparison
to estimate the likelihood that the package is the result of a ty-
posquatting attack. Such tools are crucial for preventing devel-
opment environments from being compromised [11].

Analysis of Practical and Security Methods

Work Methodology

This part of the paper analyzes and presents specific security
incidents in open source software and the measures that com-
munities use to mitigate similar risks. Through examples of the
Log4Shell and Heartbleed vulnerabilities, it points out the real
consequences of security breaches, as well as tools and practices
developed to improve protection. Specific examples of known
vulnerabilities and protection methodologies used in open
source communities are presented. In the preparation of this pa-
per, the methods of analysis of professional literature reviews,
compilations, case studies and comparative analysis of existing
security approaches were used. Through all these methods, we
will demonstrate the importance of research and provide new
insights to future researchers through this paper.

Log4shell Vulnerability
At the end of 2021, a critical vulnerability was discovered in

the Java library Log4j, known as Log4Shell (CVE-2021-44228).
This library is used for logging messages within applications,
and the vulnerability allowed an attacker to execute arbitrary
code on a remote server without authentication [10]. The inci-
dent shook the global IT community, as many applications used
Log4j as a dependency, often unknowingly. One of the most
dangerous vulnerabilities in the history of software security.
An example of an attack could be sending a malicious payload
through a web form, or API request, inserting exploits into chat
messages, usernames or [oT messages, which results in the theft
of data and credentials.

Heartbleed Bug

Heartbleed is a vulnerability discovered in 2014 in the OpenS-
SL library, which implements the TLS and SSL cryptographic
protocols. Due to a flaw in the “heartbeat” mechanism, it was
possible for an attacker to read up to 64KB of server memory,
which could reveal sensitive data such as passwords and private
keys [12]. The vulnerability demonstrated the importance of reg-
ular auditing and security testing of core software components.
A visualization of how the Heartbleed attack works is shown in
Figure 2, where it is seen that the server returns more data from
memory than was legitimately requested.

TLS CHANNEL HEARTBEAT COMMUNICATION

MESSAGE SIZE
HELLO 5
SIZE RESPONSE SERVER MEMORY
5 HELLO HELLO
SecR3tP
sswRDz!
1337

Figure 2: Visualization of the Heartbleed vulnerability — the attacker receives more memory than he requested [12].

The following figure illustrates, analyzes and provides a detailed
technical overview of the Heartbleed vulnerability exploitation

Page No: 03 /

www.mkscienceset.com

in Figure 3, where it is seen how the attacker abuses the payload
length to gain access to additional memory.

Wor Jour of Arti inte and Rob Res 2026

Heartbeat sent to victim
SSLv3 record:

Length

4 bytes

HeartbeatMessage:

Type
TLS1_HB_REQUEST

Length
65535 bytes

| Payload data

Victim’s response
SSLv3 record:

Length

65538 bytes

HeartbeatMessage:

Type
TLS1_HB_RESPONSE

Length
65535 bytes

| Payload data

Figure 3: Technical illustration of exploiting Heartbleed vulnerability - difference between actual and reported data length [13].

We conclude from the image that the attacker is manipulating
the payload length field in the TLS Heartbeat request, specifying
a larger value than the data actually sent. Due to the lack of prop-
er bounds checking in the OpenSSL implementation, the server
returns not only the expected payload, but also additional memo-
ry chunks from its address space in the response. In this way, the
attacker can passively and repeatedly read sensitive data from
the server's memory, including private keys, session cookies,
and user data, without leaving any visible traces of the attack.

Security Errors in the Configuration

In addition to known vulnerabilities in the code, a large number
of security incidents in the open-source environment are caused
by incorrect or carelessly adjusted configurations. Such errors
are not technical “bugs” in the software, but the result of human
carelessness, lack of knowledge of the tools or poor documenta-
tion, methodology, etc.

For example, users often leave:

* default passwords (admin/admin),

* cenabled test interfaces (e.g. API sandbox open to the pub-
lic),

* unlimited access to admin panels without authentication,

* excessive privileges to users or services.

Such errors allow an attacker to effortlessly compromise the sys-

tem, even when the software itself is technically correctly imple-

mented. This is why the importance of security “hardening” and

the use of tools for automatic configuration verification, such as

OpenSCAP, Lynis and Kube-bench, is emphasized.

Software Tools and Protection

Early detection of security threats in open source projects is
based on a combination of specialized software tools and pre-
ventive protection methods. Static and dynamic code analysis,
tools for automatic detection of vulnerabilities and errors, as
well as dependency scanning to identify known vulnerabilities
in used libraries play a key role. In addition, the implementation
of continuous integration (CI/CD) with built-in security checks,
community code reviews, and the use of digital signatures and
verification of contributions enable the timely recognition of
potentially malicious or insecure code. This multi-layered ap-
proach significantly reduces the risk of exploiting vulnerabilities
and strengthens confidence in the security of open source soft-
ware.

Page No: 04 /

www.mKkscienceset.com

Open source communities have developed a number of mecha-

nisms for early detection and prevention of security threats:

* Dependabot — a tool that automatically scans and updates
dependencies in GitHub repositories.

* Snyk and SonarQube — analyze security vulnerabilities in
code and dependencies.

e SECURITY.md files — define rules for reporting vulnerabil-
ities and security responsible persons.

* Formal code reviews — mandatory in large projects such as
the Linux kernel or Kubernetes.

Vulnerability Management Models

Vulnerability management models are a systematic framework
for identifying, analyzing, prioritizing, and remediating securi-
ty vulnerabilities in information systems. These models include
continuous vulnerability discovery through scanning and audit-
ing, risk assessment based on the likelihood of exploitation and
potential impact, and prioritization using standardized metrics
such as CVSS.

In addition to tools that enable automatic detection and reme-
diation of vulnerabilities, organizations are increasingly imple-
menting formal Vulnerability Management Lifecycle models.
These models involve a continuous cycle of assessment, identi-
fication, classification, prioritization, and resolution of security
weaknesses.

The most common stages of vulnerability management are:

* Discovery — scanning the system for known vulnerabilities
(e.g., using Nessus or OpenVAS),

* Assessment — analyzing the severity of the vulnerability
based on frameworks such as CVSS (Common Vulnerabili-
ty Scoring System) [14],

* Prioritization — classifying according to risk, exploitability,
and business impact,

* Remediation — updating software, changing configurations,
removing or replacing vulnerable components,

* Verification — re-scanning and confirming that vulnerabili-
ties have been successfully remediated.

This systems approach helps organizations be proactive in com-
bating security threats, rather than reacting only after an inci-
dent. In open-source communities, this model is often imple-
mented through CI/CD flows, where tools like Trivy and Grypa

Wor Jour of Arti inte and Rob Res 2026

automatically scan container images and libraries. Good prac-
tices have shown that by integrating vulnerability management
into organizational processes and security strategy, these models
enable the reduction of overall security risk and the strengthen-
ing of the resilience of information systems.

The Role of the Community and Institutional Support
Institutional support-provided by organizations, foundations,
and regulatory bodies-complements community efforts by of-
fering structured governance, financial resources, legal frame-
works, and formal security processes. This includes funding for
maintenance, security audits, long-term support, and the estab-
lishment of standards and best practices. Together, community
collaboration and institutional backing create a balanced ecosys-
tem that enhances trust, improves response to security incidents,
and ensures the long-term reliability and security of digital in-
frastructures.

Open-source projects depend heavily on a community of us-

ers and contributors. Security incidents such as Log4Shell

and Heartbleed have shown that an informal structure can be

an advantage due to rapid response, but also a weakness due

to inconsistent security practices. To ensure long-term security,

larger organizations and institutions have also become involved.

For example, the OpenSSF (Open Source Security Foundation)

was formed with the support of Google, Microsoft, and the Li-

nux Foundation with the aim of improving the security of open-

source software through [15]:

» funding the maintenance of critical projects,

* developing tools for vulnerability analysis,

* educating contributors about security standards,

* developing guidelines for responsible vulnerability disclo-
sure.

The importance of institutional support is also reflected in in-
creased security budgeting. Governments of some countries,
including the USA and Germany, have launched initiatives to
evaluate and support the security of open-source packages used
in infrastructure.

Discussion and Recommendations for Further Research

The results of the research and analysis confirm that the security
of open-source software does not depend solely on the quality of
the source code, but on the broader socio-technical ecosystem
in which the software is developed, maintained and used. The
analyzed cases of Log4Shell and Heartbleed clearly indicate that
even projects with a large number of users, a long development
history and a strong reputation can contain critical vulnerabili-
ties that remain undiscovered for years.

Of particular note is the fact that both vulnerabilities are the re-
sult of insufficiently rigorous validation of input data and as-
sumptions about benign user and environment behavior. This
points to a structural problem in open-source development,
where functionality and performance are often prioritized over
security aspects, especially in the early stages of development.

The discussion also shows that technical measures, such as tools
for static and dynamic code analysis, although necessary, are not
sufficient on their own. The lack of formalized procedures for
vulnerability management, weak integration of security into CI/

Page No: 05 /

www.mKkscienceset.com

CD flows and limited resources for long-term maintenance rep-
resent significant risk factors. In this context, institutional initia-
tives such as OpenSSF play a key role in standardizing security
practices and providing support to the community.

Based on the analysis, it can be concluded that open source se-
curity requires a holistic approach, which connects technical,
organizational and human factors, and that trust in open-source
solutions is built not only by the transparency of the code, but
also by the maturity of the processes behind it.

Through research, the analysis has shown that security in open-
source software depends not only on the technology, but also
on the social structure of the community, the tools used and the
level of threat awareness. As such software is increasingly used
for commercial and government purposes, the need for better
security practices, automation of protection and education of
contributors is growing. According to Jovanovi¢ [16], the most
effective protection measures require a combination of technical
solutions and user education.

Directions for Further Research

Based on the conducted research, it is possible to identify sever-

al directions for future scientific and professional research:

* Empirical analysis of the effectiveness of security tools fur-
ther research can be focused on quantitatively assessing the
success of tools for static analysis, dependency scanning
and automated monitoring in real open-source projects.

* The role of governance and funding in the security of open-
source projects of particular research interest is the rela-
tionship between institutional support, stable funding and
reducing the number of critical vulnerabilities in key open-
source libraries.

* Human factors and social engineering in the open-source
ecosystem

Additional research is needed on how trust, reputation and com-

munication within the community can be abused, but also how

they can be used to strengthen security.

In general, further research should aim to deepen the under-
standing of open-source security as a shared responsibility,
where technical solutions must be supported by organizational
structures, institutional mechanisms, and continuous education
of all participants.

Conclusion

The paper analyzes the most significant security threats in open
source software, as well as specific incidents that have had a glob-
al impact on information security. It is shown that open source,
while bringing numerous advantages in terms of transparency,
collaboration and innovation, also entails complex security chal-
lenges that require a systematic and long-term approach. Threats
such as malicious contributions, vulnerabilities in dependencies,
unmaintained projects, weak authentication mechanisms and at-
tacks on CI/CD flows confirm that security is not guaranteed by
the openness of the code itself, but by the quality of the process-
es that accompany its development and maintenance.

Through the analysis of cases such as Log4Shell and Heartbleed,
it is clearly shown how serious the consequences can be when
basic security principles are ignored, including access control,

Wor Jour of Arti inte and Rob Res 2026

input validation, dependency auditing and proper system con-
figuration. These incidents point to the high degree of interde-

incident. Retrieved from https://github.com/dominictarr/
event-stream/issues/116

pendence of modern software systems and the fact that failures 4. Snyk Ltd. (2021). The state of opensource security. Re-
in one widely used component can have a chain effect on a large trieved from https://snyk.io/opensourcesecurity-2021
number of organizations and users around the world. 5. ZDNet. (2022). Opensource sabotage: What happened to
faker.js and colors.js? Retrieved from https://www.zdnet.
The paper also points to the growing importance of security au- com/article/open-source-sabotage-what-happened-to-faker-
tomation tools, such as Dependabot and Snyk, as well as the js-and-colors-js/
application of formal vulnerability management models thaten- 6. OWASP Foundation. (2023). Authentication cheat sheet.
able earlier detection and more efficient remediation of security Retrieved from https://cheatsheetseries.owasp.org/cheat-
weaknesses. The role of institutional support through initiatives sheets/Authentication_Cheat Sheet.html
such as OpenSSF is particularly emphasized, which contribute 7. Pellegrino, G. (2022). CI/CD attacks in the wild. Retrieved
to strengthening security culture, standardizing practices and December 9, 2025, from https://securitylab.github.com/re-
providing resources for maintaining critical open-source proj- search/github-actions-preauth-rce/
ects. 8. Perlroth, N. (2021). This is how they tell me the world ends:
The cyberweapons arms race. Bloomsbury Publishing.
Despite progress in technical and organizational security mea- 9. Reversinglabs. (2021). Typosquatting malware infects
sures, the paper also identifies open issues, especially in the npm ecosystem. Retrieved October 12, 2025, from https://
areas of contributor education, social engineering prevention www.reversinglabs.com/blog/typosquatting-malware-in-
and long-term sustainability of projects without stable institu- fects-npm-ecosystem
tional or financial support. These challenges indicate the need 10. Stacklok. (2023). Detecting typosquatting attacks on open-
for further development of security frameworks that are adapted source packages. Retrieved November 30, 2025, from
to small and medium-sized open-source projects, as well as the https://stacklok.com/blog/detecting-typosquatting-at-
development of advanced tools for early detection of threats in tacks-on-open-source-packages-using-levenshtein-distance
distributed software development environments. Ultimately, it 11. Frontera Marketing. (2014). The ultimate Heartbleed guide
can be concluded that the security of open source software is a for non-techies. Retrieved from https://fronterahouse.com/
collective responsibility of all actors involved in its life cycle — blog/ultimate-heartbleed-guide-for-non-techies/
developers, communities, organizations, users and institutions. 12. Williams, C. (2014). Anatomy of OpenSSL’s Heartbleed:
Only through a combination of technical solutions, formalized Just four bytes trigger horror bug. Retrieved December 1,
processes, continuous education, and institutional support is it 2025, from https://www.theregister.com/2014/04/09/heart-
possible to build long-term trust in open-source solutions and bleed explained/
ensure their secure implementation in modern information sys- 13. National Institute of Standards and Technology. (2023).
tems and software solutions. CVSS scoring explained. Retrieved December 3, 2025,
from https://nvd.nist.gov/vuln-metrics/cvss
References 14. Pavli¢, M. (2011). Information systems. Zagreb: School
1. Riley, P. (2020). The opensource risk: Managing vulnerabil- Book.
ities in open software projects. Journal of Software Security, 15. Sekaran, U. (2016). Research methods for business. New
8, 22-34. York, NY: John.
2. Maseti¢, S. (2019). Information systems security. Faculty of 16. Jovanovi¢, R. M. (2020). Information security. Faculty of
Electrical Engineering, University of Sarajevo. Electrical Engineering, University of Belgrade.
3. GitHub Security Lab. (2018). Analysis of the event-stream
Copyright: ©2026 Vernes Vincevic. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Page No: 06 /

www.mKkscienceset.com

Wor Jour of Arti inte and Rob Res 2026

