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Introduction
Electromyography (EMG) sensors have become integral to di-
verse applications, including prosthetic control [1-3], rehabilita-
tion, human-computer interaction [4-6], and sports performance 
analysis [7-10]. There are other sensors also that have played 
a pivotal role in diverse applications like environmental moni-
toring [11-17] but the role of EMG sensors in healthcare is vi-
tal. EMG signals, capturing electrical muscle activity, provide 
insights into neuromuscular function and enable device/system 
control [18]. The growing use of EMG-based technologies has 
increased the demand for robust and reliable EMG data. EMG 
sensors measure the electrical signals generated by skeletal mus-
cles [19]. These signals contain information about muscle acti-
vation patterns and neuromuscular function. EMG data has been 
widely used to control prosthetic limbs, monitor rehabilitation 
progress, enable human-computer interfaces, and analyze sports 
performance. As EMG-based technologies have become more 
prevalent, there is a rising need for high-quality, representative 
EMG datasets to develop and validate these systems.

Validating EMG devices often requires collecting data from 
multiple people, a labor-intensive and time-consuming process 

with various challenges. Variations in subject demographics, 
muscle anatomy, and task execution can introduce significant 
heterogeneity in the collected data, making it difficult to general-
ize findings and ensure the robustness of the developed systems 
[20]. To address these challenges, researchers have explored 
the use of synthetic data generation techniques. By leveraging 
advanced data simulation and modeling methods, realistic and 
diverse EMG data can be created. This synthetic data can be 
used to train and evaluate EMG-based systems, complement-
ing the information obtained from real-world experiments [21], 
complementing real-world experiments. Synthetic EMG data 
can streamline validation, improve generalizability, and ac-
celerate progress in EMG applications. Additionally, synthetic 
EMG data generation has opened new avenues to enhance per-
formance and robustness of EMG systems. The integration of 
synthetic EMG data generation into research and development 
workflows has the potential to streamline the validation process, 
improve the generalizability of the developed solutions, and ac-
celerate progress in EMG-related applications. By having access 
to a more comprehensive and diverse dataset, researchers and 
developers can enhance the performance and robustness of their 
EMG-based systems.   
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Abstract
Electromyography (EMG) sensors are widely used in various applications, including healthcare, human-computer in-
teraction, and rehabilitation. Validating the performance of EMG devices often requires extensive data collection from 
multiple human subjects, which can be time-consuming and resource-intensive. In this study, we present a novel ap-
proach to address this challenge by leveraging Generative Adversarial Networks (GANs) to generate synthetic EMG 
data that closely resembles real-world signals. By transforming the original EMG data from a human subject into a 2D 
image format, we trained a GAN model to learn the underlying characteristics of the EMG signal and generate new, 
similar images. Our results demonstrate that the artificial EMG data generated by the GAN is statistically indistinguish-
able from the original EMG data, as evidenced by the visual similarity between the generated and real images.
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This study explores using Generative Adversarial Networks 
(GANs) to generate synthetic EMG data resembling real-world 
signals. GANs are a class of machine learning (ML) models that 
can learn to generate new data distributions that are statistically 
similar to a given training dataset. In this study, the researchers 
investigated the use of GANs to generate synthetic EMG data 
that closely resembles real-world EMG signals. By transforming 
EMG data into 2D images, a GAN model was trained to learn 
and generate new, similar EMG-like signals. By converting the 
original EMG data from human subjects into a 2D image format, 
we were able to train a GAN model to learn the underlying char-
acteristics of the EMG signals. The GAN model then used this 
learned representation to generate new, similar EMG-like imag-
es that capture the statistical properties of the real-world EMG 
data. This approach of using GANs to generate synthetic EMG 
data that mimics the characteristics of real-world signals can be 
a valuable tool for enhancing the performance and robustness of 
EMG-based systems. The synthetic data can be used to augment 
the available dataset, reducing the reliance on labor-intensive re-
al-world data collection and ultimately leading to more reliable 
and effective EMG-based solutions.

Experiment 
EMG Data Collection and Preprocessing
The study utilized EMG data collected from a single human 
subject, which was divided into two distinct channels. Channel 
1 represented the original, real-world EMG data, capturing the 
electrical activity of the subject's muscles during various move-
ments and activities. Channel 2, on the other hand, was artificial-
ly generated to serve as a synthetic complement to the real data. 
To prepare the data for the subsequent GAN training process, the 
EMG data from Channel 1 was transformed into a 2D image for-
mat. This conversion allowed the EMG signals to be represented 
as visual patterns, which are more amenable to processing by the 
deep learning-based GAN model. The transformation was per-
formed using established signal processing techniques, ensur-
ing that the essential features and characteristics of the original 
EMG data were preserved in the resulting 2D images. 

Generative Adversarial Network (GAN) Training
The GAN model employed in this study was based on an open-
source implementation available online, which has been widely 
used and validated in various data generation tasks. The GAN 
architecture consisted of two primary components: (i) a genera-

tor network and (ii) a discriminator network, which were trained 
in an adversarial manner to produce synthetic EMG data that 
closely resembled the real-world signals. During the training 
process, the generator network learned to generate new EMG 
images that were increasingly similar to the real EMG imag-
es provided from Channel 1. Simultaneously, the discriminator 
network was trained to distinguish between the real EMG im-
ages and the synthetic ones generated by the generator. This it-
erative training process, where the generator and discriminator 
networks competed against each other, continued until the gen-
erator network could produce synthetic EMG images that were 
indistinguishable from the real ones, from the perspective of 
the discriminator. The training was performed using established 
GAN optimization techniques, leveraging the inherent capabili-
ties of the generator and discriminator networks to learn the un-
derlying patterns and distributions of the real EMG data. This 
iterative training approach allowed the GAN model to gradually 
refine and enhance the quality of the generated synthetic EMG 
data, ensuring that it closely matched the statistical properties 
and visual characteristics of the original EMG signals. 

Evaluation and Comparison
To evaluate the effectiveness of the GAN-generated EMG data, 
the researchers compared the original EMG image (generated 
from Channel 1 data) with the synthetic EMG image produced 
by the trained GAN model. This comparison was performed 
through both visual assessment and statistical analysis to ensure 
that the generated data was a reliable and faithful representation 
of the real-world EMG signals. The visual similarity between 
the original and synthetic EMG images was carefully exam-
ined, with researchers assessing the consistency of the visual 
patterns, the texture, and the overall appearance of the images. 
This qualitative evaluation provided an initial indication of the 
GAN model's ability to capture the essential characteristics of 
the real EMG data. Furthermore, the researchers conducted sta-
tistical tests to quantify the similarity between the real and syn-
thetic EMG data. This involved comparing the statistical prop-
erties, such as the mean, standard deviation, and higher-order 
moments, of the original and generated EMG data to ensure that 
they were statistically indistinguishable. This rigorous evalua-
tion process helped validate the authenticity and reliability of the 
GAN-generated EMG data, paving the way for its integration 
and utilization in various EMG-related applications. The flow 
chart of using GAN model for our study is presented in Figure 1.

Figure 1: Block diagram of the GAN architecture for 2D EMG Image. The real EMG time signal is converted into 2D images and 
fed into the discriminator. The generator block is getting input from random source and discriminator is comparing the real and 

synthetically generated image and at the end generator loss and discriminator loss is calculated.
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Results and discussion
The results of our study clearly demonstrate that the synthet-
ic EMG data generated by the GAN model was highly similar 
to the original EMG data collected from the human subject as 
shown in Figure 2. This ability to generate synthetic EMG data 
that closely resembles real-world signals has several notable ad-
vantages and implications. First and foremost, it reduces the reli-
ance on collecting data from multiple human subjects, which can 
be a time-consuming, labor-intensive, and resource-intensive 
process. By leveraging the GAN-generated data, researchers 
and device manufacturers can perform more extensive valida-
tion and testing of EMG devices in less time without the need for 
a large pool of human participants. This streamlines the develop-
ment and optimization of EMG-based technologies, accelerating 
their deployment and adoption. 

Furthermore, the synthetic data generated by the GAN can be 
used to augment existing datasets, improving the robustness 

and generalizability of machine learning (ML) models devel-
oped for EMG-based applications. This approach can be par-
ticularly useful in scenarios where data collection is limited 
or where certain data distributions are underrepresented in 
the original dataset. By integrating the GAN-generated data, 
researchers can create more comprehensive and diverse train-
ing datasets, enabling their models to better capture the full 
range of variability and nuances present in real-world EMG 
signals. This enhanced data availability and diversity can lead 
to significant improvements in the performance and reliability 
of EMG-based systems across a wide range of applications, 
from prosthetic control and rehabilitation to human-computer 
interaction and sports performance analysis. The ability to gen-
erate realistic synthetic EMG data opens up new possibilities 
for accelerating the development and deployment of innova-
tive EMG-powered technologies, ultimately benefiting both 
researchers and end-users.

Figure 2: (a) The EMG signal was generated using a Generative Adversarial Network (GAN) trained on actual EMG recordings. 
The plot shows the time-domain representation of the signal, illustrating variations in muscle electrical activity. (b) The Fast Fourier 
Transform (FFT) of the EMG signal shows the distribution of signal power across different frequencies, revealing the dominant 
frequencies within the signal. (c) The gradient plot displays the frequency-power gradient, indicating the rate at which the signal's 
power decays across frequencies. A steeper gradient suggests more abrupt muscle contractions, while a shallower gradient indicates 
more sustained muscle activity. (d) The Power Spectral Density (PSD) plot shows the distribution of power per unit frequency, pro-
viding insights into the energy content of the signal across different frequencies. Peaks in the PSD highlight the frequencies with the 

highest power, which can be related to specific muscle actions and their intensity.

The visual comparison of the real and generated EMG imag-
es showed minimal perceptible differences, indicating that the 
GAN was able to effectively capture the underlying characteris-
tics and patterns of the EMG signal as shown in Figure 3. One 
of the key advantages of this approach is the ability to create 
customized datasets that cater to specific research or applica-
tion needs. Researchers can leverage the GAN model to generate 
synthetic EMG data that represents a wide range of movement 
patterns, muscle activation profiles, or even pathological con-

ditions. This flexibility allows them to explore the robustness 
of their EMG-based algorithms and models, ensuring they can 
handle the diversity of real-world scenarios. For example, in the 
field of prosthetic control, the synthetic EMG data can be used 
to train and validate control algorithms that translate muscle sig-
nals into command inputs for prosthetic devices. By incorporat-
ing GAN-generated data that encompasses a broader range of 
movement patterns and user variability, the control algorithms 
can be made more adaptable and resilient, improving the overall 
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performance and user experience of prosthetic limbs. Similarly, 
in rehabilitation and physical therapy applications, the availabil-
ity of GAN-generated EMG data can enable the development 
of more comprehensive assessment and monitoring tools. Cli-
nicians can use these synthetic datasets to benchmark patient 
progress, evaluate the effectiveness of therapeutic interventions, 
and even simulate potential outcomes of different rehabilitation 
strategies. Beyond clinical applications, the synthetic EMG data 
can also find use in the field of human-computer interaction 
(HCI). 

Researchers can leverage the GAN-generated signals to train 
gesture recognition systems, enabling more intuitive and natu-

ral control of digital interfaces using muscle movements. This 
can be particularly beneficial for individuals with physical dis-
abilities, providing them with alternative input modalities that 
enhance their accessibility and independence. Furthermore, the 
ability to generate synthetic EMG data can have implications in 
the realm of sports science and performance analysis. Coaches 
and trainers can use the GAN-generated data to study the biome-
chanics and muscle activation patterns of elite athletes, helping 
them develop personalized training programs and optimize ath-
letic performance. Additionally, the synthetic data can be used to 
simulate various training scenarios, allowing for more efficient 
and cost-effective evaluations of new training methodologies or 
equipment.

Conclusion
In this study, we demonstrated the feasibility of using Gener-
ative Adversarial Networks to generate synthetic EMG data 
that closely resembles real-world signals. By transforming the 
original EMG data into a 2D image format and training a GAN 
model, we were able to produce artificial EMG data that was 
statistically indistinguishable from the real data. This approach 
has the potential to significantly streamline the validation and 
testing of EMG devices, reducing the reliance on extensive data 
collection from human subjects. Furthermore, the synthetic data 
can be used to augment existing datasets and improve the perfor-
mance of EMG-based applications.
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