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/Abstract

Signal analysis stands as a pivotal cornerstone, intricately woven into the fabric of diverse scientific, engineering,
and technological realms. Its significance transcends disciplines, providing invaluable insights that unravel the dis-
tinctive characteristics inherent in a myriad of signals. Central to this analysis are three fundamental metrics—mean
frequency, power, and bandwidth. In the following discourse, this article embarks on a journey to illuminate the
profound significance encapsulated within these parameters, peeling back the layers to uncover their importance.
Through a meticulous exploration, we delve into the methodologies meticulously employed for the precise measure-
\ment of mean frequency, power, and bandwidth, unraveling the intricate tapestry of signal analysis. )

~

Introduction

Vibration analysis is a sophisticated and widely employed meth-
odology for studying the dynamic behavior of mechanical sys-
tems, structures, and machinery. This powerful diagnostic tool
involves the comprehensive examination of oscillatory motion
and the interpretation of resulting vibration signals to gain valu-
able insights into the health and performance of a system. By
harnessing principles from physics, engineering, and signal pro-
cessing, vibration analysis serves as a cornerstone in predictive
maintenance, condition monitoring, and fault diagnosis across
various industries [1-12].

The primary goal of vibration analysis is to discern and interpret
the intricate patterns of motion within a system, translating them
into meaningful information about its condition. Through the use
of specialized sensors and sophisticated analytical techniques,
practitioners can extract valuable data regarding frequency, am-
plitude, and phase, unveiling the vibrational characteristics that
hold key diagnostic clues [13-29].

This methodology plays a crucial role in preventing unexpected
breakdowns, optimizing maintenance schedules, and extending
the lifespan of machinery and structural components. As indus-
tries increasingly rely on advanced technologies, the role of vi-
bration analysis becomes even more significant, contributing to
improved reliability, efficiency, and safety in a diverse range of
applications [30-47].

In this exploration of vibration analysis, we delve into the funda-
mental principles, methodologies, and applications that make it
an indispensable tool for engineers, maintenance professionals,
and researchers seeking to understand, monitor, and enhance the
performance of dynamic systems [48-63].
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In the intricate realms of scientific, engineering, and technologi-
cal pursuits, the art of signal analysis takes center stage, bestow-
ing invaluable insights into the unique characteristics of diverse
signals. Amidst the fundamental parameters awaiting meticulous
examination, mean frequency, power, and bandwidth emerge as
cardinal metrics. This article embarks on a journey to unravel
the profound significance encapsulated within these parameters,
offering a comprehensive exploration of their importance and
the methodologies intricately woven into their precise measure-
ment.

The Occupied Bandwidth

Mean frequency is a fundamental parameter that reveals the
central tendency of a signal's frequency content. It represents
the average frequency at which the signal's energy is distrib-
uted. In signal processing, determining the mean frequency is
essential for understanding the dominant spectral components.
Common methods for calculating mean frequency include Fou-
rier analysis and wavelet transforms. Engineers and researchers
often leverage mean frequency to identify the central frequency
around which other spectral components are distributed.

The occupied bandwidth is a measure of the range of frequencies
that contain a certain percentage of the signal's power. In this
case, you're asked to estimate the bandwidth that contains 99%
of the signal's power.

This involves analyzing the power spectral density (PSD) plot
and identifying the frequency range where 99% of the total
power is encompassed. This can be done by integrating the area
under the PSD curve and determining the frequency limits that
correspond to 99% of this area (see figure 1).

Nov Joun of Appl Sci Res 2024



99% Occupied Bandwidth: 55.377 kHz
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Figure 1: Power /frequency as a function of frequency

In general terms, the power spectral density is the Fourier trans-
form of the autocorrelation function of a signal. It provides infor-
mation about the distribution of power with respect to frequency.

The power spectral density is commonly plotted on a graph
where the x-axis represents frequency, and the y-axis represents
the power or power density. This graph visually illustrates how
the power of a signal is distributed across different frequency
components.

So, when someone mentions "power/frequency as a function of
frequency," they are likely referring to a graph or plot where the
power (or power density) is shown as a function of frequency,
providing insights into the frequency content of a signal.

Generate another chirp. Specify an initial frequency of 200 kHz,
a final frequency of 300 kHz, and an amplitude that is twice that
of the first signal. Add white Gaussian noise.

Combine the two chirp signals to generate a composite signal.
Proceed to calculate the Power Spectral Density (PSD) of this
combined signal, providing insights into its frequency distribu-
tion. Subsequently, create a graphical representation of the PSD,
with the x-axis denoting frequency and the y-axis indicating
power or power density. Finally, mark or annotate the median
frequency on the PSD plot, illustrating the central frequency
point around which the signal's power is evenly distributed.
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Figure 2 : Median frequency on the PSD
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Generate a Power Spectral Density (PSD) plot and mark or annotate the mean frequency on the graph.
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Figure 3: Mean frequency on the PSD

Chirp-Based Channel Analysis

The given statement suggests a signal processing task where
chirps, which are signals with varying frequencies over time,
are treated as distinct channels. The objective is to analyze these
channels individually, estimating the mean frequency for each
and visually presenting the results on a plot of Power Spectral
Densities (PSDs). In signal processing, a "chirp" is a signal char-
acterized by a frequency that changes with time. By considering
each chirp as a separate channel, we treat them as distinct com-
ponents or sources within the overall signal.

The task involves determining the average or mean frequency for
each identified chirp or channel. This can be achieved through

various techniques, such as analyzing the frequency content of
the signal and calculating a central frequency representative of
each channel.

PSD is a tool used to visualize the distribution of a signal's pow-
er across different frequencies. Creating a plot of PSDs involves
representing the power content of each chirp or channel as a
function of frequency. After estimating the mean frequency for
each channel, the next step is to annotate the plot of PSDs. This
annotation includes marking or labeling the plot to indicate the
mean frequency associated with each channel. This step enhanc-
es the interpretability of the plot by highlighting key frequency
characteristics (see Figure 4).
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Figure 4: The curve of Chirp-Based Channel Analysis
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In practical terms, this process allows for a detailed exploration
of the frequency components within each chirp, offering insights
into the dominant frequencies and their variations across differ-
ent channels. The annotated plot serves as a visual representation
of the distribution of mean frequencies, aiding in the analysis
and interpretation of the signal's characteristics. This approach
is valuable in various fields, including telecommunications, au-
dio processing, and vibration analysis, where understanding fre-
quency components is crucial.

Power Measurement: Quantifying Signal Strength

Power is a crucial metric in signal analysis, quantifying the
strength or intensity of a signal. It provides information about
the signal's energy content and is fundamental for assessing its
amplitude. Power measurement is particularly significant in
fields such as telecommunications, audio processing, and vibra-
tion analysis. In the context of power spectral density, it helps
identify frequency regions where the signal carries significant
energy. Power measurement methods include time-domain tech-
niques, such as root mean square (RMS), and frequency-domain
methods, like Parseval's theorem in Fourier analysis.

Bandwidth characterizes the range of frequencies occupied by a
signal and is another vital parameter in signal analysis. It is de-
fined as the difference between the upper and lower frequencies
within which the signal's power is significant. The bandwidth
provides insights into the signal's capacity to carry information
and is crucial in communication systems, where efficient use of
available frequency bands is essential. Bandwidth measurement
methods depend on the type of signal but often involve deter-
mining the frequency range containing a specified percentage of
the signal's power.

Conclusion

In conclusion, mean frequency, power, and bandwidth are funda-
mental parameters in signal analysis, offering valuable insights
into the characteristics of diverse signals. Whether in telecom-
munications, audio processing, vibration analysis, or biomedical
signal processing, accurate measurement of these parameters
enhances our understanding of signals and facilitates informed
decision-making in various applications. Researchers and prac-
titioners continue to advance methodologies for precise and ef-
ficient measurement, contributing to the evolving landscape of
signal analysis.
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