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Introduction
Vibration analysis is a sophisticated and widely employed meth-
odology for studying the dynamic behavior of mechanical sys-
tems, structures, and machinery. This powerful diagnostic tool 
involves the comprehensive examination of oscillatory motion 
and the interpretation of resulting vibration signals to gain valu-
able insights into the health and performance of a system. By 
harnessing principles from physics, engineering, and signal pro-
cessing, vibration analysis serves as a cornerstone in predictive 
maintenance, condition monitoring, and fault diagnosis across 
various industries [1-12].

The primary goal of vibration analysis is to discern and interpret 
the intricate patterns of motion within a system, translating them 
into meaningful information about its condition. Through the use 
of specialized sensors and sophisticated analytical techniques, 
practitioners can extract valuable data regarding frequency, am-
plitude, and phase, unveiling the vibrational characteristics that 
hold key diagnostic clues [13-29].

This methodology plays a crucial role in preventing unexpected 
breakdowns, optimizing maintenance schedules, and extending 
the lifespan of machinery and structural components. As indus-
tries increasingly rely on advanced technologies, the role of vi-
bration analysis becomes even more significant, contributing to 
improved reliability, efficiency, and safety in a diverse range of 
applications [30-47].

In this exploration of vibration analysis, we delve into the funda-
mental principles, methodologies, and applications that make it 
an indispensable tool for engineers, maintenance professionals, 
and researchers seeking to understand, monitor, and enhance the 
performance of dynamic systems [48-63].

In the intricate realms of scientific, engineering, and technologi-
cal pursuits, the art of signal analysis takes center stage, bestow-
ing invaluable insights into the unique characteristics of diverse 
signals. Amidst the fundamental parameters awaiting meticulous 
examination, mean frequency, power, and bandwidth emerge as 
cardinal metrics. This article embarks on a journey to unravel 
the profound significance encapsulated within these parameters, 
offering a comprehensive exploration of their importance and 
the methodologies intricately woven into their precise measure-
ment.

The Occupied Bandwidth
Mean frequency is a fundamental parameter that reveals the 
central tendency of a signal's frequency content. It represents 
the average frequency at which the signal's energy is distrib-
uted. In signal processing, determining the mean frequency is 
essential for understanding the dominant spectral components. 
Common methods for calculating mean frequency include Fou-
rier analysis and wavelet transforms. Engineers and researchers 
often leverage mean frequency to identify the central frequency 
around which other spectral components are distributed.

The occupied bandwidth is a measure of the range of frequencies 
that contain a certain percentage of the signal's power. In this 
case, you're asked to estimate the bandwidth that contains 99% 
of the signal's power.

This involves analyzing the power spectral density (PSD) plot 
and identifying the frequency range where 99% of the total 
power is encompassed. This can be done by integrating the area 
under the PSD curve and determining the frequency limits that 
correspond to 99% of this area (see figure 1).
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Figure 1: Power /frequency as a function of frequency

In general terms, the power spectral density is the Fourier trans-
form of the autocorrelation function of a signal. It provides infor-
mation about the distribution of power with respect to frequency.

The power spectral density is commonly plotted on a graph 
where the x-axis represents frequency, and the y-axis represents 
the power or power density. This graph visually illustrates how 
the power of a signal is distributed across different frequency 
components.

So, when someone mentions "power/frequency as a function of 
frequency," they are likely referring to a graph or plot where the 
power (or power density) is shown as a function of frequency, 
providing insights into the frequency content of a signal.

Generate another chirp. Specify an initial frequency of 200 kHz, 
a final frequency of 300 kHz, and an amplitude that is twice that 
of the first signal. Add white Gaussian noise.

Combine the two chirp signals to generate a composite signal. 
Proceed to calculate the Power Spectral Density (PSD) of this 
combined signal, providing insights into its frequency distribu-
tion. Subsequently, create a graphical representation of the PSD, 
with the x-axis denoting frequency and the y-axis indicating 
power or power density. Finally, mark or annotate the median 
frequency on the PSD plot, illustrating the central frequency 
point around which the signal's power is evenly distributed.

Figure 2 : Median frequency on the PSD
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Generate a Power Spectral Density (PSD) plot and mark or annotate the mean frequency on the graph.

Figure 3: Mean frequency on the PSD

Chirp-Based Channel Analysis
The given statement suggests a signal processing task where 
chirps, which are signals with varying frequencies over time, 
are treated as distinct channels. The objective is to analyze these 
channels individually, estimating the mean frequency for each 
and visually presenting the results on a plot of Power Spectral 
Densities (PSDs). In signal processing, a "chirp" is a signal char-
acterized by a frequency that changes with time. By considering 
each chirp as a separate channel, we treat them as distinct com-
ponents or sources within the overall signal.

The task involves determining the average or mean frequency for 
each identified chirp or channel. This can be achieved through 

various techniques, such as analyzing the frequency content of 
the signal and calculating a central frequency representative of 
each channel.

PSD is a tool used to visualize the distribution of a signal's pow-
er across different frequencies. Creating a plot of PSDs involves 
representing the power content of each chirp or channel as a 
function of frequency. After estimating the mean frequency for 
each channel, the next step is to annotate the plot of PSDs. This 
annotation includes marking or labeling the plot to indicate the 
mean frequency associated with each channel. This step enhanc-
es the interpretability of the plot by highlighting key frequency 
characteristics (see Figure 4).

Figure 4: The curve of Chirp-Based Channel Analysis
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In practical terms, this process allows for a detailed exploration 
of the frequency components within each chirp, offering insights 
into the dominant frequencies and their variations across differ-
ent channels. The annotated plot serves as a visual representation 
of the distribution of mean frequencies, aiding in the analysis 
and interpretation of the signal's characteristics. This approach 
is valuable in various fields, including telecommunications, au-
dio processing, and vibration analysis, where understanding fre-
quency components is crucial.

Power Measurement: Quantifying Signal Strength
Power is a crucial metric in signal analysis, quantifying the 
strength or intensity of a signal. It provides information about 
the signal's energy content and is fundamental for assessing its 
amplitude. Power measurement is particularly significant in 
fields such as telecommunications, audio processing, and vibra-
tion analysis. In the context of power spectral density, it helps 
identify frequency regions where the signal carries significant 
energy. Power measurement methods include time-domain tech-
niques, such as root mean square (RMS), and frequency-domain 
methods, like Parseval's theorem in Fourier analysis.

Bandwidth characterizes the range of frequencies occupied by a 
signal and is another vital parameter in signal analysis. It is de-
fined as the difference between the upper and lower frequencies 
within which the signal's power is significant. The bandwidth 
provides insights into the signal's capacity to carry information 
and is crucial in communication systems, where efficient use of 
available frequency bands is essential. Bandwidth measurement 
methods depend on the type of signal but often involve deter-
mining the frequency range containing a specified percentage of 
the signal's power.

Conclusion
In conclusion, mean frequency, power, and bandwidth are funda-
mental parameters in signal analysis, offering valuable insights 
into the characteristics of diverse signals. Whether in telecom-
munications, audio processing, vibration analysis, or biomedical 
signal processing, accurate measurement of these parameters 
enhances our understanding of signals and facilitates informed 
decision-making in various applications. Researchers and prac-
titioners continue to advance methodologies for precise and ef-
ficient measurement, contributing to the evolving landscape of 
signal analysis.
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