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Abstract
In this article, we propose a new cosmological model called ‘Fractal Cosmology’ based on two pos- tulates that 
gives a ‘not really’ answer to the question in the title: At any epoch of the universe, for an arbitrary local observer 
living well below the scale of Hubble horizon, the observational universe centered on this observer appears to be 
accelerated expanding. The anthropic principle is thus un- necessary for our current observation of an accelerat-
ed expanding universe. We will argue how such a story is qualitatively compatible with the CMB and low-redshift 
observations on the expansion history. Moreover, Fractal Cosmology implies four characteristic signals that could 
substantially distinguish it from the standard ΛCDM cosmology: 1) Unlike the prediction in ΛCDM, in Fractal Cos-
mology, the local Hubble rate will be positively correlated with regional matter overdensities. 2) In a conventional 
expansion history data analysis of modern cosmology, effectively, dynamical dark energy will show phantom behav-
ior. 3) Over-aged high-redshift astronomical objects/events will generally exist in the observation samples, where 
‘over-aged’ specifically means that the astronomi- cally (local physics) derived event age is longer than the ΛCDM 
predicted universe age at the event redshift. 4) Astronomical events with a characteristic time, for example the type 
Ia supernovae light curves, are subject to a growing characteristic time scattering (variance) with their redshifts, 
even after being modulated by the (1 + z) factor expected in standard cosmology; On the contrary, in for example 
ΛCDM, no known effect would lead to such a redshift-dependent trend of the characteristic time variance of the 
same type of events. Each of those four signals has either inconclusively shown some hints in recent observation or 
is feasible to be tested with current and near-future available data.

https://doi.org/10.63620/MKNJASR.2025.1059

Keywords: Geopolymer Concrete, Coconut Fiber, Marble Powder, Mechanical Properties, Durability, Alternative Aggregates

Introduction
When asked why we happen to be living in an epoch of the 
universe where the negative pressure dark energy is taking 
the majority,  70% of the cosmic fluid, the answer is usual-
ly the anthropic principle [1], i.e. a civilized observer needs 
to be born in an environment where the dense structure of 
the universe is diluted by dark energy. However, many find 
this explanation unsatisfactory- tory due to its arbitrariness 
and lack of further testable implications. In this article, we 
will provide an alternative solution to this question, which 
appears to be less human-centric, and point to observational 
implications that can be tested in the near future.

The article is organized as follows. In Section II, we will re-
explain the Einstein equation as a conservation law of the 4D 
spacetime substance volume, which naturally incorporates a 

positive metric term. In Section III, we will try to connect the 
obtained positive metric term to the observational ‘dark ener-
gy’, or to be more specific, the accelerated expansion reality 
of our universe. We will also discuss how both low and high 
redshift observed expansion history of our universe can be ac-
commodated in the theorems proposed in this article. In sec-
tion IV, we will compare the ‘Fractal Cosmology’ proposed in 
this article with other theoretical candidates of beyond stan-
dard cosmology, and point out four intriguing implications of 
the Fractal Cosmology that can be tested against current and 
near-future astrophysical/cosmological observations.

In this article, we will use the (—+++) signature. We will 
adopt differential manifold notations mainly from [2], and Ray-
chaudhuri’s equation derivation and results from [3].
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Einstein Equation with Positive Metric Term
In the original Einstein’s equation Λ was an extra term added 
with no good explanation within classical general relativity, 
and thus has no prediction on its value. Here, we will reinter-
pret the Einstein equation as a result of two postulates, which 
naturally lead to a positive metric term resembling the role of 
the cosmological constant, but different in ways that will be 
discussed by the end of this section.

An overview of the story is as follows: we will show how Ein-
stein’s equation can be explained as a differential version of the 
4D spacetime substance volume conservation law. This conser-
vation rule is applied to the flow along a vector field F ∈ X(P) , 
where P = (−ϵ, ϵ) ×Σ is a 4D submanifold in the spacetime, i.e. 
a spacetime/cosmological patch. The variations on the volume 
and vector fields is defined in terms of the pullbacks of the dif-
feomorphism given by the flow of F.

On the other hand, to define the distance on a pseudo-Rieman-
nian manifold with signature (− + ++), we need a metric g: TpM 
×TpM → R, which in Cartan’s coframe formalism can be ex-
pressed as g = −αt ∧ αt + Pαi ∧ αi , and α are 1-forms. Denoting 
the base vector field dual to the coframes as Xt, Xi ∈ X(P), we 
have them orthonormal with each other, and locally spanning 
TpP. However, they could all be non-commutative with F, name-
ly, the Lie derivative LF in the most general case is nonvanishing 
in every direction.

The above rather mathematical description can be understood 
in the following physics interpretation: a patch of the universe 
as a 4D spacetime (sub)manifold is like a fluid cylinder with the 
3D space as the cross-sectional area, 1D time duration as the 
thickness of the fluid cylinder, and the vector field F the flow 
velocity (we will see later what makes Xt a little bit more special, 
by choosing a synchronous gauge). See Figure 1 for a schematic 
illustration.
Imagine that a bug, or a human, flowing in the fluid, or spacetime 

substance, is trying to construct a metric so that it can measure 
the physical size of the things around it. It is natural for the bug 
to take the flow direction as special and build a metric anchored 
to the flow velocity. However, when flowing in the fluid without 
any reference outside the flow, it is impossible for the bug to 
know the true flow velocity, and thus to construct the exactly 
’right’ metric that has one of the coframes commuting with the 
flow vector field, the one that does not need any recalibration as 
it drifts along the flow.

When enforcing the 4D volume conservation law for the varia-
tion of scalars and tensors along the vector field F flow, where 
the 4D volume form is defined conventionally as αt ∧α1 ∧α2 ∧α3, 
such a conservation law puts constraints on the metric. We will 
see that locally they take the form of Einstein’s equation with 
a metric term, and the coefficient for the metric term is always 
positive, but could be a general scalar function instead of a con-
stant. 

Just like a fluid cylinder could be stretched or compressed along 
the direction of flow, so could the scale of time of a patch of the 
universe be stretched or compressed. This metric term coeffi-
cient is an outcome, thus reflecting how much a spacetime patch 
is stretched or compressed along its flow, i.e. the time direction.

To begin with, we start from a 4D pseudo-Riemannian manifold 
M, and a vector field F ∈ X(M). The physical meaning of them 
is the spacetime manifold our physical world resides in and the 
flow of the substance of the spacetime 1. Now we take a hyper-
surface Σ ⊂ M, which is compact, integral, well-behaved and 
nowhere tangent to F, i.e. Fp ∈/ TpΣ for all p ∈ Σ.

The restriction of F on Σ, F|Σ can specify a local coordinate chart 
that ∂ ∂τ ∼ F. Denote the 4D manifold P = (−ϵ, ϵ) × Σ constructed 
by vector field straightening that is diffeomorphic (smooth and 
invertible mapped) to a submanifold S ∈ M as a patch.

Figure 1: An illustration of time-like congruence. A 4D cylinder confined by red and blue hyperfurfaces λ away from each other 
has volume U = V λ, and the discussion in section II is focused on how the evolution along a congruence vary this 4D volume δU 

= V δλ + λδV .
Now as a standard next step to do any physics in volving distanc-
es and volumes on this spacetime patch, we need a metric g: TpP 
× TpP → R. In general, it can be decomposed into a Cartan’s 
coframe expression: g =−αt∧αt+ Σ αi∧αi, with dual frame vector 
fields Xt,Xi defined by ⟨αa,Xb⟩ = δab. In the most general case, 
[∂/∂τ,Xt]​ and [∂/∂τ, Xi] could be all non-vanishing. However, 
we have the freedom to choose synchronous gauge by requiring 

[∂/∂τ, Xt] ∝ ∂/∂τ, or even requiring Xt ∝ ∂/∂τ . Note that there is 
nothing physical happening in this step, simply a gauge choice– 
by rotating the dual frame we are guaranteed to find such a Xa 
among the four, and we just need to call the coframe dual to it 
as αt. Namely, the physical spacetime substance flow direction 
determines the time coordinate of our metric, but only the direc-
tion of it. There is no theory that can guarantee the point-to-point 
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identification between the spacetime substance flow vector field 
and the time-like frame of the metric.

A volume form corresponding to the metric is Γ = αt ∧α1 ∧α2 ∧α3. 
Let us look into the variation of the element volume of subman-
ifold U ∈ P along the flow of  Lie derivative of the volume 
form Γ has the property:

                                                                                                       (1)

where αV = α1 ∧α2 ∧α3 is a 3-form, the volume form of the spacial 
hypersurface.
Now we gradually switch from the differential mani fold lan-
guage to the languages more familiar to the general relativistic 
physicists, so that we can use some of the well-established geo-
metrical results and facilitate physical interpretation towards the 
end. We will denote the Lie derivative  as variation . We 
take the 4D volume of an element of the spacetime substance as 
U = λV, where λ,V are element volumes on  direction 1D sub 
manifold and on 3D submanifold Σ.

Based on the Lie derivative property acting on the volume forms 
in equation (1), and the notation introduced above, we can write 
the variation of the 4D volume along the flow of  as:
                                    δU =λδV +Vδλ                                                        (2)

Suppose that the 4D volume of the spacetime substance is con-
served along its flow:
                               δU +δQ=0,                                                (3)
where δQ is the in/output of spacetime substance along the flow 
to the element volume we are studying:
                                        δQ = Tab ξaξbVλδτ                                                                   (4)

Tab is a current tensor of the spacetime substance, defined by 
equation (4), and ξa is the covariant notation of the Cartan’s 
frame Xt. We hereby denote the other frames Xi as ηa

(i).

It is well known that the expansion θ of the cross-sectional area 
of a flow can be obtained by Raychaudhuri’s equation [4]. In our 
scenario, the variation of expansion gives us the variation of the 
cross-sectional area of the spacetime substance flow, i.e., the 3D 
hypersurface volume by δV = Vδθ. We need to find the similar 
result for δλ.

Since the volume forms are defined based on the choice of 
frames ηa

(i) and ξa, following the same arguments in Wald’s 9.2 
[3], Bab = ∇aξb  contains the information of the expansion in time 
and space directions. In the text book, it is assumed that the flow 
is along the geodesics, because in the conventional discussion, 
Einstein’s equation is a theory given beforehand; thus, the metric 
and geodesics determined by Einstein’s equation can be used in 
the investigation of Raychaudhuri’s equation. How ever, in the 
setup here, we do not presume Einstein’s equation; the metric 
is an unknown geometrical property to be solved, following the 
spacetime substance volume conservation rule. So the spacetime 
substance flow in the derivation here has to be general enough to 
be any time-like vector field. We will see, towards the end of this 
section, how the geodesic congruence always saturates to the 
spacetime substance flow after long enough time, flow-related τ 
or time-frame-related t. 

In the most general case, assuming that a synchronous gauge can 
be adopted, we can decompose Bab into the textbook expression 
with one extra time-like term:

                                          (5)

where hab = gab+ξaξb is the spacial metric, characterized by hab ξa 
= 0 for the time direction frame ξa.

Contracting the above equation with ξa, we get ξa∇aξb = αξb. Fur-
ther contraction gives us the result 

This result implies that the connection ∇agbc does not vanish on 
arbitrary vector fields in our setup. gab, thus the normalization 
of the time frame, is drifting along the flow. When requiring α to 
be perturbative order, it will only introduce effects in the next-
to-the-leading or der term in the investigation on the variation 
along the  flow. In the physical sense, it represents the extent 
to which a bug in the flowing fluid described previously fails to 
calibrate its metric instantaneously to the flow velocity to cancel 
the stretching/compression of the scale along the flow.

Because in our initial setup P is obtained by vector field straight-
ening, the foliation structure is guaranteed to be available. We 
can thus further require the flow direction   to be orthogonal 
to Σ, and this will put con straints on the metric (and connec-
tions) through Frobe nius’s theorem[3], that the antisymmetric 
term ωab = 0 vanishes.
Recall that we chose the gauge  . Thus, the variation 
along the spacetime substance flow  is proportional to

                                                    
                                                                                                     (6)
                            
                                                                                                        (7)

                                                                                                         (8)

                                                                                                        (9)
Contracting equation (6, 9) with hab, we can get the famous Ray-
chaudhuri’s equation:

                                                                                (10)                           
Because Rcabd has antisymmetry, the last term goes to zero. 
Contracting equation (6) with ξaξb,

           
                                                                                                    (11)
which cancels the B2 term in equation (9), thus
                                                                                                      (12)
                                                                                                  
                                                                                                     (13)

Equation (10) and (13) are proportional to  and  with the 
same factor , and as the variation of the expansion factor on 
the frame, they are related to the 3D spacial and 1D time-dimen-
sion volume variations through δV = Vδθ and δλ = λδα by the 
fractional expansion of the corresponding frame.

δα =−α2δτ is easy to see from equation (13). For δθ, the first 
term on the right-hand side of equation (10) gives an exponen-
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tially diverging or decaying mode. Dropping the second-order 
terms, we get:

δθ = −Rab ξ
a ξb δτ                                                                     (14)

Those dropped terms contribute partially to the ‘back reaction’ 
term in Buchert’s gauge [5]. A cosmological model, Timescape 
Cosmology, based on Buchert’s discussion on the backreaction 
term, resembles Fractal Cosmology, based on the 4D spacetime 
substance volume conservation theorem in this article, in many 
aspects. We will discuss them in the section IV. 

Substituting those variations of the volumes back into equation 
(3), we get:

                             

                                                                                                    (15)

We can expand the second term into the contraction of a covari-
ant tensor with time direction frames using . Al-
though we have noticed that this nor malization varies along the 

 flow, at leading order we can still approximately adopt this 
relationship. Thus, for an arbitrary time-like frame vector ξa, the 
scalar equation (15) gives rise to the covariant tensor equation:

Tab = Rab −α2gab                                                                          (16)

It seems like the Einstein equation that we are familiar with, 
but not exactly. We have made no statement about the space-
time substance current tensor Tab by far, and it needs a dressing 
on its formalism to be related to the energy-momentum tensor. 
As a derivation from the skew-symmetry property of general 
volume forms, Bianchi’s identity holds for the Ricci curvature 
in equation (16) regardless of the slight drifting of the metric 

 mentioned before. According to the Bianchi iden-
tity, Tab is not conserved on U:
∇aTa

b = ∇aRa
b −2α∇bα                                                           (17)

= ∇bR − 2α∇bα                                                                        (18)

However, rewriting the Tab in equation (16) into Tab , where
                                                                                                  (19)

we get
                                                                                                   (20)

When α is constant throughout P, this equation takes the exact 
form of Einstein’s equation with a positive cosmological con-
stant. By far, we have ‘derived’ the Ein stein’s equation, at least 
something taking its form, from only two postulates.
1.	 Our physics lives on a 4D pseudo-Riemannian manifold. 

The flow of 4D space time substance can be described by an 
arbitrary vector field living on this manifold. 

2.	 The 4D spacetime substance volume is con served along 
its flow.

The metric, thus the corresponding volume’s definition, has the 
basic features in the differential manifold context, to ensure the 
general assumptions of a well behaved physics system, such 
as smoothness and local Euclidean. Some of the convention-
al thoughts in vanilla general relativity, such as the absolutely 
non-drifting metric and geodesics taken for granted before-hand, 

have to be loosened. Lastly, the perturbative expansions in the 
above derivation assume the variation of the volumes, shears, 
distortions, and curvature to be small on a well behaved space-
time manifold patch that we described at the beginning, with no 
singularities or other unnatural, sophisticated structures. 

Now we proceed to interpret the physics implied by equation 
(20) whose derivation so far has been highly geometrical. By 
comparing equation (20) with the original Einstein’s equation,
                                                                                                  
                                                                                                    (21)

it seems that ˜Tab takes the role of an energy-momentum tensor. 
Taking the dual of ˜Tab, it goes back to Tab =  Re-
call that the current tensor Tab was originally introduced in this 
article in equation (4), to describe the in/output of the spacetime 
substance to the element volume we are studying. Combining 
all those intriguing hints, we can conclude a new perspetive on 
the concept of ‘matter’ that has been standing in the center of 
physics research in the past thousands of years: 
The concept ‘Matter’ in the physics world is the current of 
spacetime substance that we sub consciously identify with 
the energy conservation. Our early infancy (3-5 months) cog-
nitive devel opment of the ‘object permanence’ [6] automat-
ed this process. 

One important reason why we can make such a statement is that 
equation (16) to (20) only took a rewrite to separate a part of the 
degrees of freedom, and the two equations are mathematically 
equivalent. Through the perspective above, we are suggesting 
that the reason why the original Einstein’s equation has come 
forth before equation 16 is because we tend to explore the physi-
cal world on a permanent matter (conserved energy) based view. 
Moreover, the reason that such a cognitive strategy is developed 
so early and so widely among different species (for example, 
cats [7]) is probably because equation (20) with vanishing δα 
applies in almost every earthly scenario, thus becoming a ubiq-
uitous feature trained out from evolution of the neural systems. 

To see why δα is negligible in any earthly scenarios but could 
play a non-negligible cosmological role, we can use the earlier 
introduced analogy of the spacetime substance flow and a regu-
lar fluid flow, for example, the water flowing in a riverbed. The α 
term regulates the rescaling of the whole frame, thus the metric, 
due to the stretching/compressing of the fluid cylinder thickness 
along the flow. Under the volume conservation law, this effect is 
only significant when the cross-sectional area variation is signif-
icant. In the flowing river case, that corresponds to flowing from 
a branch to a mainstream or the inverse. In the flowing spacetime 
substance case, that corresponds to the scenario where the vari-
ation of the expansion θ, which on the first order is proportional 
to the Ricci curvature Rab, becomes significant; or the scenario 
where we are studying the variation of α in an extremely large 
area, for example a Hubble-sized patch or even larger. The nat-
ural physics environment on the earth is known to be extremely 
gravitationally weak, in contrast to the strong (in natural units) 
gravity case that only becomes relevant in astronomical and cos-
mological discussions, and of course, is very small-scale com-
pared to the cosmological scale.

Back to equation (20), one intriguing feature we can see is that 
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the coefficient α2(x) of the metric term is always positive. In 
the expression here, we explicitly point out that α(x) could be a 
function of the 4D spacetime coordinate, as up to this point, all 
our discussion hap pens on an element volume on a patch P on 
the space time manifold M. We will discuss the space and phase 
space average on it, which is more relevant for a practical obser-
vational universe scenario, in the next section. In any case, one 
can see the similarity and difference between α2(x)gab term and 
the Einstein’s constant term Λgab: the coefficient for the former 
is a scalar function, while the latter is a constant; Thus, the for-
mer could spoil the conservation of energy-momentum tensor by 
∇a ˜Tab = 2α∇bα, while the latter nicely respects the conserva-
tion of energy-momentum tensor ∇a ˜Tab  = 0 one of the reasons 
for it to be introduced by Einstein originally; Lastly, the former 
coefficient α2(x) is always positive, while the latter Λ could be 
positive, zero, or negative, corresponding to de Sitter, flat, and 
Anti de Sitter universe.

In the past decades, it has been almost certain that our observa-
tional universe is de Sitter, i.e., when testing expansion history 
data in the framework of the cosmological constant, we need a 
positive Λ. Considering this observational reality, the automatic 
positivity of the metric term coefficient in equation (20) is quite 
encouraging. How ever, the breakdown of energy-momentum 
conservation is not so welcoming, although we briefly discussed 
before how conservation of energy-momentum tensor could 
originate from cognitive adaptation in the earth environment 
instead of a more fundamental physics rule. In the theoretical 
framework in this article, the conservation of energy momen-
tum tensor is only a special case secondary result of equation 
(20) when α is approximately constant throughout the physics 
system in question, and a consequence of the contracted Bianchi 
identity. Thus, any physical consequence of the breakdown of 
energy momentum conservation is only expected to show up in 
scenarios like the expansion history of the universe or a strong 
gravity environment such as near a black hole horizon, where a 
non-negligible gradient of α is present on either extremely large-
scale or strongly curved spacetime patches. The violation of en-
ergy-momentum conservation in such regimes is irrelevant to, 
and thus does not ruin, the gravitational dynamics of Newtonian 
systems.

In an idealized case, let us imagine what will happen if a space-
time patch P is not ‘small’ but can flow to large τ, even asymp-
totic infinity, along the ∂ ∂τ direction. When approximating δt 
δτ with a constant, the integral of equation (13) tells us α ∼ 1 
τ , which goes to zero as τ → 0. Even taking the variation of δt 
δτ into account, as long as it does not change sign, the trend of 
vanish ing α with τ → ∞ would still apply. So it seems that after 
long enough time, the congruence of geodesics con verges to the 
spacetime substance flow, as we expected. On the other hand, if 
we regard the integrated τ as the lifetime of a patch of observa-
tional universe, under the approximately constant assumption of 
δt δτ , equation (20) together with α ∼ 1 τ suggests that √Λ ∼ 
|α| ∼ 1 τ. This is exactly the case that we have found out about 
our own observational universe: the content of the cosmic fluid 
is mainly cosmological constant or something behaving like it 
at low redshift, and as a result of this fact, the lifetime of our 
universe is the same order of the inverse of the cosmological 
constant square root.

Indeed, if one has not noticed this, the widely cited values of 
cosmological constant Λ, Hubble constant, universe lifetime, 
and many other ways of reformulating the first (zeroth) order 
expansion rate of the universe, are all roughly the same degree 
of freedom extracted from redshifts and distances data. All at-
tempts to jump out of this framework, giving an alternative 
quantitative de scription of the above physics, for example, the 
calculation of Λ as the vacuum energy in quantum field theory, 
have been a failure. The argument in this section is another bold 
and rare endeavor in the literature to reason why Λ ∼ H0 might 
not be a coincidence. We will also give an independent estimator 
of the expansion rate, or α2(x), or approximately Λ, from the 
time domain astronomical observation in Section IV.

Before we conclude this section, it is worth noting that the the-
orem based on the two postulates here is much motivated by the 
thermodynamics explanation of the Ein stein’s equation by Ted 
Jacobson [8]. Instead of looking into the black hole case where 
one of the space dimensions is highly compressed, here we are 
studying the less special, well-behaved 4D spacetime submani-
folds, and the conservation of energy dQ = TdS in [8] is substi-
tuted by the conservation of 4D volume proposition dU +dQ = 0. 
The fundamental arguments are similar, that the Einstein’s equa-
tion can be understood as how spacetime distortion is driven by 
the flow of thermal energy/4D volume current tensor, under the 
constraint of energy/volume conservation law.

Cosmological Effect
Now that we have Einstein’s equation with a positive metric 
term, we want to see if we can connect it to the observational 
‘dark energy’. 

In the field of observational cosmology, dark energy has been a 
placeholder for the unexplained fact that we measure an acceler-
atingly expanding universe around us. The astrophysical objects 
at distances far enough to be in the ‘Hubble flow’ run away from 
us with ‘increasing speed’. Such an accelerated expansion real-
ity is fairly homogeneous, and the negative pressure portion of 
the energy density of the cosmic fluid has an equation of state 
very close to w ≡ p ρ ∼ −1  [9–11]. Those are about the uncon-
troversial facts about what we know of the observational dark 
energy so far. Dark energy has no observed perturbative effects 
so far. 

Hence, most of the time, it is only discussed in the background 
level cosmology, through its effects on the Friedmann equations, 
although some recent research has already put efforts into mod-
eling the perturbation of the dark energy fluid and its effect on 
the large-scale structure. In the spirit of focusing on explaining 
what has already been confirmed or hinted by the real data in the 
discussion, we will concentrate on the background level cosmol-
ogy in this article. Besides, we lack sufficient theoretical tools 
to investigate the perturbative level cosmology, for example, the 
large-scale structure evolution, in the current premature status of 
the theorems proposed in this article. 

We denote the average over the space as ¯x and the expectation 
value over the full phase space as ⟨x⟩.  The two Friedmann’s 
equations are the time and space com ponents of the Einstein’s 
equation in a space-averaged gauge:
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Figure 2: All the Currently Observable Galaxies Around Certain Redshift, say z ∼ 6, Reside on a Shell with comoving distance χ 
away from us. A shell at χ(a) accommodates many Hubble horizon λH (a) = 1/H(a) sized patches, namely Hubble bubbles

                                                                                                          (22)
Assuming that our observable universe patch has evolved ‘long 
enough’ time, that the geodesics are sat urated to the averaged 
mainstream of the spacetime sub stance on the patch, the lead-
ing background order ⟨¯α⟩  vanishes. This could be regarded as 
a default calibra tion for any small, much below Hubble-scale 
observer in the universe, that their frames have always been 
tuned to the spacetime substance flow on their cosmological, 
Hubble-scale patch.

Thus, the metric term in equation (22) ⟨¯α2⟩gab is effectively 
σ2(¯α)gab, where the variance of α, σ2(¯α) = ⟨¯α2⟩ − ⟨¯α⟩2. 
Comparing equation (22) with the original Einstein’s equation 
with a cosmological constant (21), we see that σ2(¯α)gab ∼ 
Λgab, but with a possibly spacetime dependent coeffecient, thus 
breakdown of energy momentum conservation in the cases dis-
cussed before: at cosmological scale or extremely strong gravity. 
Hence, it could potentially have implications for the baryogen-
esis problem.

Here, let us focus on how to accommodate the theoretical story 
so far into the observational reality of the relatively stable scal-
ing of σ2(¯α) with the scale factor a and the homogeneity of an 
accelerated expanding universe.

We provide an educated guess for the zeroth-order scaling of the 
variance of spacetime substance flow speed, matching the back-
ground-order expansion history of the universe derived from 
physical dimension analysis as follows. In natural units, we have 
the dimensions of energy, spatial distance, and time as [ϵ] = 1,[d] 
= 1,[t] = 1. The physical dimension of Einstein’s equation is −2, 
so is the cosmological constant [Λ] = −2, and they are consistent 
with [α] = −1 from its definition in Section II as the time deriva-
tive of a dimensionless geometric property.

Recall that the physical meaning of α is the stretching of the time 

frame along the spacetime substance flow.

We discussed how this effect should be roughly on the order 
of the spacetime curvature. Thus, in a matter dominated uni-
verse, without resolving the details of the dynamics happening 
at smaller scales, from physical dimension analysis, we deduce 
that:

                                                                      
                                                                                                    (23)
The dimension of the above equation is −2, where dF should 
be some dimensionless universal constant that does not care 
about the detailed spacetime substance dynamics happening on 
a patch, as we have already operated the phase-space average in 
the calculation of σ(α). 

A perfect candidate for the dF coefficient is the fractal dimension 
of the Poission-like distribution of matter in our universe, which 
has a measured value of 2.4 as demonstrated in [12]. The fractal 
dimension is dimensionless, insensitive to local dynamics, and 
reflects how an isotropic physical quantity is equally partitioned 
into equivalent physical dimensions.

Next, let us investigate whether this guess from the physical di-
mension analysis works quantitatively. In our local universe, we 
have the measured values in ΩΛ ≈ 0.7, Ωm ≈ 0.3 and dF ≈ 2.4. 
It seems that these numbers perfectly fit the equation (23), with 
0.7 ≈ 2.4 × 0.3. 2.

Equation (23) seems fine for the low-redshift area z < ∼  1 in the 
sense that it does not drastically disobey any observational facts. 
However, the problem arises when we consider not only the low 
redshift, but also the high redshift expansion history. If equation 
(23) applies to the spatial averaged matter density regardless of 
the scale, deep into high redshifts, then we would not obtain the 
right expansion history confirmed by the current data, specifical-
ly, it would spoil the nice fitting of the CMB power spectrum to 
the ΛCDM predictions.

The remedy here is to add constraints on the scale to which the 
proportionality between averaged density of matter and σ2(¯α) 
is maintained. The variance σ2(¯α) will only trace the averaged 
matter density up to the Hubble scale, whichever value it is at the 

corresponding redshift, because the physics beyond this scale is 
causally disconnected. 

Assuming that the distribution of α is not correlated beyond 
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Hubble scale, then we can regard the calculation of the variance 
of ¯α in a large region consisting of several Hubble-sized patch-
es as carrying out redraws on the same distribution, thus subject 
to a suppression by the factor 1/N, where N being the number 
of Hubble-sized patches in the whole region. For example in 
figure 2, on a shell of comoving distance χ(a) away from us, 
there are number of N =Vshell/VHubble causally disconnected 
patches that follow roughly the same distribution of ¯α in their 
local Hubble volume 3. Hence, the variance of ¯α on the whole 
shell, corresponding to a specific redshift σ2(¯α)(χ(z)) is sup-
pressed by 1/N. 
In the regime of χ(a) >> 1/H(a) where the approx imations dis-

cussed above can be adopted, we can write the variance σ2(¯α) 
as a function of the scale factor or redshift, Λ(a):
                                                                                                  (24)
                                                                                                       

                                                                                                (25)
                                                                                                      

                                                                                                (26)

                                                                                                 (27)

Figure 3: The scale factor dependent shape of Λ(a) ≡ σ2(α¯) as a function of scale factor a. In the regime where far-field approxi-
mation holds, χ >> λH , the evolution of Λ(a) is sup- pressed by 1/N factor towards high redshift, as required by the CMB obser-

vation.

We can solve for the shape of Λ(a) by taking deriva tive of the 
integral equation (27) in the region where Nχ/λH = 10 is large 
enough to apply the 1/N suppres sion approximation, corre-
sponding to a = 0.2, or z = 4, regardless of the value of H0. 
Denoting , where Λ0 is the value of Λ(a) at 
redshift 0, from equa tion (27) we get:

                                                                                                    (28)

where 
, and we have used the relationships  and 
λH = 1/H.

On the other hand, in the regime χ(a) << λH, roughly z < z< 4.0 
needs more dedicated modeling, which we leave for future work.

Figure 3 shows the scale factor dependency of Λ(a) ≡ σ2(¯α) in 
the far field z > 4 by solving the ordinary differential equation 
(28). It is not scaling up as a−3 with the matter density, instead 
decreasing to a smaller platform, thus agreeing with the obser-
vation that the dark energy was subdominant in the early uni-
verse. The decreasing rate varies with the trial boundary value of 
Λ(ap), but the trend remains stable with reasonable trial values 
that confine X(ap) between 0 and 1. In a sentence, regard less of 
the initial/boundary fraction of dark energy at far-field redshift 
ap, a general conclusion is that the 1/N suppression dominates, 
thus diluting out the metric term σ2(¯α)gab when we look out 
toward decreasing scale factor a.

Discussion
Fractal Cosmology and Comparison with Other Cosmolog-
ical Models
One implication of the explanation using the space time sub-
stance flow variance for the ‘negative pressure’ domination of 
the regional cosmic fluid is that our ‘currently’ accelerated ex-
panding universe is not special in space and time of the uni-
verse. Anthropic principle is not needed in the picture implied 
by the theorems proposed in Section II, which we hereby name 
as ‘Fractal Cosmology’. Because at any redshift, an observer 
living well below the Hubble horizon scale would see an ac-
celerated expanding universe around them. Inside an arbitrary 
Hubble patch, or bubble, at a higher redshift, resides another ac-
celerated expanding universe. When the residents in that Hubble 
bubble look outward from a universe centered on themselves, 
they would see a simi lar chronicle of the evolving universe like 
ours: inflation, primordial plasma, recombination, reionization 
and large-scale structure formation, and ‘currently’ accelerated 
expansion.

When we received signals from their cosmological patch, we 
only took random snapshots of what had happened and what 
would happen on that patch of spacetime with no chronicle. 
Despite all the seemingly wild theorems in this article, one 
should think twice about the statement of ‘we are reconstructing 
the evolution history of our universe by tracing down to those 
high-redshift objects’, because those objects that we are observ-
ing now are light-like connected to us in spacetime, not time-
like. This fact suggests that none of those astronomical objects 
we are observing today would evolve to the current same-time 
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hypersurface in any frame transformation, so they do not have 
to be the precursors of a similar type of astronomical objects in 
our patch of the observational universe. An absolute chronicle 
of the universe since ‘The Big Bang’ loses its meaning in this 
picture, when radially tracing far enough along light-like curves, 
every observer reaches their own ‘Big Bangs’, and the scale fac-
tor could play the role of time coordinate for any local (below 
Hubble size) observer in the universe.

Forward-time, or the flow direction of the spacetime substance, 
might be a concept as trivial as the downward direction of the 
universe. When zooming out to large enough scale, the universe 
manifests itself as a series of indefinitely unfolding self-similar 
structures at hierarchical scales, only pivoted at a local observ-
er’s scale when a chronological story needs to be told. The state-
ment that our universe is currently 14 billion years old gives the 
Earth a special position in the time dimension of the universe. If 
the Earth is not special in the space of the universe, why should 
it be in time?

The idea of such a Fractal Cosmology conceptually inherits 
some genes from the Steady State theory of cosmology. They 
both imply that the universe does not have a global beginning or 
ending, and looks quite the same at any epoch. However, unlike 
the Steady State theory, which stresses the unchanging of the 
universe over time, the Fractal Cosmology stresses the self-sim-
ilarity of the universe over spacetime, which is a more radical 
application of the postulates of relativity.

On the other hand, one might have noticed that Fractal Cosmol-
ogy echoes many aspects of the Conformal Cyclic Cosmology 
(CCC) [13, 14], especially the smooth joint of the conformal 
infinity of one patch and the Big Bang of another. The addition-
al spice in Fractal Cosmology compared to the CCC is its sug-
gestion of patch-wise dis synchronization of the Hubble-scale 
regions, which leads to potentially more characteristic observa-
tional signals that could be tested with recent and near-future 
data. We will discuss those signals in Section IVB.

The property of σ2(¯α) ∼ Λ tracking the value of back ground 
average matter density in equation (23) is similar to the proposal 
in ever-present Lambda models [15, 16]. However, as we have 
discussed, such a positive correlation between these two physi-
cal quantities can only be valid up to a limited scale. Otherwise, 
such an effect will heavily violate the expansion history suggest-
ed by real data at high redshift. We provided a possible remedy 
to this problem in section III.

Lastly, Timescape Cosmology [17] might be the cosmologi-
cal model that shares the most ideas with Fractal Cosmology 
in the current literature. It explicitly introduced the concept of 
‘volume-averaged time’ and ‘lapse’, which is the multiplicative 
difference between the voids and walls area time frames. In the 
current development of this model, it seems that the observation-
al tests still focus on its implications on the background-level 
expansion history. Recently, a supernova Hubble diagram data 
analysis gave a concrete constraint on a major parameter in the 
Timescape Cosmology, the void fraction [18]. In the last subsec-
tion IVB4 of this article, we will discuss what kind of time-do-
main signals could provide another venue to probe the physics 
that distinguishes this type of cosmology from other candidates.

We also want to note that the Buchert’s average gauge [5], the 
theoretical basis of the timescape cosmology, resembles the 
patch average view in this article in many ways, and their back-
reaction term might correspond to the dropped-off higher order 
geometrical variations in Section II.

Observational Tests
So far, most of the extended cosmological models focus on their 
observational implications in the background level expansion 
history and perturbative fields of the matter density and photon 
temperatures. Corresponding data used to constrain those the-
oretical predictions are typically the Supernovae light curves, 
baryonic acoustic oscillations, CMB power spectrum, galaxy 
clustering’s, and weakening’s, etc. Due to the complexity of ana-
lytical and semi-analytical calculations on the perturbative level 
cosmology, most of the extended cosmological models are only 
tested against the expansion history. The danger of doing so is 
that people might be playing with too few degrees of freedom in 
the data, with too wide theoretical possibilities.

Specifically, in the heated discussions on the Hubble tension 
recently, many seemingly different models are actually degen-
erate on the background-level cosmology. The same amount of 
information contained in the Hubble diagram is translated into 
different fancy-named theoretical parameters, which observers 
cannot distinguish at current or realistically near-future preci-
sion. A bigger problem is that, in the maze of transforming the 
same set of numbers back and forth using different languages in 
different subfields, we could lose track of the real input and out-
put information of a theory, and make circular argument like the 
one recently spotted out for the ‘Hubble cut-off’ in holographic 
dark energy model [19].

Hence, we will present a discussion incorporating different, 
independent aspects in observations to scrutinize what kind of 
signals could be implied by the Fractal Cosmology model pro-
posed in this article. In general, Fractal Cosmology unavoidably 
introduces variation in the Hubble rate correlated with regional 
matter overdensity and redshift. Other than that, the most char-
acteristic observational implication of Fractal Cosmology could 
be the dissynchronization of the observer-dependent cosmologi-
cal time between different Hubble-sized patches.

The Positive Correlation Between Hubble Rate Variation 
and the Matter Overdensity
In ΛCDM, or any cosmology with standard Einstein’s gravity, 
it is expected that the variation of the Hubble rate is negative-
ly correlated with the variation of matter overdensity. It can be 
physically understood as a result of the standard gravitational 
theory, in the way that the mass particles in a void would be 
sucked away from the void center by the growing matter densi-
ty towards the outbound. As a result, the observational Hubble 
rate H = ⟨v⟩ ⟨d⟩ measured from the center of the void exceeds 
the overall average. There are multiple ways to semi analyti-
cally derive this negative correlation relationship at the linear 
perturbation level with or without a cosmological constant [20]. 
Moreover, this theoretically predicted negative correlation has 
been validated by multiple N-body simulations carried out by 
different groups in the literature [21].

Hence, it is important to stress an unusual implication of equa-
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tion (23), that the metric term, thus the main contributor to the 
accelerated expansion of the current universe, would be posi-
tively correlated with the regionally averaged matter density in 
Fractal Cosmology. It is substantially different from the standard 
cosmology prediction described in the first paragraph.

Even though the negative correlation between the Hubble rate 
and the matter overdensity has been a consensus among cos-
mologists, especially the N-body simulation experts, the obser-
vational confirmation of this pre diction in our real universe has 
been a blank space. It is by no means an easy task to obtain 
trustworthy measurements on the Hubble rate centered on a dis-
tant location, not to mention the reconstructions of the matter 
density field at a required precision to test this relationship. The 
Hubble rate centered on ourselves, the earth, has only come to a 
precision ∼ 10% not so long ago.

Recently, a real data analysis on the Hubble rate variation and 
regional matter density variation has been carried out for the first 
time in the literature, using the density field reconstruction from 
BOSS DR12 and Supernovae Hubble rate measurement from 
Pantheon [22]. They have surprisingly found a positive correla-
tion between the local Hubble rate and the reconstructed mat 
ter density field. Such a counterintuitive result naturally faces 
many questions from the community and awaits cross-valida-
tion analysis carried out by other independent groups. However, 
the model proposed in this article provides one of the possible 
physical explanations for such an unexpected result and suggests 
that such a phenomenon is not strictly forbidden when the accel-
erated expansion of a cosmological scale patch originates from 
certain local physics in an extended gravitational theory.

Redshift Evolution of the Dark Energy-like Term
In a sense, the expansion history data analysis involving any 
tracer and the combination of the reforms of their redshifts and 
distances is mainly probing the density redshift dependence of 
a cosmic fluid. Because the theory predictions in those analy-
sis are based on the first Friedmann equation, namely the back-
ground-level expansion of that component of Einstein’s equation. 
The constraint on the equation of state w of the fluid is obtained 
from the assumption of energy-momentum conservation (fluid 
Euler equation), which we have discussed why it could be fair-
ly safely loosened in the story presented in this article. Under 
these considerations, we can directly borrow the discussion on 
the metric term, thus its tt component in Section III, to deduce 
three features of the Fractal Cosmology when considering the 
expansion history implied by it under the framework of dynam-
ical dark energy: 
1.	 At low redshift, the metric term behaves much like 10 

the cosmological constant term, and takes about the right 
amount (70%) of the total cosmic fluid given fractal dimen-
sion dF ≈ 2.4. 

2.	 When going to higher redshift, at some point, the curve 
shown in figure 3 suggests that the phan tom point (wde = 
−1) will be crossed. Here, by ‘phantom behavior’, we mean 
that the metric term tt component that can be effectively re-
garded as ‘dark energy’ density will appear to be increas-
ing with scale factor, which, under the conservation of en-
ergy-momentum assumption in the dynamical dark energy 
framework, is equivalent to w < −1. 

3.	 Combining the first two implications and assuming a 

smooth transition of Λ(a) at any redshift, negative wa is 
likely preferred when analyzing Fractal Cosmology with a 
w0wa cosmology pipeline.

The above perspectives are compatible with the recent results 
from DESI [23], which implies that a phantom dark energy 
is slightly preferred using their latest spectroscopic baryonic 
acoustic oscillation data.

High-redshift Astronomical Objects with a History Longer 
Than Our Universe Lifetime
An unusual and characteristic implication by Fractal Cosmology 
is that the lifetime of the observational universe centered on a 
civilization living in a galaxy at, say, z = 6, could be longer than 
1Gyr, which is the number of the ‘universe lifetime’ at z = 6 
calculated in our time frame assuming a ΛCDM cosmology. As 
mentioned in Subsection IVA, the light signals that we receive 
nowadays from high-redshift objects are likely non chronologi-
cal snapshots drawn from the whole history of their Hubble bub-
ble. The history of such a high redshift astronomical event could 
be longer than the universe life time as calculated in our time 
frame, because those astronomical events governed by baryonic 
physics follow the proper time of their local atomic clocks. As a 
result, this dissynchronization between different Hubble patches 
gives longer accretion time for those high redshift supermassive 
black holes, whose overabundance and overweight have been a 
concerning confusion in recent high-redshift observations [24]. 
The discovery of more-than-expected > 109M⊙ supermassive 
black holes (SMBH) above redshift z > 6 is forcing astrophys-
icists to look for exotic mechanisms to allow super-Eddington 
accretion of the black holes, where the Eddington limit is the 
accretion rate at which the radiation pressure force cancels the 
gravity. Even with a relatively heavy black hole seed ∼ 100M⊙, 
the Eddington limit accretion needs at least ∼ 0.8 Gyr to form a 
SMBH ∼ 109M⊙, and the universe lifetime at redshift 6 based 
on Big Bang theory is just about enough. Many cosmological 
approaches to the problem rearrange the expansion history of 
ΛCDM. In the Fractal Cosmology picture, an observer-depen-
dent proper lifetime of the universe, synchronized to the time 
frame determined by a local atomic clock, could be an alterna-
tive cure.

Similarly, astrophysicists might find that some of the high-red-
shift galaxies behave older than theory predictions. In recent and 
upcoming high-redshift astrophysical surveys, represented by 
JWST [25, 26], these kinds of puzzling early-universe, highly 
evolved galaxies have already been found, though with arguably 
inconclusive significance. How galaxies could have formed their 
stars and quenched the star formation at a stage so early in the 
universe has already triggered a wide discussion [27–29]. 

Although currently still troubled by systematics and selection ef-
fects, the high-redshift galaxy and SMBH properties, especially 
the charts on their ages as theoretically predicted by astronom-
ical and baryonic physics, will be crucial for testing the most 
characteristic implication of Fractal Cosmology, patch-wise cos-
mological time discynchronization. 

What is more, if the observation of a high-redshfit Hubble bub-
ble could contain non-chronological snapshot signals of the full 
history of their expanding universe, then futuristic astronomi-
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cal events could also be observed at high redshift as implied by 
Fractal Cosmology. In the high-redshift observations, we could 
potentially uncover the past and future of our patch of the obser-
vational universe.

Astronomical Event Time Duration Variance Introduced by 
Dissynchronized Cosmological Clocks
An important new physics that distinguishes Fractal Cosmology 
from standard cosmology is the dissynchronization of the cos-
mological time between Hubble-scale patches, or Hubble bub-
bles. The standard cosmology implicitly assumes a global time 
frame regardless of the scales or coordinates in spacetime. How-
ever, in the picture of Fractal Cosmology, we have discussed 
how a Hubble-sized patch at any position in the universe could 
harbor its different but homomorphic cosmological scale evolu-
tion history of the local universe. Intuitively, we would expect 
that the flow of time of the astronomical events happening on 
a cosmological patch would be anchored to the cosmological 
time on that patch. Again, one can think of a galaxy or a similar-
ly-sized astronomical object in the spacetime substance bulk of 
a Hubble sized patch as a leaf flowing in a river. Those smaller 
sized objects could have peculiar spacetime substance flow, but 
on the leading order, they should follow their local Hubble patch 
spacetime substance flow.

In practical observations, we are already equipped with the in-
struments that can study objects at high redshifts with z > 1, 
objects deep into the Hubble flow, and on other Hubble patches. 
If the dissynchronization between Hubble patches exists, then it 
should be reflected in the time-domain signal of those high-red-
shift astronomical events.

For example, let us consider the light curve of a su pernova. Re-
cently, time dilation has been observed in the supernovae light 
curves [30]. In standard cosmology, where the cosmological 
clock is synchronized throughout the whole universe, the time 
duration of the super nova light curve is predicted to have a time 
dilation of 1 +z = T(z) T0 , based on a similar argument for the 
red shifts in textbooks. This prediction is roughly confirmed by 
the analysis in [30].

There are caveats when one draws parallels between the red-
shift of photons and the time dilation of a macro scopic event. 
The former does not probe the local time frame, as the emission 
of a photon, considering its quan tum nature, could be seen as 
instantaneous. The red shift of a photon can be derived from 
the spatial scale factor growth, thus the stretching of the photon 
wave length without any information needed on the local time 
frame. On the other hand, the beginning and end of a supernovae 
event are time-like separated events and are sensitive to the dis-
synchronization of the local time frame under any gauge.

Let us start our discussion from the standard cosmol ogy case. 1 
+ z = T(z) T0 holds exactly when the clock of us, the observers, 
ticks at the same speed as the proper time of the source astro-
nomical object. Taking into ac count the random fluctuation of 
the time duration of su pernovae light curves due to different 
environments and other unknown astronomical reasons, mea-
surements on a supernovae light curve time duration at redshift 
z could be denoted by:
                                                                                                      (29)

where ¯T0 is the averaged pivot value of the supernovae light 
curve time duration at z = 0, and σint denotes the uncertainty due 
to any intrinsic scattering.

If there is any dissynchronization between our, the observer’s 
Hubble patch, and the source galaxy’s Hubble patch that needs 
to be modeled, we can use a factor γ ≡ dτo dτs called lapse to 
quantify it. Here we borrowed the name lapse from the times-
cape cosmology [17], which was originally introduced to de-
scribe the multiplicative factor between volume-averaged clocks 
of walls and voids. Fol lowing the argument on how the clock 
of an astronomical event should primarily anchor to the clock of 
the cosmological patch it resides on in the first paragraph of this 
section, the measurement on the time duration will be dressed by 
this lapse factor T(z)− > γT(z).

We have no means to measure the absolute value of time lapse 
from observation for a single event. It would be degenerate with 
the intrinsic scattering of the time duration.

We do, however, have the possibility to statistically test if such 
a non-trivial (non-unity) time lapse exists or not. The scattering 
of the time duration of a specific type of astronomical events 
around the center character istic value determined by its physical 
process, and estimated by the z = 0 averaged measurement ¯T0, 
could be decomposed into two uncorrelated uncertainties:

                                                                                                      (30)

namely, the uncertainty due to intrinsic scattering and due to 
patch-wise dissynchronization. Here σ(γ) is the variance of γ, 
and we used the fact that the characteristic time for an astronom-
ical event ¯T0 on cosmological scale is a small time duration 
that can substitute dts in the definition of lapse  .

Now we investigate the modeling of σ(γ). Recall one of the most 
important results in Section II of this article is Λ(a) ∼ σ2(¯α), 
and when the saturation of geodesic congruence to the space-
time substance flow happens, α can be effectively interpreted 
as the acceleration of a patch. Assuming a constant acceleration 
motion, thus a parabolic trajectory of any distant Hubble patch 
with respect to our Hubble patch, the relationship between the 
acceleration and the time lapse of a distant patch becomes
                                                                                                  (31)

When writing down this relationship, we are putting the patch in 
which a distant galaxy resides in Rindler coordinates, and treat-
ing the Earth observer as stationary. 4 Then the time transforma-
tion between a Rindler proper time and the stationary observer 
time gives the above re sult, and χs is the comoving distance of 
the source patch. Thus,
                                                                                                 (32)

And the variance of the supernovae light curve dura tion time 
modulated by the (1 + z) factor and its local average pivot value, 
denoted by  is:
                                                                                                   
                                                                                                (33)
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Figure 4: Fake supernovae light curves behavior predicted in Fractal Cosmology (upper panel) and standard cosmology (lower 
panel). In the upper panel, the lifetimes of the ten fake light curves in a redshift bin are subject to a growing uncertainty described 
in equation (33), while the lower panel only has a linearly growing uncertainty on the normalized flux mimicking the growing un-
certainty on fainter objects and a redshift-independent scattering of the light curve lifetime.

A fake data illustration of the difference between the standard 
cosmology and the Fractal Cosmology predictions on the over-
plotted supernova light curves grouped by redshift is presented 
in figure 4. This figure cannot be read quantitatively, as it is only 
designed to schematically show what kind of mode could poten-
tially distinguish the two models: the light curves will spread in 
a wider range on the time axis with growing redshift in Fractal 
Cosmology, while this effect is not expected to be as drastic in 
the standard cosmology.

Most intriguingly, equation (33) provides an observable estima-
tion of the metric term coefficient σ2(¯α), thus a completely new 
quantitative prediction of the accelerated expansion rate of the 
observational universe. Specifically, it suggests that if Fractal 
Cosmology is a successful cosmological model, at medium red-
shift (0.1< z <2), the variance of the dimensionless characteristic 
time W ≡ T(z) ¯ T0(1+z) of a type of astronomical events could 
be linearly fitted by the comoving distance square χ2. The slope 
is predicted to take approximately the value of the cosmological 
constant Λ as defined in the ΛCDM model, and the constant term 
accounts for the intrinsic scattering.

It is possible that the intrinsic scattering term ˜σ2 int is subject 
to unknown redshift drift due to certain environ mental evolu-
tion of a type of astronomical events. Even if such an extra red-
shift-dependent mode does exist in σ(W), it is not very likely 

to have a perfect degeneracy with the χ2(z) mode with a slope 
∼ σ2(¯α). However, it could be a major contributor to the sys-
tematics on the σ2(¯α) estimator proposed here.

This article hereby raises the analysis described in this section 
on the characteristic time variance of any type of astronomical 
events as a challenge to groups working on time-domain astron-
omy.
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