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Introduction
The concept of metabolic pathways (or metabolons) is well 
known in biomedical sciences. But the concept of 'supermet-
abolic pathways’ (or 'supermetabolons') defined as systems of 
metabolic pathways (or systems of metabolons) is rarely dis-
cussed, most likely because there has been no mathematical 
method to identify them, until 2020 when the Planck- Shannon 
classifier (PSC) was proposed [1].

The first clear evidence for the existence of supermetabolons 
was provided by the mRNA data measured from breast cancer 
patients by Perou and his group at Stanford in 2000 [2]. They 
measured the transcriptome (i.e., the totality of RNA data) of 
20 breast cancer patients before and after treating them with the 
anticancer drug, doxorubicin, for 16 weeks. They found that, of 
the 20 patients treated, 5 survived on average 10 months, while 
another group of 5 patients survived on average 70 months [2]. 
Out of more than two hundred metabolic pathways in the hu-
man transcriptome, my students at Rutgers and I analyzed the 
mRNA data belonging to the 10 metabolic pathways (listed in 
the legend to Figure 2 below) using the Planck-Shannon clas-
sifier [1]. We found that mRNA expression patterns (measured 
in breast cancer tissues of individual patients before drug treat-
ment) were different between short and long surviving patients. 
This indicates that the information about how long a patient will 

survive after doxorubicin treatment appears to be encoded in 
the dynamic gene expression patterns (i.e., mRNA expression 
profiles) measured in breast cancer tissue of each patient before 
drug treatment. For example, we found that Pathways 3, 4 and 
5 were activated or expressed only in long survivors, whereas 
Pathway 7 was activated in short survivors only. These results 
establish the concept of "supermetabolic pathways" (SMPs) or 
supermetabolons (SMs) acting as biomarkers for long and short 
survivors (discussed further in Section 5 below).

One of the main objectives of this manuscript is to propose a 
drug discovery strategy based on supermetabolic pathways or 
supermetabolons rather than on conventional metabolic path-
ways, individual enzymes, or receptors. The approach based on 
conventional metabolic pathways, enzymes, or receptors has 
been found to be disappointingly inefficient. For example, the 
cost of developing a new drug via the conventional method has 
been estimated to be $1.7 billion and that it takes 12-16 years 
to complete a drug development process from the compound 
discovery stage to marketing, and the overall attrition rate for 
developing a drug has been estimated to be 10,000:1 [3, 4]. If the 
drug discovery strategy based on supermetabolons is successful-
ly implemented, it is predicted that the cost of developing a drug 
would be reduced by a factor of at least 100, i.e., to $170 million, 
and the development time may be shortened to 3-5 years.
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Abstract
Recent developments in cell biology suggest that living cells use three categories of structures similar to words, sentenc-
es, and texts in human language. Functionally, enzymes correspond to words, metabolic pathways (or metabolons more 
briefly) correspond to sentences, and systems of metabolons (called supermetabolons) correspond to texts or computer 
programs.

Supermetabolons that can be identified using the computer algorithm known as the Planck- Shannon classifier applied 
to mRNA expression profiles have been found to serve as novel biomarkers for either beneficial or toxic effects of the an-
ti-cancer drug doxorubicin in breast cancer patients. These findings serve as the empirical and theoretical basis for for-
mulating the new strategies for drug discovery and personalized pharmacotherapy referred to as the transcriptome-based 
Planck-Shannon classifier method.
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Planckian Distribution Equation (PDE)
The Planck-Shannon classifier (PSC) is an algorithm derived 
from the Planckian Distribution Equation (PDE) which, in 
turn, is derived from the blackbody radiation equation dis-
covered by M. Planck (1858-1947) in 1900 [1, 5]. PSC can 
map a set of three or more long-tailed histograms (LTH’s) into 
one or more categories of functions or properties, each cat-
egory constituting one of the points one a regression line on 
the Planck-Shannon plot (see Panels c and d in Figure 2). The 
Planck-Shannon plot consists of a 2-dimensional graph with 
the Shannon entropy, H, plotted on the x-axis and the Planck-
ian information of the second kind, IPS, plotted on the y-axis. 

Both H and IPS care computed from the Planckian Distribution 
Equation (PDE) that fits the data represented by the LTH under 
analysis [1].

PDE was derived from the blackbody radiation equation (BRE) 
(see Equation (1) in Figure 1) by replacing the universal con-
stants and temperature with free parameters A, B, and C (see 
Equation (2) in Figure 1) [1, 6, 7]. The derivation of PDE from 
BRE was motivated by the similarity between the shape of the 
blackbody radiation spectra (see Panels a and c in Figure 1) 
and that of the single-molecule enzyme turnover histogram 
(see Panels c and the blue curve in panel d in Figure 1)

Observation a) b)

Data c) d)

Mathematical Equation e) Planck radiation equation (PRE):

u(λ, T) = (2hc2/λ5)/(ehc/λkT– 1)                            (1)

u = intensity of radiation; h = Planck constant; 
c = speed of light; λ = wavelength; 
k = Boltzmann constant; T = temperature

f) Planckian Distribution Equation (PDE):

y = (A/(x + B)5)/(eC/(x+ B) – 1)                         (2)

y = frequency
x = bin number
A, B, and C = free parameters

 
Figure 1: The isomorphism between blackbody radiation (left column) and single-molecule enzyme catalysis (right column).

(a)	 Blackbody radiation [5].
(b)	 Single-molecule enzyme catalysis [8]. The measurement of the turnover of a cholesterol oxidase (COx) molecule in the pres-

ence of cholesterol (0.20 mM) and oxygen (0.25 mM). The prosthetic group, FAD, of COx is fluorescent when in its oxidized 
state (which is referred to as the “on“ state) and non-fluorescent when in its reduced state (which is referred to as the “off” state). 
Reproduced from http://www.nigms.nih.gov/News/Reports/single_molecules.htm.

(c)	 Blackbody radiation spectra [5].
(d)	 The histogram of the COx’s “on” and “off” times.
	 Reproduced from http://www.nigms.nih.gov/News/Reports/single_molecules.htm.
(e)	 The blackbody radiation equation (BRE) that fits blackbody radiation spectra discovered by M. Planck in 1900 [5].
	 The Planckian Distribution Equation (PDE) derived from BRE in 2008 [6, 7].

Planck-Shannon Classifier
The deviation of Planckian Distribution Equation (PDE) from 
a symmetric curve such as the Gaussian distribution function 
can be used as a measure of non-randomness and hence of order 
and information [8-11]. There are two ways of quantifying the 
information content of PDE:

(i)	 The Planckian Information of the First Kind (IPF) defined as 
the binary logarithm of the ratio of the area under the curve 
(AUC) of PDE to that of Gaussian-like equation (GLE), Eq. 
(3):

	                 y = Ae-(x– μ) ^2/(2σ^2)                                                  (3)
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	 where A is a free parameter, μ is the mean and σ is the stan-
dard deviation.

(ii)	 The Planckian Information of the Second Kind (IPS) defined 
as the negative binary logarithm of the skewedness of the 
long-tailed histogram [10, 11].

	 IPS = - log2 (|µ – mode|/σ)	                                        (4)
	        It is often more convenient and more reproducible to 

calculate IPS from PDE than to calculate IPF.
	
	 The Shannon entropy associated with PDE can be calculat-

ed based on Equations (5) and (6):
	 H = -Σ pi log2 pi	                                                       (5)
	 where pi is the probability of observing the ith data bin cal-

culated as
	 pi = yi / Σyi	                                                                        (6)

where yi is the frequency of the ith data bin and the index i runs 
from 1 to n, the total number of the data bins.

Each long-tailed histogram (LTH) associated with some func-
tion (e.g., a metabolic pathway) can be plotted as a point in the 
Planck-Shannon plane (also called Planck-Shannon plot, graph, 
or space) (see Panels c and d, Figure 2).

The Planck-Shannon Plot (PSP)
Once a long-tailed histogram (LTH) is fitted into PDE, two num-
bers, Planckian information of the second kind, IPS, and Shannon 
entropy, H, can be computed from the resulting PDE as described 
in Section 3. With H and IPS computed, the Planck-Shannon plots 
can be constructed as shown in Panels c and d in Figure 2. The 
Planck-Shannon classifier (PSC) is an algorithm that maps three 
or more LTH’s into one or more categories with characteristic 
properties or functions, each category constituting a part of a lin-
early correlated line on the Planck-Shannon plane (see Panel c in 
Figure 2). When a set of points forms a linear regression line in the 
Planck-Shannon plot (PSP), such a set represents a ‘superstruc-
ture’ or ‘supermetabolic pathway’ with a function beyond the sum 
of the functions of the individual LTH’s [1, 9, 10, 11]. 

Figure 2: Transforming long-tailed histograms (LTHs) to the Planck-Shannon plot mediated by the histogram-fitting PDE.
a)	 The histogram and associated PDE of the mRNA levels encoded by cell wall biosynthesis pathway with 51 ORF’s (open reading 

frames) of a breast cancer patient before being treated with doxorubicin [2]. Blue curve = original data; red curve = simulated 
by PDE.

b)	 The same patient as in (a) except that the mRNA levels of the patient were measured 16 weeks after doxorubicin treatment [2]. 
Blue curve = original data; red curve = simulated by PDE. It is important to note that plots (a) and (b) cannot be distinguished by 
visual inspection but the associated PDE’s are quantitatively different as shown by the numerical values of their free parameters 
A, B, and C.

a) b)

c) d)
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c)	 The Planck-Shannon plot of 10 metabolic pathways analyzed: 1 = cell cycle, 72 ORFs; 2= cell wall biogenesis, 53 ORFs; 3 
= chromatin structures, 44 ORFs; 4 = cytoskeletons, 71 ORFs; 5 = DNA repair, 32 ORFs; 6 = rRNA processing, 37 ORFs; 7 
= nuclear protein targeting, 43 ORFs; 8 = protein synthesis, 156 ORFs; 9 = transport, 129 ORFs; and 10 = transcription, 175 
ORFs. These data sets all fitted PDE, using the Solver software available in Excel, thereby generating 10 pairs of the IPS and H 
values, which were plotted as 10 points as shown in Panel c which generated a regression line with a R2 value of 0.7066, thus 
forming a supermetabolic pathway or a supermetabolon.

d)    The Planck-Shannon plot of 10 sets of mRNA levels similar in sizes to the 10 sets used in (c) but with unknown functions. The 
fact that the R2 value is only 0.021 indicates that this set of 10 points have no correlation among them and hence cannot form 
a supermetabolic pathway or a supermetabolon, more briefly.

The Drug-Sensitive and Patient-Specific (DSPS) Superme-
tabolons
When the 10 metabolons were plotted on the Planck-Shannon 
plane, one or more metabolons had to be removed in order to 
obtain a good linear regression line with R2 values greater than 
0.6 - 0.7. For example, one metabolon was removed from 10 
in Patients 2 and 15 (see Figure 3), while 3 metabolons were 
removed in Patient 14. Therefore, in Patients 2 and 15, the su-

permetabolons consists of 9 metabolons, while, in Patient 14, 
the supermetabolon consists of 7metabolons. In Patients 5 and 
11, no metabolon was removed, hence their supermetabolons 
consist of 10 metabolons. Treating with doxorubicin destroyed 
supermetabolons in Patients 11 and 14 (i.e., 40% of the total pa-
tients) but did not affect supermetabolic pathways in the other 3 
patients. This phenomenon will be referred to as the “drug-sen-
sitivity and patient-specificity” (DSPS) of supermetabolons.

Before Drug Treatment After Drug Treatment

Patient 2
(30; 9)

Patient 2
(30; 9)

Patient 11
(66; 10)

Patient 15 
(17; 9)
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Patient 14
(57; 7)

Figure 3: Typical examples of the Planck-Shannon plots. The Planck-Shannon plots of 7-10 metabolic pathways (for each histo-
gram) before and after treating with doxorubicin. Patient # (survival months; number of pathways in the plot). The x-axis encodes 
the Shannon entropy, H, and the y-axis encodes the Planckian information of the second kind, IPS, [1, 9, 10, 11]. Doxorubicin de-
stroyed the super-metabolic pathways in Patients 11 and 14.

Not all supermetabolons are drug-sensitive (see Patients, 5 and 
11). The drug sensitivity of supermetabolons will be found es-
sential for the application of PSC to drug discovery research (as 
described in Section 7, while the patient-specificity of supermet-
abolic pathways will be essential for the application of PSC to 
personalized drug therapy as described in Section 8).

Longevity-Determining Supermetabolons
When 20 breast cancer patients were treated with doxorubicin 
for 16 weeks, 5 patients survived on average 10 months and an-
other 5 patients survived on average 70 months [2]. The tran-
scripts of 10 metabolons showed different patterns of expression 
in short and long survivors as analyzed by the Planck-Shannon 
classifier (PSC) applied to the mRNA data measured from the 
breast cancer tissues from these patients before doxorubicin 
treatment. PSC transforms an mRNA data set measured from 
a given metabolon into a point in the e Planck-Shannon plot as 
already mentioned. A pair of H and IPS was calculated from 
the Planck Distribution Equation (PDE) [1] that best fits the 
histogram generated from the RNA data of a given metabolic 
pathway. Once a given set of 30 or more data points in a histo-
gram is found to fit PDE, IPS, and H are computed from it as 
described above. We found that Pathways 3, 4, and 5 formed 
a supermetabolon (operationally defined as a set of points on 
the Planck-Shannon plot that lies on a regression line) among 
the 5 long survivors, whereas only metabolon 7 was commonly 
expressed in 5 short survivors.

Thus we can predict that any breast cancer patients whose breast 
tissues mRNA levels analyzed before drug treatment show the 
activation of metabolons 3, 4, or 5 will most likely survive for 
about 70 months. This method can also be employed for drug 
discovery by searching for drug candidates that mimic the be-
havior of doxorubicin on the Planck-Shannon plot [6-9].

Drug Discovery
The Planck-Shannon classifier as applied to transcriptomic data 
can be applied to the following 5 levels:
I.	 Discovery of New Drugs
II.	 Discovery of natural agents (to be called bioceuticals) that 

can replace FDA- approved drugs to avoid their long-term 
toxicity,

III.	 Repurposing FDA-approved drugs for treating diseases 
other than those for which drugs were originally approved.

IV.	 Personalized pharmacotherapy, i.e., finding the drug out 	

of many available drugs that can most efficaciously treat the 
disease of a given patient,

V.	 Promotion, to increase the therapeutic ratio of discarded 
drug candidates to the level sufficient to pass the threshold 
for FDA approval.

Due to space limitation, only (i) and (iv) are described in detail 
below.
The key idea behind the drug discovery strategy based on the 
Planck-Shannon classifier is that any drug candidates that gen-
erate the same supermetabolons on a set of cancer cell cultures 
that are identical or similar to those produced by any FDA-ap-
proved anticancer drugs can be predicted to be effective anti-
cancer drugs at the clinical level. This new strategy involves the 
following key steps:
I.	 Select a drug for treating disease X tested on M cell cul-

tures, i.e., select D(X, M).
II.	 Select M (about 20) cell cultures derived from tissues carry-

ing disease X, i.e., select C(X, M). Prepare M cell cultures 
so that they will exhibit a distribution of anti-cancer drug ef-
ficacies just as the 20 breast cancer cells employed by Perou 
et al. [2].

III.	 Select a set of N (about 20) metabolic pathways, i.e., 
MP(N), where N can run from 1 to 10.

IV.	 Determine the supermetabolons (SM) characteristic of dis-
ease X using N metabolons and M (abut 20) cell cultures 
characteristic of disease X, i.e., find SM(X, M, N) as de-
scribed above.

V.	 Find potential drug for X, i.e., PD(X), that produces the 
same Supermetabolon as D(X, M, N), i.e., find PD(X, M, 
N). It is predicted that PD(X, M, N) will be found to be as 
effective as D(X, M, N), when tested clinically.

Personalized Medicine
The objective of personalized pharmacotherapy is to find the 
best among the Y FDA-approved drugs for treating disease X 
that is most therapeutically efficacious for patient Z, i.e., to find 
BD(X, M, N, Z), BD standing for ‘best drug’.
I.	 Select a set of M cell cultures derived from tissues carrying 

disease X.
II.	 Select Y FDA-approved drugs for disease X that produce Y 

toxic side effects on M cell cultures when examined with N 
metabolic pathways, i.e., determine toxic SM(X, M, N, Y, 
Z), where Y is predicted to range from 0 (zero toxicity) to 
10 (most toxic).
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III.	 Calculate the therapeutic indexes (i.e., Toxic dose/Effective 
dose) of the Y FDFA- approved drugs based on the infor-
mation embodied in SM(X, M, N, Y, Z) and select the drug 
with the largest therapeutic index for Patient Z.

Conclusions
The drug discovery strategy and the new approach to pharmaco-
therapy proposed in this paper is based on (i) the cell language 
theory and (ii) the Planck-Shannon classifier developed in the 
past couple of decades at Rutgers University (see Table 1 be-
low). The cell language theory predicts the existence of systems 

of metabolic pathways (called supermetabolons) that are respon-
sible for cellular computing or cellular reasoning underlying hu-
man health or diseases and the Planck-Shannon classifier can 
identify supermetabolons based on the transcriptome of patients. 
Our preliminary data accumulated during the period 2010-2022 
indicate that the transcriptome-based Planck-Shannon classifi-
er method of drug discovery advocated here, when successfully 
implemented, could reduce the cost of drug development from 
current $1.2 billion down to $100 million or less per drug and 
the development time from the current 12-16 years to 3-5 years 
[10-13].

Table 1: The supermetabolon* approach to drug discovery and personalized pharmacotherapy.
Organization 

Level
Components Linguistic 

Analogy
Characterization 

Method
Disease due to 

malfunctioning components
I enzymes words

(to denote)
chemistry Level I disease

II metabolons sentence
(to decide)

biochemistry Level II disease

III supermetabolons texts 
(to compute or think)

mathematics and  computing
(e.g., PlanckShannon classifier)

Level III disease
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