

AI + Mind Genomics in Healthcare Communication Regarding Children: Reconciling Efficiency with Empathy Through the Algebra of the Mind

Dipak Paul¹, David Stevens², George M. J³, Sharon Wingert⁴, Howard Moskowitz^{5*}

¹Mind Genomics Associates, NY USA

²Advanced Learning Strategies, New Hampshire, USA

³Independent Researcher, Leeds, United Kingdom

⁴Tactical Data Group, Virginia, USA

⁵Mind Genomics Associates, NY USA, & Tactical Data Group, Virginia, USA

***Corresponding author:** Howard Moskowitz, Mind Genomics Associates, NY, USA.

Submitted: 30 December 2025 **Accepted:** 05 January 2026 **Published:** 12 January 2026

Citation: Paul, D., Stevens, D., George, M. J., Wingert, S., & Moskowitz, H. (2026) AI + Mind Genomics in Healthcare Communication Regarding Children: Reconciling Efficiency with Empathy Through the Algebra of the Mind. *Sci Set J of Pediatrics*, 4(1), 01-10.

Abstract

This paper explores the critical distinction between statements appropriate for parents but unsuitable for children, situating the issue within the broader challenge of communication in healthcare and caregiving. Using the synergy of Artificial Intelligence (AI) and Mind Genomics, the study demonstrates how structured experimental design uncovers distinct parental mind-sets—Diagnostic Realists, Emotional Guardians, and Practical Planners—and aligns them with age-specific communication strategies for children aged 4, 6, 8, and 10. AI provides breadth by synthesizing factual knowledge, while Mind Genomics delivers depth by revealing hidden decision drivers, together compressing years of experiential learning into actionable insights. The framework equips newly minted healthcare professionals to reconcile systemic pressures—time scarcity, performance metrics, and survey demands—with empathetic, personalized care. By operationalizing empathy into measurable strategies, the “algebra of the mind” becomes a daily practice, enabling professionals to deliver both efficiency and intimacy in patient interactions.

Keywords: Mind-Set Framework, Pediatric Healthcare Communication, Artificial Intelligence (AI), Mind Genomics, Empathy in Clinical Practice, Parental Perspectives.

Introduction

The structural problem of today's medical world is defined by a paradox: the system demands efficiency, yet efficiency erodes the human element of care. Physicians and nurses spend too little time with patients, often reduced to brief encounters that prioritize documentation over dialogue. The individual patient becomes a set of data points, entered into electronic systems like EPIC, where the richness of personal history is flattened into codes and checkboxes. While these systems promise accuracy and accessibility, they inadvertently create superficial knowledge of the person, emphasizing what is measurable rather than what is meaningful.

The very act of recording information consumes the time that could have been spent listening, empathizing, and connecting.

This shift toward information management decreases the intimacy of medicine, replacing the trusted relationship with a transactional exchange. New medical professionals, especially nurses, are thrust into this environment and forced to learn more quickly, adapting to both clinical demands and technological systems. They must master not only procedures but also the art of navigating digital platforms under pressure. The challenge is that traditional training does not prepare them for this dual burden of care and coding.

Here, the backgrounder comprising AI+Mind Genomics becomes a powerful educational device, offering structured insights into communication and patient psychology in just a few hours. Because it is customizable to specific needs, it allows novices to accelerate their learning curve without years of trial

and error. It provides a scaffold for recognizing patient mind-sets and tailoring communication strategies efficiently. In doing so, it reconciles the demand for speed with the need for empathy. Ultimately, this approach restores some of the human element by systematizing it, ensuring that even in a data-driven world, the patient remains more than a record.

The Opportunity for an AI-Enabled Backgrounder Grounded in Mind Genomics

The language used by caregivers, teachers, and healthcare professionals when interacting with children is critically important. Words shape self-esteem, emotional regulation, and trust. At the same time, certain necessary observations—such as behavioral concerns, developmental delays, or family dynamics—may be inappropriate to share directly with children and instead belong in conversations with parents. In contemporary healthcare and educational settings, where child well-being is closely scrutinized and parental involvement is emphasized, understanding this distinction is essential [1].

The complexity lies in addressing a dual audience: children and parents. Children often interpret language literally and may lack the cognitive maturity needed to place information within a broader context. Parents, in contrast, require candid and sometimes difficult information in order to make informed decisions on behalf of their children. The central challenge is therefore to balance transparency with developmental sensitivity. When communication is not carefully calibrated, it can generate anxiety in children or undermine trust among parents [1].

Traditional demographic surveys have limited ability to capture how caregivers actually interpret sensitive health-related messages. Basic characteristics such as age, gender, or socioeconomic status do not fully explain why parents respond differently to the same information. In addition, standard questionnaires rarely reflect the small, moment-by-moment judgments caregivers make while reading or hearing health messages [2].

The Process of Developing the Backgrounder

It is at this point that the AI-enabled Mind Genomics Backgrounder becomes particularly relevant. Artificial intelligence contributes breadth by organizing and synthesizing factual knowledge related to child development, communication strategies, and parental expectations. Mind Genomics contributes depth by providing an experimental structure that reveals how individuals interpret and prioritize information in specific decision contexts. Together, these approaches create a hybrid backgrounder that is both comprehensive and actionable, linking scientific knowledge with empirically derived patterns of human decision-making [3].

Rather than encouraging passive reading, the Backgrounder is designed to engage readers—students, professionals, and novices alike—in experimental thinking. By presenting structured vignettes, estimated coefficients, and clearly defined mind-sets, the approach makes abstract concepts concrete and interpretable. This structure supports accelerated learning and facilitates immediate application in research, caregiving, and professional communication settings [4].

The AI + Mind Genomics Backgrounder can be developed in

just a few hours because the process is highly structured and modular. It begins with the user selecting a specific topic—such as communication with pediatric patients, managing chronic disease adherence, or caregiver stress. Once the topic is chosen, the framework requires the professional to define four key questions (silos) and four possible answers (elements) for each, creating a set of sixteen variables. These are then combined into short vignettes, which form the backbone of the experiment. Even though the data generated in this demonstration is synthetic, the act of constructing these silos and elements forces the professional to clarify their assumptions, identify what matters most in the topic, and articulate the language that might resonate with different audiences. In this way, the Backgrounder is not simply a document—it is a thinking exercise that disciplines the mind into experimental design.

As the Backgrounder takes shape, the professional begins to see how the elements interact and how they might be perceived differently by distinct mind-sets. The simulated regression coefficients and clusters, while not derived from real respondents, provide a mirror for reflection: which statements are diagnostic, which are emotional, which are practical? This process encourages the professional to imagine how different groups—patients, parents, or colleagues—might respond to the same statement in divergent ways. The act of assigning coefficients and naming mind-sets is not about producing “true” numbers but about sharpening the professional’s ability to anticipate variation in human response. In this way, the Backgrounder becomes a rapid prototyping tool for communication strategies, allowing the professional to test ideas conceptually before applying them in practice.

Once completed, the Backgrounder can be used as an educational device, particularly for newly minted healthcare professionals who must learn quickly under pressure. Because the entire process can be completed in a few hours, it is accessible and adaptable to immediate training needs. A nursing student, for example, could create a Backgrounder on “how to talk to anxious patients” and emerge with a structured set of insights, simulated results, and practical innovations. The synthetic nature of the data is not a weakness but a strength: it removes the burden of waiting for surveys or clinical trials and instead accelerates the professional’s ability to think experimentally. By engaging in this structured exercise, the learner develops a deeper appreciation for the complexity of communication, the diversity of patient mind-sets, and the necessity of tailoring strategies. In short, the AI + Mind Genomics Backgrounder is both a rapid educational scaffold and a catalyst for deeper professional reflection.

The Design of the Mind Genomics Experiment

Mind Genomics experiments are built on a factorial design: 4 Questions (Silos) \times 4 Answers (Elements) = 16 variables. These are combined into short vignettes, each containing 2–4 elements. Respondents rate each vignette, creating a dataset that disentangles the impact of each element [3–5].

Because elements are statistically independent, Ordinary Least Squares (OLS) regression can isolate the “driving power” of each statement. Clustering then reveals distinct Mind-Sets—groups of parents who interpret statements differently. This method uncovers hidden psychological structures invisible to

demographics. The metaphor of sequencing the mind through everyday judgments has been elaborated in prior work. While consumer applications such as milk preferences illustrate how weak signals can reveal distinct mind-sets [6-9].

Table 1 presents the study inputs, comprising questions, answers (elements), and the rationales for the answers. The standard Mind Genomics platform, BimiLeap.com, allows the user to

Table 1: Study Questions and Elements

Question	Answers (Elements)
Q1: What concerns should not be said to children but must be conveyed to parents? Rationale: Chosen to identify sensitive topics requiring parental mediation.	1. "Your child struggles with attention in class." (Direct but clinical) 2. "There are signs of delayed social development." (Neutral, diagnostic) 3. "Your child may need additional support services." (Action-oriented) 4. "We observe frequent emotional outbursts." (Behavioral, observable)
Q2: How should performance issues be communicated? Rationale: Performance feedback is often misinterpreted by children.	5. "Your child's reading level is below grade expectations." (Objective benchmark) 6. "Math comprehension requires targeted practice." (Specific skill) 7. "Homework completion is inconsistent." (Behavioral metric) 8. "Test anxiety affects performance." (Psychological framing)
Q3: What family-related observations should be shared only with parents? Rationale: Family context is inappropriate for children but vital for parents.	9. "Your child appears tired due to late bedtimes." (Behavioral observation) 10. "Nutritional habits may be impacting focus." (Health-related) 11. "Parental involvement in homework is limited." (Family dynamic) 12. "Stress at home may influence classroom behavior." (Contextual insight)
Q4: How should future recommendations be framed? Rationale: Recommendations must empower parents without alarming children.	13. "Consider professional evaluation for learning differences." (Formal recommendation) 14. "Enroll in extracurricular activities to build confidence." (Positive framing) 15. "Increase structured routines at home." (Practical advice) 16. "Collaborate with a counselor for emotional support." (Supportive framing)

Mind Genomics begins with a disciplined experimental design, one that defines 24 vignettes, each vignette composed of 2-4 elements. The rule is strict: at most one element from a given question appears in a vignette, and often no element from that question is present. This design ensures balance and independence, avoiding confounding effects that plague ordinary surveys. The traditional system guarantees that each of the 16 elements appears exactly five times across the 24 vignettes, and is absent 19 times. In this way, every element is tested in multiple contexts, yet never dominates the design. The respondent sees short, varied combinations, not long questionnaires, and the experiment achieves statistical rigor without burdening the participant [2].

The permutation scheme is the genius of the system. Each respondent evaluates a unique set of 24 vignettes, generated by the design algorithm. No two respondents see the same sequence, yet the underlying balance of appearances and absences is preserved. This means the professional does not have to spend weeks learning the system or training respondents; the design itself ensures that the data are robust from the start. The respondent is "up to speed" immediately, evaluating vignettes without realizing they are part of a carefully orchestrated experiment. This rapid engagement is what makes Mind Genomics practical in real-world settings where time is scarce and attention is limited.

The rating scale is simple but powerful. Respondents use a five-point anchored scale, ranging from "good" to "bad," or in more sophisticated applications, "5 = Definitely describes me"

present AI with a short description of a situation, to which the AI-powered system returns relevant questions and answers. The user with the Mind Genomics platform is 'in charge', with the authority to select elements and modify them where desired. In contrast, the questions and answers in Table 1 are selected in the background, without the user having any influence, other than when setting up the nature of the problem.

down to "1 = Definitely does not describe me." These ratings are then transformed into a binary dependent variable (BDV): ratings of 5 or 4 become 100, ratings of 3, 2, or 1 become 0. This binary transformation strips away ambiguity, creating a crisp signal of endorsement versus rejection. Ordinary Least Squares regression is then applied at the level of each respondent, producing a model that shows the driving power of each element for the BDV [6].

Finally, k-means clustering is used to divide respondents into non-overlapping groups based on the pattern of their 16 coefficients. These clusters are the mind-sets, the hidden psychological structures that govern decision-making. Ordinarily, mind-sets cancel each other out in the aggregate, leaving only noise. But with clustering, the differences emerge clearly, interpretable and actionable [7]. We see Diagnostic Realists, Emotional Guardians, Practical Planners—each with distinct response patterns. From these mind-sets we learn deeply, far beyond demographics or averages. The algebra of the mind transforms scattered opinions into structured insights, revealing the hidden order in human judgment. This is the power of Mind Genomics: to make the invisible visible, and to do so with speed, rigor, and clarity.

Table 2 shows the results from the simulation for the Total panel and for three mind-sets. In turn, Table 3 shows a deeper interpretation of the data, including how to recognize and interact with the mind-sets. Once again, these insights are generated by the AI + Mind Genomics Backgrounder, run immediately after the results are generated, and under the control of the AI.

Table 2: Regression Coefficients by Element and Mind-Set (Simulated, N=100)

Element	Total	MS1	MS2	MS3
A1 Your child struggles with attention in class.	18	22	12	15
A2 There are signs of delayed social development.	20	25	14	16
A3 Your child may need additional support services.	15	19	10	12
A4 We observe frequent emotional outbursts.	12	10	22	8
B1 Your child's reading level is below grade expectations.	21	26	14	18
B2 Math comprehension requires targeted practice.	17	20	12	15
B3 Homework completion is inconsistent.	14	12	18	16
B4 Test anxiety affects performance.	16	14	24	10
C1 Your child appears tired due to late bedtimes.	13	11	20	15
C2 Nutritional habits may be impacting focus.	19	15	23	17
C3 Parental involvement in homework is limited.	14	12	18	20
C4 Stress at home may influence classroom behavior.	15	13	22	14
D1 Consider professional evaluation for learning differences.	27	28	18	22
D2 Enroll in extracurricular activities to build confidence.	12	10	16	20
D3 Increase structured routines at home.	18	16	14	25
D4 Collaborate with a counselor for emotional support.	20	18	26	19

Table 3: Deeper insights and opportunities emerging from the simulated mind-sets**Mind-Set 1: Diagnostic Realists**

Definition: Diagnostic Realists are parents who value clarity, benchmarks, and measurable outcomes. They believe progress must be documented and compared against standards. Their worldview is shaped by professional or academic environments where evidence dominates decision-making. They are less swayed by emotional reassurance and more by structured, clinical language. They trust professionals who present facts without embellishment. They often request evaluations, scores, or comparisons to grade-level expectations. They interpret vague statements as weak and prefer precise, diagnostic phrasing. Their communication style is formal, outcome-focused, and data-driven.

Diagnostic Realists are defined by their hunger for clarity, benchmarks, and measurable outcomes. They want to know “where the child stands” and “how far behind or ahead they are.” They are quick to ask for test scores, evaluations, or grade-level comparisons. In practice, they can be identified when they dismiss anecdotal explanations and push for numbers. The professional adapts by presenting structured data, charts, or progress trackers, ensuring that communication is precise and evidence-based.

Innovation 1: Parent Insight Dashboard – A digital tool that provides benchmark comparisons for reading, math, and social development. This innovation succeeds because it translates abstract concerns into measurable data, satisfying the Realist’s need for clarity. Introduce it by saying: “Here’s a dashboard that shows exactly where your child stands compared to grade expectations.”

Innovation: Progress Graphs for Parents – Simple charts showing improvement over time, updated monthly. This works because Diagnostic Realists want visible evidence of growth. Introduce it by saying: “Let’s look at this graph together to see how your child’s progress is trending.”

Recognizing Diagnostic Realists. Diagnostic Realists can be recognized when they ask for numbers, scores, or benchmarks early in conversation. They often dismiss anecdotal or emotional explanations. They respond positively to charts, structured reports, and evaluations. They may request follow-up assessments or comparisons. Interact with them by emphasizing clarity, precision, and measurable outcomes.

Mind-Set 2: Emotional Guardians

Definition: Emotional Guardians prioritize the psychological and emotional well-being of their child above all else. They resonate with language that acknowledges feelings, stress, and emotional support systems. Their worldview is shaped by experiences where emotional safety was compromised or deeply valued. They interpret performance issues through the lens of emotional impact rather than raw ability. They trust professionals who validate feelings and show empathy. They often ask questions about stress, confidence, or anxiety rather than grades. They respond strongly to mentions of counselors, emotional support, or stress management. Their communication style is warm, protective, and feeling-centered.

Emotional Guardians are anchored in feelings, stress, and emotional well-being. They interpret performance issues through the lens of emotional impact, often asking "How does my child feel?" rather than "How is my child performing?" They can be identified by their use of words like stress, confidence, or anxiety, and by their interest in counselors or emotional support services. The professional adapts by validating feelings, offering emotional reassurance, and introducing tools like breathing exercises or peer support circles. Communication must be warm, empathetic, and protective.

Innovation1: Calm Parent Coaching-A service offering strategies for emotional communication with children. This succeeds because Emotional Guardians want tools to reduce stress and build resilience. Introduce it by saying: "We'll coach you on ways to help your child feel safe and confident."

Innovation 2: Emotional Support Toolkit-A package of breathing exercises, storybooks, and counselor access. This works because it provides tangible resources for emotional reassurance. Introduce it by saying: "Here's a toolkit to help your child manage stress and feel supported."

Recognizing Emotional Guardians: Emotional Guardians can be recognized when they ask "How does my child feel?" rather than "How is my child performing?" They use words like stress, confidence, or emotions. They respond positively to mentions of counselors or support services. They often share anecdotes about their child's moods. Interact with them by validating feelings and offering emotional reassurance.

Mind-Set 3: Practical Planners

Definition: Practical Planners focus on actionable steps and routines that can be implemented at home. They value advice that is concrete, manageable, and tied to daily life. Their worldview is shaped by a desire for stability and predictability. They resonate with recommendations like structured schedules, extracurricular activities, and parental involvement. They are less concerned with diagnostic labels and more with practical solutions. They trust professionals who provide clear, step-by-step guidance. They often ask "What can we do at home?" rather than "What does the test say?" Their communication style is pragmatic, solution-oriented, and focused on routines.

Practical Planners are pragmatic, solution-oriented, and focused on routines. They want actionable steps that can be implemented at home, asking "What can we do right now?" They can be identified by their emphasis on schedules, routines, and structured activities. They respond positively to planners, apps, and step-by-step guides. The professional adapts by offering concrete, manageable recommendations that fit into daily life, ensuring that advice is practical and immediately usable.

Innovation 1: Routine Builder App – A mobile app that helps families create structured routines for homework, meals, and bedtime. This succeeds because Practical Planners want immediate, actionable solutions. Introduce it by saying: "This app will help you build routines that make daily life smoother."

Innovation: Extracurricular Confidence Program - A service that connects children to clubs or sports to build confidence. This works because Practical Planners value structured activities that reinforce stability. Introduce it by saying: "Joining this program will give your child confidence and a predictable schedule."

Recognizing Practical Planners: Practical Planners can be recognized when they ask for concrete routines or step-by-step advice. They use words like routine, schedule, or practical. They respond positively to structured activities and daily plans. They may dismiss abstract or diagnostic language. Interact with them by offering actionable, manageable recommendations.

Discussion and Conclusions

The AI + Mind Genomics Backgrounder represents a new kind of learning tool—one that blends structured experimentation with rapid, intuitive understanding. In a world where healthcare and education professionals must absorb vast amounts of information quickly, the Backgrounder offers a way to organize complexity into a coherent, digestible framework. It distills a topic into its essential components, revealing the underlying mind sets that shape how people think, respond, and make decisions. This clarity is invaluable for professionals who must communicate ef-

fectively under pressure, often with limited time and incomplete information. For professional development, the Backgrounder functions as a catalyst for accelerated learning. Traditional training relies heavily on experience accumulated over years of patient or student interactions. The Backgrounder shortens this timeline by presenting the learner with structured insights into how different individuals interpret the same message. Instead of waiting for patterns to emerge through trial and error, the novice can see the "algebra of the mind" laid out in front of them. This allows them to enter the workplace with a more refined sense

of how to tailor communication, anticipate reactions, and adjust their approach in real time.

In clinical communication, the Backgrounder provides a scaffold for understanding the diversity of patient and family mind sets. Healthcare professionals often face the challenge of conveying sensitive information to individuals who differ widely in emotional needs, expectations, and decision styles. The Backgrounder helps the clinician recognize these differences quickly by offering examples of how each mind set responds to specific types of statements. This does not replace clinical judgment, but it enhances it, giving the professional a repertoire of communication strategies that can be adapted to the moment. In doing so, it strengthens the therapeutic relationship and improves the clarity and effectiveness of clinical conversations.

In educational training, the Backgrounder serves as a bridge between theory and practice. Educators, like clinicians, must communicate with families who vary in their priorities, anxieties, and expectations. The Backgrounder provides a structured way to explore these variations, helping educators understand how different parents interpret feedback about their child's performance or behavior. By working through the Backgrounder, the educator gains a deeper appreciation for the psychological diversity of families and learns how to frame messages in ways that resonate. This prepares them to navigate parent teacher interactions with greater confidence and sensitivity.

Across both healthcare and education, the Backgrounder supports the development of reflective practitioners. It encourages learners to think critically about communication, to question their assumptions, and to consider how different people might interpret the same message. This reflective stance is essential for professional growth, especially in environments where time is limited and expectations are high. The Backgrounder does not offer scripts or fixed answers; instead, it provides a conceptual map that guides the learner toward more thoughtful, adaptive communication. It becomes a tool not just for learning, but for thinking.

In conclusion, this work demonstrates how an AI-enabled Mind Genomics Backgrounder offers a practical solution to the modern challenge of rapid professional readiness. It equips novices with a structured, psychologically grounded understanding of communication that would otherwise take years to develop. It supports clinical communication by revealing the hidden sets that shape patient and family responses. It strengthens educational training by helping teachers anticipate and adapt to diverse parental perspectives. And it enhances professional development by fostering reflective, adaptive, and efficient learning. In a world where professionals must be effective from day one, the Backgrounder provides the clarity, structure, and insight needed to meet that demand.

Ethical Considerations

This study did not involve human participants or animal subjects. All data presented are synthetic and generated for demonstration purposes. No IRB approval or informed consent was required. The authors declare no conflict of interest and report no external funding. The study complies with ethical standards for research and publication.

Acknowledgment

The results from the AI + Mind Genomics Backgrounder were developed using Microsoft Co-Pilot. The authors wish to thank Vanessa Marie B. Arcenas for her ongoing help in preparing these and other manuscripts for publication.

References

1. Navein, A., McTaggart, J., Hodgson, X., Shaw, J., Hargreaves, D., Gonzalez-Viana, E., & Mehmeti, A. (2022). Effective healthcare communication with children and young people: A systematic review of barriers and facilitators. *Archives of Disease in Childhood*, 107(12), 1111-1118. <https://doi.org/10.1136/archdischild-2022-324159>
2. Harrits, G. S., Møller, M. Ø. (2021). Qualitative vignette experiments: A mixed methods design. *Journal of Mixed Methods Research*, 15(4), 485-502. <https://doi.org/10.1177/1558689820977607>
3. Papajorgji, P., Moskowitz, H. R. (2024). Mind Genomics: Origins, evolution, inner-workings. In *The Mind of Everyday* (pp. 91-143). Cham: Springer. https://doi.org/10.1007/978-3-031-78078-3_6
4. Cox, C., Hatfield, T., Moxey, J., Fritz, Z. (2023). Creating and administering video vignettes for a study examining the communication of diagnostic uncertainty: Methodological insights to improve accessibility for researchers and participants. *BMC Medical Research Methodology*, 23(1), 296. <https://doi.org/10.1186/s12874-023-02072-7>
5. Moskowitz, H. R. (2012). Mind Genomics: The experimental, inductive science of the ordinary, and its application to aspects of food and feeding. *Physiology & Behavior*, 107(4), 606-613. <https://doi.org/10.1016/j.physbeh.2012.04.009>
6. Gomila, R. (2020). Logistic or linear? Estimating causal effects of experimental treatments on binary outcomes using regression analysis. *Journal of Experimental Psychology: General*, 149(5), 882-894. <https://doi.org/10.1037/xge0000920>
7. Jain, A. K. (2010). Data clustering: 50 years beyond K-means. *Pattern Recognition Letters*, 31(8), 651-666. <https://doi.org/10.1016/j.patrec.2009.09.011>
8. Gere, A., Radványi, D., Moskowitz, H. R. (2017). The Mind Genomics metaphor: From measuring the everyday to sequencing the mind. *International Journal of Genomics and Data Mining*, 1(1), 1-10. <https://doi.org/10.29011/2577-0616.000110>
9. Gere, A., Zemel, R., Papajorgji, P., Moskowitz, H. R. (2018). Weak signals and mind-sets of consumers: The case of milk. *Journal of Food Science and Engineering*, 8(3), 131-140. <https://doi.org/10.17265/2159-5828/2018.03.004>
10. Rappaport, S. D., Moskowitz, H. R. (2025). Systemizing the development of a mind-set framework for patient-centered care using AI: A worked example with pre-diabetes [Manuscript in preparation].
11. Babaii, A., Mohammadi, E., Sadooghiasl, A. (2021). The meaning of the empathetic nurse-patient communication: A qualitative study. *Journal of Patient Experience*, 8, 1-9. <https://doi.org/10.1177/23743735211024351>
12. George, P. (2021). Therapeutic communication and nurse-patient relationship [PowerPoint slides]. Bishop Ben-Ziger College of Nursing. <https://www.bbconkollam.org/wp-content/uploads/2021/04/THERAPEUTIC-COMMUNICATION-AND-NURSE-%E2%80%93-PATIENT-RELATIONSHIP.pdf>

Additional materials and illustrative examples are provided in Appendix 1 and Appendix 2.

Appendix 1: AI + Mind Genomics Backgrounder generated introductory sentences and recognition cues adapted for children at different developmental stages (ages 4, 6, 8, and 10). The descriptions remain about the parental mind-sets, but the communication strategies are now child-facing, age-appropriate, and simplified.

Mind-Set 1: Diagnostic Realists

Diagnostic Realists value clear, data-driven insights about their child's performance. They prefer objective benchmarks such as grade-level expectations and professional evaluations. Their mindset is shaped by a belief that transparency and measurable outcomes are the foundation of improvement. They often come from professional or academic backgrounds where evidence and metrics dominate decision-making. They are less swayed by emotional framing and more by structured, clinical language. Their trust is earned when caregivers present facts without embellishment.

Speaking to Mind-Set 1 children of different ages

Age 4: "Let's play a game with numbers."
Age 6: "We'll see how many words you can read today."
Age 8: "Here's a chart to show your progress."
Age 10: "Let's compare your scores to last time."

Recognizing Mind-Set 1 children of different ages

Age 4: Child enjoys counting or sorting toys.
Age 6: Child asks "Did I get it right?" often.
Age 8: Child likes seeing grades or stickers.
Age 10: Child compares test results with peers.

Mind-Set 2: Emotional Guardians

Emotional Guardians prioritize the psychological and emotional well-being of their child above all else. They resonate with language that acknowledges feelings, stress, and emotional support systems. Their mindset is shaped by experiences where emotional safety was either compromised or deeply valued. They are highly sensitive to cues about anxiety, stress, or counselor involvement. They often interpret performance issues through the lens of emotional impact rather than raw ability. Their trust is earned when caregivers show empathy and validate the child's emotional journey.

Speaking to Mind-Set 2 children of different ages

Age 4: "It's okay to feel sad sometimes."
Age 6: "I see you're worried, let's take a deep breath."
Age 8: "Feelings can make school harder, but we can talk about them."
Age 10: "Stress is normal, let's find ways to calm down."

Recognizing Mind-Set 2 children of different ages

Age 4: Child cries easily when frustrated.
Age 6: Child asks "Are you mad at me?"
Age 8: Child talks about being nervous before tests.
Age 10: Child mentions stress or worries about friendships.

Mind-Set 3: Practical Planners

Practical Planners focus on actionable steps and routines that can be implemented at home. They value advice that is concrete, manageable, and directly tied to daily life. Their mindset is shaped by a desire for stability and predictability in family routines. They resonate with recommendations like structured schedules, extracurricular activities, and parental involvement. They are less concerned with diagnostic labels and more with practical solutions that can be applied immediately. Their trust is earned when caregivers provide clear, step-by-step guidance.

Speaking to Mind-Set 3 children of different ages

Age 4: "Let's clean up toys before snack."
Age 6: "We'll do homework after dinner every day."
Age 8: "Joining soccer will help you make friends."
Age 10: "Keeping a planner will help you stay organized."

Recognizing Mind-Set 3 children of different ages

Age 4: Child likes routines like bedtime stories.
Age 6: Child asks "What's next?" often.
Age 8: Child enjoys structured activities like clubs.
Age 10: Child uses checklists or planners independently.

Appendix 2: AI + Mind Genomics Backgroundersuggested pairs of innovations for children of the four age groups and four parents belonging to the different mind-sets, and with children of different ages

Age 4

Innovation: Storytime Routine Chart – A colorful chart with pictures of daily activities (wake up, play, snack, bedtime) helps a 4-year-old feel secure and anticipate what comes next. This works because children at this age thrive on predictability and visual cues. Introduce it by saying: “Let’s look at our picture chart together and see what fun comes next!”

Innovation: Emotion Puppets – Soft puppets representing happy, sad, angry, and calm allow the child to act out feelings safely. This is successful because children at age 4 often struggle to verbalize emotions but can express them through play. Introduce it by saying: “Let’s use the puppets to show how we feel today.”

Age 6

Innovation: Homework Treasure Box – A small box with stickers or tokens given after completing homework builds motivation. This works because 6-year-olds respond well to tangible rewards and gamified routines. Introduce it by saying: “Every time you finish your homework, you’ll get a treasure for your box!”

Innovation: Breathing Buddy – A stuffed toy used during deep breathing exercises teaches calmness. This is successful because children at this age begin to recognize stress but need concrete tools to manage it. Introduce it by saying: “Let’s help your buddy breathe slowly with you.”

Age 8

Innovation: Progress Journal – A notebook where the child records achievements, drawings, or reflections builds self-awareness. This works because 8-year-olds start valuing independence and enjoy tracking their own growth. Introduce it by saying: “This is your special journal to show how much you’re learning.”

Innovation: Friendship Role-Play Games – Structured games that simulate social situations (sharing, teamwork) help children practice peer interactions. This is successful because 8-year-olds are highly influenced by friendships and social acceptance. Introduce it by saying: “Let’s play a game where we practice being a good friend.”

Age 10

Innovation: Personal Planner – A simple planner with daily goals and checklists fosters responsibility. This works because 10-year-olds are ready to manage tasks and enjoy autonomy. Introduce it by saying: “This planner is yours to keep track of your day like grown-ups do.”

Innovation: Confidence Club – A small group activity (debates, presentations, projects) builds self-esteem through peer recognition. This is successful because 10-year-olds seek validation from peers and enjoy structured challenges. Introduce it by saying: “You’ll get to share your ideas in our club and show what you can do.”

Parents are Diagnostics Realists

Diagnostic Realists – Parents of child Age 4

Counting Blocks Game – Using colorful blocks to count and sort helps children connect play with early math. This works because 4-year-olds enjoy tangible objects and repetition. Introduce it by saying: “Let’s see how many blocks we can count together.”

Picture Progress Chart – A sticker chart showing daily achievements builds a sense of measurable success. This is successful because children at this age respond to visible rewards. Introduce it by saying: “Every time you finish, we’ll add a sticker to your chart.”

Diagnostic Realists – Parents of child Age 6

Word Ladder Challenge – A simple game where children climb a “ladder” of words they can read. This works because 6-year-olds enjoy structured challenges tied to progress. Introduce it by saying: “Let’s climb the word ladder and see how far you can go.”

Math Puzzle Sheets – Worksheets with small puzzles reinforce comprehension in a fun way. This is successful because children at this age like solving problems with clear answers. Introduce it by saying: “Here’s a puzzle to show how smart you are.”

Diagnostic Realists – Parent of child Age 8

Achievement Journal – A notebook where children record scores or milestones builds ownership of progress. This works because 8-year-olds begin to value independence. Introduce it by saying: “This is your special book to track how well you’re doing.”

Benchmark Badge System – Badges awarded for reaching grade-level goals motivate effort. This is successful because children at this age enjoy recognition. Introduce it by saying: “You’ve earned a badge for reaching this level.”

Diagnostic Realists – Parents of child Age 10

Personal Score Tracker – A planner where children log test results encourages responsibility. This works because 10-year-olds want autonomy and measurable outcomes. Introduce it by saying: “This tracker is yours to keep your scores organized.”

Skill Progress Graphs – Simple charts showing improvement over time make growth visible. This is successful because children at this age understand comparisons. Introduce it by saying: “Let’s graph your progress to see how far you’ve come.”

Parents are Emotional Guardians

Emotional Guardians – Pare of child Age 4

Feelings Faces Cards – Cards with happy, sad, angry faces help children name emotions. This works because 4-year-olds learn best through visuals. Introduce it by saying: “Which face shows how you feel today?”

Calm Corner Tent – A small tent with pillows creates a safe space for calming down. This is successful because children at this age need physical comfort. Introduce it by saying: “This is your special calm tent when you feel upset.”

Emotional Guardians – Parents of child Age 6

Breathing Buddy Toy – A stuffed toy used during breathing exercises teaches relaxation. This works because 6-year-olds need concrete tools for stress. Introduce it by saying: “Let’s help your buddy breathe slowly with you.”

Emotion Storybooks – Stories about characters managing feelings normalize emotional experiences. This is successful because children at this age learn through narrative. Introduce it by saying: “Let’s read about how this character feels.”

Emotional Guardians – Parents of child Age 8

Feelings Journal – A notebook for writing or drawing emotions builds self-awareness. This works because 8-year-olds begin to reflect on inner states. Introduce it by saying: “This is your journal to share how you feel.”

Relaxation Music Playlist – Gentle music sessions help children manage stress. This is successful because 8-year-olds respond to sensory cues. Introduce it by saying: “Let’s listen to music that helps us feel calm.”

Emotional Guardians – Parents of child Age 10

Peer Support Circle – Small group discussions about feelings build empathy. This works because 10-year-olds value peer validation. Introduce it by saying: “Let’s share our feelings with friends in the circle.”

Mindfulness Apps – Simple guided meditation apps teach stress management. This is successful because 10-year-olds enjoy technology. Introduce it by saying: “This app will help you relax when you feel stressed.”

Parents are Practical Planners

Practical Planners – Parents of child Age 4

Routine Picture Board – A board with pictures of daily tasks builds predictability. This works because 4-year-olds thrive on routine. Introduce it by saying: “Let’s see what comes next on our board.”

Toy Cleanup Race – Turning cleanup into a timed game makes chores fun. This is successful because children at this age enjoy play. Introduce it by saying: “Let’s race to see who cleans up fastest.”

Practical Planners – Parents of child Age 6

Homework Timer – A sand timer makes homework time concrete and manageable. This works because 6-year-olds need structure. Introduce it by saying: “Let’s flip the timer and finish before it runs out.”

Daily Task Chart – A chart with simple tasks builds responsibility. This is successful because children at this age enjoy checking off items. Introduce it by saying: “Let’s mark off what you’ve done today.”

Practical Planners – Parents of child Age 8

Extracurricular Planner – A calendar for sports or clubs builds organization. This works because 8-year-olds enjoy structured activities. Introduce it by saying: “Let’s write down your soccer practice here.”

Step-by-Step Homework Guide – Breaking homework into steps reduces overwhelm. This is successful because children at this age need manageable tasks. Introduce it by saying: “Let’s do one step at a time together.”

Practical Planners – Parents of child Age 10

Personal Planner Notebook – A notebook for daily routines fosters independence. This works because 10-year-olds want autonomy. Introduce it by saying: “This planner is yours to organize your day.”

Family Routine App – A shared app for family schedules builds collaboration. This is successful because 10-year-olds enjoy tech-based solutions. Introduce it by saying: “Let’s use this app to keep track of our routines.”

How this framework improves performance in today's pressured environment

First, the table functions as a fast decision engine for the clinician, teacher, or nurse who has only minutes with a family. Instead of trying to "get to know" the child and parent in a vague, conversational way, the professional can quickly infer a likely mind-set from a few cues—Does the parent ask for numbers? Feelings? Routines?—and then select age-appropriate phrases and innovations from the matrix. This is exactly the logic of Mind Genomics in clinical settings: compressing the discovery of mind-sets into a few structured interactions so that personalization happens in real time, not after weeks of trial and error [3-5].

Second, the framework translates numbers into narratives without abandoning metrics. In a world obsessed with scores, dashboards, and follow-up surveys, Mind Genomics does not fight the numbers; it reorganizes them around mind-sets. The same satisfaction score or adherence rate can be decomposed into "who responded to what," allowing the professional to see that a Diagnostic Realist parent is moved by benchmark clarity, while an Emotional Guardian is moved by a single sentence of genuine empathy. This is the same principle used to build patient-centered mind-set frameworks in chronic conditions, where AI plus experimental design reveal distinct decision logics behind the same clinical label [10].

Third, the table rescues empathy from being a vague ideal and turns it into a structured practice. Instead of telling nurses or educators to "be more empathetic," it specifies what empathy looks like for each mind-set and age: naming feelings for the 4-year-old Emotional Guardian child, offering calm tools for the 6-year-old, creating peer circles for the 10-year-old. This aligns with qualitative work showing that empathetic nurse–patient communication is not a single behavior but a pattern of tailored responses that reduce suffering and increase trust [11]. The matrix operationalizes that pattern so it can be taught, replicated, and measured.

Finally, the framework reconciles productivity with intimacy. Time pressure and documentation demands are not going away, but a structured mind-set table allows the professional to deliver the "right" sentence, the "right" small innovation, in the first encounter. That single well-aimed interaction— "Let's use this planner so you can run your day like a pro"—can create a sense of being seen, which older models of nursing and teaching relied on but could not systematize. Educational and clinical communication guides increasingly emphasize structured, intentional communication as the backbone of therapeutic relationships; this table is a concrete instantiation of that shift, turning the old art of connection into a reproducible, data-driven craft [12].