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Abstract

-

The stochastic processes [HMP (Homogeneous Markov), NHMP (Non-Homogeneous Markov), SMP
(Semi-Markov), RP (Renewal), A&RP (Age and Repair)] used for reliability analyses (to the author knowl-
edge) are particular cases of the G-Process. We present the basics of RIT (Reliability Integral Theory) a theory
able to deal with the G-processes. It can be applied to Reliability, Availability, Maintenance and Statistical
applications (Control Charts and Time Between Events Control Charts); its power allows the readers to prove
that the T Charts and the reliability computations for repairable sys-tems (e.g. the Duane method), used in
Minitab 21 are wrong: various cases are considered, from pub-lished papers. due to lack of knowledge of RIT),
moreover, with RIT anybody can prove that the T Charts and the reliability computations for repairable sys-
tems (e.g. the Duane method), used in Minitab 21 are wrong. We introduce the Stochastic G-Processes, via the
Integral Equations, which rule the rela-tionships between the reliabilities Ri(t|s) related to the system states.
We show the advantages of using RIT for Quality decisions (economics and business).

~
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Introduction

In 1999 the author met some managers of a "certified" company
developing a new engine; he saw them using the "Duane Meth-
od" for predicting the in-service MTBF by elaborating the test
reliability data. In 2022-25 he read various papers about Control
Charts with wrong Control Limits. Between 1999 and 2023, the
author read a lot of papers, of documents of Masters in RAMS
(Reliability, Availability, Maintenance, Safety) and books on
quality, reliability, fatigue tests, maintainability, maintenance,
statistical tests for decision, Control charts, Six Sigma, Taguchi
methods, ..., and unfortunately, he found many doubtful ideas
on the basics of Quality, Probability and Statistics (QPS).

Due to that, he decided to show his views about such points

These subjects can be dealt by Stochastic Processes: there are
several documents about them; a sample is in the references
[1-6]. Quality Methods, applied in industries, depends on Sto-
chastic Processes, information provided and on Probability and
Statistics [7-16]. Their knowledge is fundamental for taking
sound decisions: we will see the many wrong decisions taken by
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lack of knowledge. Since we consider Engineering Applications
of Stochastic Processes applied to physical systems in relation
to the analysis of their Quality and Reliability/Availability and
state of Control, we model the systems, by an engineering point
of view, with a finite number of states (finite state space) and
continuous time [17-23].

We begin by presenting it here through quite a simple example,
a stand-by repairable system of two units, A and B, with reli-
abilities R, (t) and R,(t) for the “mission time” (interval) 0----
-t. The system can be depicted as a three-state (fig. 1) process
(representing the system with states 0 (unit A is working and B
is in stand-by), 1 (unit A fails at some instant s<t and B starts
working), 2 (both units are failed). The state space is denoted by
S={0, 1, 2}; it is partitioned into disjoint sets, the set of the Up-
states S1={0, 1} and S2={2}, the set of the Down-states (only
one in the figure 1, yellow coloured). Forward transitions are
related to failures of the units while backward transitions are
related to repair of the units; the system fails if it enters the set
S2; any transition from S2 to S1 restores the system to a working
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condition; we did not depict the “inner transitions” j—j, show-
ing that the system remains in the same state j. The system is
reliable as soon it makes transitions within S1: for each Up-state
j € S1 we define a reliability function R (t) which is the proba-
bility that the system does not fail (i.e. does not enter the set S2),

for the whole “mission time” (interval) 0-----t, while for each
state j € S we define an availability function Aj(t) which is the
probability that the system is not failed (i.e. does not enter the
set S,), at the instant t.

UP states

Figure 1: Transitions of a Stochastic Process.

Excerpt 1: Some Documents with Several Drawbacks

For a single unit we define the "failure rate" h(t)=f(t)/R(t) which
generally depends on t. IF and only IF h(t)=*, a constant not
depending on t, then MTTF=1/*, and *=1/MTTF and R(t)=-
exp(-*t): exponential reliability, the item is always "as good
as new". In any other case the failure rate is h(t)*1/MTTF, and
hence MTTF*1/h(t). For the Weibull distribution (* character-
istic life, * shape parameter) R(t)=exp[-(t/*)*], the failure rate
h(t)=(*/*)(t/*)*-1, and hence MTTF*1/h(t): many professionals
do not know that.

Consider what we found on an EJTAS paper December 2023
“A New Approach for Effective Reliability Management of Bio-
medical Equipment” (3 Indian authors): there “Reliability is de-
fined as the probability that an equipment or process performs
its intended function adequately for a specified period of in a
defined environment without failure.” What is wrong with the
definition? The specified period is not the interval 0----t. They
add, later, “where ‘i’ is mean of time between failure (MTBF),
'c’ is standard deviation of MTBF and 'x’ is breakdown time”.
This is misleading because they confuse MTBF with MTTF [a
constant value equal to the area below R(t)] and confuse the
“standard deviation of the RV T” with the standard deviation of
MTBF. We will see some their other problems later. They are in
good company... See the Excerpt 1.

To be more general we define the interval reliability R(t|r) as
the probability that the system does not fail in the interval r----t,
given that it did not fail before r.

For reliability analysis we have to consider (in fig. 1) RO(t|r) and
R1(t|r) where r is the instant of entrance into the states 0 and 1,
respectively.

For availability analysis we have to consider (in fig. 1) AO(t|r),
Al(tlr) and A2(tJr) where r is the instant of entrance into the
states 0, 1 and 2, respectively: Aj(t|r) is the probability that the
system is not failed at the instant t.

The functions Rj(t|r) and Aj(t[r) depend on the probabilities of
the various transitions (failures or repair of the units). Letting
S(t) the state occupied by the system at time t, we have that S(t),
at time t, is a Random Variable taking the values in the state
space S=S1US2={0, 1, ..., nU, nU+1, ..., N}: N+1 is the num-
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ber of states. The (“real”) variable t is a parameter indexing the
Stochastic Process S(t).

Safety, Reliability, Maintainability, Conformity, Durability, Ser-
vice, Process Control, Testing, are some of the most important
dimensions of Quality; they must be taken into account during
Product Development. To make Quality of products and ser-
vices, knowledge of Quality ideas and Quality tools for achiev-
ing Quality are absolutely needed, for any person involved in
any Company management (Universities, as well ...). To find
and use the Quality tools for Quality achievement, education
of Managers on Quality is essential. Unfortunately, too many
managers [and not only managers ...] do not know much about
Quality ideas and Methods; see Deming statements (in his ex-
ceptionally good books) [24, 25].

Excerpt 2. Some statements of Deming about Knowledge and
Theory (Deming 1986, 1997)

In the author's opinion, the first step to Quality achievement,
through problem prevention, is to define logically what Quality
is. It is very important defining correctly what Quality means,
because Quality is a serious and difficult business; to provide a
practical and managerial definition, since 1985 F. Galetto was
proposing the following one: Quality is the set of characteristics
of a system that makes it able to satisfy the NEEDS of the Cus-
tomer, of the User and of the Society. This definition highlights
the importance of the needs of the three actors: the Customer, the
User and the Society. Prevention is the fundamental idea present
in this definition: you possibly satisfy the needs only by prevent-
ing the occurrence of any problem against the needs.

To measure and analyse the «Characteristics» of Quality during
the total life of a product, from its design until its use in the
field we NEED Probability Theory: for this reason, we decided
to write this paper on the Stochastic Processes.

Materials and Methods

Reliability Integral Theory (RIT)

Let’s now show how RIT manages the (Stochastic Processes)
for reliability analysis of physical systems. We use the figure 2
(it is like the fig. 1, without the transition 2—1): if the system
fails, enters the state 2, it remains there forever. In the model the
transitions are ruled by some functions bi,j(s|r) named kernels,
related to the interval reliability Runit(t|r) of the units and by
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the probability of repair of the failed units. The instant “r” is
the time of entrance into a state, while “s” is the time instant of
leaving a state.

Rj(t]r) [reliability associated to the state j] is the probability that

the system is working, at time t, i.e. [S(t)=j]€S1={0, 1, ..., nU},
when it entered the state j at time r of the “mission time”, r€0--
--t. The functions bi,j(s|r) ds are the instantaneous probability of
transition from state i to state j and W _i (t | r) are the probabili-
ties of staying in the state i for the whole interval r----t.

by 4(s|r)

b, ,(s]|r)

Figure 2: Transitions of a Reliability Stochastic Process.

Applying the probability theory, we can write the two general
equations (1) [related to the model in fig. 2]

Ry (tlr) = Wy (elr) + j b (1) Ry (tls)ds

"

Ry (¢lr) = Wy (t1r) +L byo(slr) Ro(els)ds O
The two equations (1) are Integral Equations with unknown
functions Rj(t|r) [j=0. 1]; we name the previous equations the
fundamental system of the Reliability Integral Theory (RIT).
We name G-Processes the stochastic processes ruled by the In-
tegral Equations (1).

For any type of system, we write

R{t|r) = W(t|r) +j B(s|r) R(t — s)ds @)

where R(tr) is the column vector of the reliabilities Rj(t|r),

jeS1={0, 1, ..., nU}, B(s|r) is the kernel matrix and W (t|r),
jeS1={0, 1, ..., nU}, is the diagonal matrix of the waiting func-
tions in the up-states before any transition.

It is the fundamental system of the Reliability Integral Theory.

The unknown reliabilities Rj(t|r) depends on the kernels bi,-
j(s|r), related to the failure rate and the repair rate of the units;
if they assume some particular form then the G-Processes be-
come known processes (see fig. 3): Homogeneous Markov Pro-
cesses (HMP), Non-Homogeneous Markov Processes (NHMP),
Semi-Markov Processes (SMP), Poisson Processes (PP), Wiener
Processes (WP), Branching Processes (BP), Birth and Death
Processes (BDP), ...

P TR

n%;
o s
g —

Figure 3: G-Processes comprise several Stochastic Processes (depending on the kernels).

To the author knowledge, there is no Theory (but RIT) able to
deal the Age& Repair (A&R) processes, where the forward tran-
sitions depend on the age of the system, i.e. bi,j(s|r)=bi,j(s), and
the repair (backward transitions) depend on the time interval r--

---s from the entrance r into a state, i.e. bi,j(s|r)=bi,j(s-r). The
transition rates are as in the figure 4 (an example of a “parallel
system of 2 identical units” with Weibull reliability and Erlang
repair of the failed unit)

14+u(s—r)

Figure 4: Transitions of an Age & Repair Stochastic Process (transition rates).
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Generally, we are interested to the interval 0-----t (mission
time) and then we compute the two functions RO(t)=R0(t|0) and
RI1(t)=R1(t|0).

If both the kernels are exponential (no aging behaviour) we can
draw a flow graph with the transition rates A (failure rate) and
W (repair rate) and write the matrix equation where R(t) is the
column vector with entries RO(t) and R1(t) and A the “transition”
matrix (seer: fig. 4 for the parallel, where there is no age)

(t)=u+LAR(SJdS with A= __fl —(ji.u) 3)

(3) is the model of a Homogeneous Markov Processes (HMP).
For a renewaPle system we write

(£) =W(t) + ju B(s) R(t — s)ds @
It is the fundamental system of the Reliability Integral Theory,
for SEMI-Markov processes (SMP).

From the reliabilities we compute the two Mean Time To (sys-
tem) Failgre MTTFO and MTTF1: (MTTF not MTBF...)

MTTFc,:J; Ro(t)at  MTTE =J; Ry (t)dt 5)
For HMP and SMP we can get the MTTFs without actually com-
puting RO(t) and R1(t), as follows
MTTFu = mu + pl},lMTTﬂ_ MTTFJ_ = ml + pl,.DMTTFD
(6a)
where m0 and m1 are the mean holding time in the up-states 0
and 1, and p0,1 and p1,0 are the steady state transition probabil-
ities from 0 to 1 and from 1 to 0.

It is very useful (figure 5) to see the difference of the various
reliabilities RO(t) and R1(t) dealt with the three stochastic pro-

cesses: Homogeneous (red curves), Non-Homogeneous (blue
curves), Age&Repair (green curves). Notice that the reliabili-
ties generated by the NHMP (with linear failure and repair rates)
are the highest curves; that does not mean that they are the best
curves: the linear repair rate is such that it depends on the age
of the system (the older the system, the higher the repair rate:
absurd!): this causes huge costs, due to wrong analyses and de-
cisions.

It is clear that when the failure rate is increasing (due to wear
out) we can benefit from “Preventive Maintenance”: the units
are replaced before they fail. Optimized Maintenance Actions
(based on reliability, costs of repairs and cost of Preventive
Maintenance, and Spare parts Availability) improve the earning
of Systems.

To do that we need suitable Methods.
By integrating from 0 to o the column vector R(t) in the formula
(4) we find the column vector of the system MTTFj, je S1={0,
1,..., n[L},

MTTF = J; R(t)dt = M + P « MTTF

(6)
where P is the matrix of the steady transition probabilities be-
tween the Up-states and M the diagonal matrix of the “Mean
Holding Time mj* (the length of time in the state j, before tran-
sition).

So, we see that we can compute the MTTF, without actually
computing the column vector R(t); we need only the matrices
M and P

MTTF =[I-P]™'M (7)

1

09 N\
08t
07}
06}
05t
04t
03}
02}

01F

0 ! 1 L) I L i I 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 5: RO(t) and R1(t) for the HMP (red curves), for the NHMP (blue curves) and for the A&RP (green curves).

The matrix [I-P]-' provides the “Mean Number of Transitions
Between the Up-states, before the system failure”. Notice that
we can use the formula (7) only for the Semi-Markov Processes;
hence in the figure 5 we must compute by numerical methods the
area below the blue and green curves.

Availability Integral Theory (AIT)

If we (fig. 1) allow that the failed system, in the state 2, be re-
paired [transition from 2 to 1, with kernel b, (s|r)] we can study
the system Availability associated to the states S={0, 1, 2},
A, (tlr), A (t|r), A(t|r); S is divided into two disjoint sets S=S (up
states {0, 1})U S (down states {2}); A (t|r) [availability associ-
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ated to state i], [S(t)=i]€S={0, 1, ..., n, n, +1, N}, is the prob-
ability that the system is working [in the up states, S ], when
it entered the state i€S at time r. Following the same lines, we
can write the following fundamental system of the Availability
Integral Theory, AIT) [holding whichever is the distributions of
the time to failures and times to repair of the various units]; the
stochastic process ruling the transitions is named G-Process: all

the quantities are computed using the kernels b; ;(s|r).
Ayel) = Wy(el) + j b (s 4y (tls)ds + j boa(slr) Ay (tls)ds

4, () = W, (th) + j byo(sh) Aq(tls)ds + j by (sl A, (Els)ds
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4 4
Ay (tlr) = j by, (slr) Ay (tls)ds + j by p(slr)dy(tls)ds ®)
When t—>c0 all the availabilities A (t), A (t), A,(t) approach the
same value A =MUT/MTBF =MUT/(MUT+MDT), the steady
state Availability (proved in the author’s books).

Notice the differences with the EJTAS paper December 2023
“A New Approach... of Biomedical Equipment” where we find
(..., excerpt 3)

Same problems are found in the Excerpt 1.

For a general SMP we can derive that
A ~MUT/MTBF =MUT/(MUT+MDT) )

where MUT is the Mean Up Time, a suitable mean of the MTTF,,
fromieS ={0,1,...,n } to S,={n +1,..., N} in the steady state,
and MDT is the Mean Down Time, a suitable mean of the MT-
TR, fromje S ={n +1,...,N} to S ={0, 1, ..., n,} in the steady
state.

Excerpt 3. From “A New Approach...”

Statistics and RIT

RIT (G-Processes) can be used for parameters estimation and
Confidence Intervals (CI), (n 1981, 1982, 1995, 2010, 2015,
2016), in particular for Control Charts (Deming, 1986, 1997,
Shewhart 1931, 1936, Galetto 2004, 2006, 2015). In fact, any
Statistical (or Reliability) Test can be depicted by an “Associ-
ated Stand-by System” whose transitions are ruled by the ker-
nels bk,j(s); we can write the fundamental system of integral
equations for the reliability tests, whose duration t is related to
interval 0-----t; the collected data tj can be viewed as the times
of the various failures (of the units comprising the System) [t0=0
is the start of the test, t is the end of the test and g is the number
of the data]

7,016 = T (et) + [ ygea(s16) R 19

fori=0,1,.., g— J1 Ry (tlty) = Wyltlt,) (10)
R_J. (t|t_j ) is the probability that the stand-by system (statistical
test or CC) does not enter the state g, at time t, when it starts in
the state j at time tj, W _j (t | t j ) is the probability that the sys-
tem does not leave the state j, b_(j,j+1) (s|t_j )ds is the probability
that the system makes the transition j — j+1.

The reliability system (10) can be written in matrix form,
R(t|r) = Wit|r) +j B(s|r)R(tls)ds

(11)
At the end of the reliability test, at time t, we know the data (the
times of the transitions t) and the empirical sample D={x , x

. xg}, with X=t -t is the length between the transitions; the
transition instants are t=t, +x giving D*={t, t, ... t, ot}
tis the duration of the test.

gl’

We consider now that we want to estimate the unknown

Consider the 30 data and the authors’ Control Chart

MTTF=0=1/\ of each item comprising the stand-by system: each
datum is a measurement from the exponential pdf; we compute
the determinant det Bis|r; &, D*) = {1/8)9exp [-T{t)]
of tk&e integral system (11), where T(t) is the “Total Time on Test”
m):le. At the end time t, the integral equations, constrained by
the constraint D*, provide the equation

(@indetB(s|r; 8,D"))/d8 =8/ —T(t) =10 (12)
In the case of exponential distribution, it is exactly the same
result as the one provided by the MLM Maximum Likelihood
Method.

If the data are normally distributed, X ~
Npy,02) = 1/(V2m oy Je~ @ u0%2d _with sample size n, then we

get the usual estimator ¥ = X X, /n such that £(¥) = p,.

The same happens with any other distribution provided that we
can write the kernel b;;,,(s).

The reliability function Rg4(t|6), [formula (10)], with the
parameter g, of the “Associated Stand-by System” pro-
vides the Operating Characteristic Curve (OC Curve, re-
liability of the system) [8-23, 30, 35] and allows to find
the Confidence Limits (8, Lower and fu Upper) of the
“unknown” mean &, to be estimated, for any type of distri-
bution (Exponential, Weibull, Rayleigh, Normal, Gamma,

..); by solving, with unknown ?, the two equations Ro( to|
B=1—a/2 and Ry(ty|6) = a/2 we get the two val-
ues (&, ?U) such that

Rolt,|6, = 1/Ay) = a/2 and Ry(t,|6y =1/) =1—a/2 (13)
where t_o is the “total of the length of the transitions X=t -t
data of the empirical sample D and CL=1-a is the Conﬁdence
Level. CI=8,—fy is the Confidence Interval of 0.

For example, from the Reliability R 0 (At 0 ) of a “4 units
Stand-by system” with MTTF=0=123 days and t 0 is the total
time on test of the 4 units, by R 0 (A Lt 0)=0.9and R 0 (A U
t 0 )=0.1 we can derive 6 _L=62.5 days=1/A_U and 6_U=200
days=1/A_L, with CL=0.8. It is quite interesting that the book
Meeker et al., “Statistical Intervals: A Guide for Practitioners
and Researchers”, John Wiley & Sons (2017) use the same ideas
of FG (shown in the formula 13) for computing the CI; the only
difference is that the author FG defined the procedure in 1982,
35 years before Meeker.

The same procedure can be used for normal data as those of
the paper “The mixed CUSUM-EWMA (MCE) Control Chart
as a new alternative in the Monitoring of a Manufacturing Pro-
cess” published in the Brazilian Journal of Operations & Pro-
duction Management, pp. 1-13, DOI: 10.14488/BJOPM.2019.
v16.nl.al, written by 6 authors.

69.80 69.50 68.80 70.90 69.20 70.40 71.00 71.30 70.00 70.10
72.10 69.90 70.10 70.30 71.20 70.80 70.70 69.95 71.20 71.35
71.35 69.90 70.25 70.50 70.28 71.30 70.20 70.35 70.15 70.10
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Figure 6: Shewhart [-CC from Brazilian Journal of Op. & Prod. Management (fig. 12 in their paper).
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—

LCL = UCL_x

ETH

Figure 7: Shewhart I-CC computed by F. Galetto; notice the OOC points.

Notice: the process appears IC because in the fig. 6 the Control
Limits do not depend on the collected data; actually, they are
the Probability Limits of the Probability Interval. The process is
OOC! It is very clear that the Process is Out Of Control (OOC),
due to two causes: a) two points out of the Control Limits, and b)
the points from 8 to 30 have a mean larger than the mean of the
first seven points; notice that the process is OOC in two ways:
a) because one point is below LCL and one point is above UCL,
b) because the mean of the last 23 points is statistically different
form the mean of the first 7 points.

The Brazilian Journal ... Management, did not publish the letter
sent by FG to the Editors.

Control Charts for Process Management

Statistical Process Management (SPM) entails statistical Theory
and tools used for monitoring any type of a process, industrial
or not. The Control Charts are the tool used for monitoring a
process, to assess two states: the first, when the process, named
IC (In Control), operates under the common causes of variation
(variation is always naturally present) and second, named OOC
(Out Of Control), when the process operates under some assign-
able causes of variation. The CCs, using the observed data, allow
us to decide if the process is IC or OOC.

Control Charts were very considered by Deming (1986, 1997)
and Juran (1988) after Shewhart invention (1931, 1936). We
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start with Shewhart ideas (see the excerpt 4). He wrote on page
294, where X is the “Grand Mean”, computed from D, ¢ is “es-
timated standard of each sample” (with sample size n), ¢ is the
“estimated mean standard deviation of all the samples”.

Excerpt 4. From Shewhart book (1931)

From Excerpt 4, we clearly see that Shewhart, the inventor of
the CCs, used the “Normal Approximation (Central Limit The-
orem)” [8-16] and the data to compute the Control Limits, LCL
(Lower Control Limit) and UCL (Upper Control Limit) both for
the mean p_X (the Ist parameter of the Normal pdf) and for
o_X (the 2nd parameter of the Normal pdf). Similar ideas can
be found in Dore, 1962, Belz, 1973, Ryan, 1989, Rao, 1965,
Cramer, 1961, Mood, 1963, Rozanov, 1975 (where we see the
idea that CCs can be viewed as a Stochastic Process). See also F.
Galetto [19, 30, 35].

Compare Excerpt 4 (where LCL, UCL depend on the data)
with Excerpt 5 (where LCL, UCL depend on the Random
Variables) and appreciate the profound difference: this is the
cause of the many errors in the CCs for TBE (Time Between
Events (see the “Garden...” ). Notice that an author wrote
several papers... Notice the wrong statement (with k=3)
“The control limits of the standard Shewhart chart (

X chart or the X chart) are given by UCL =u,+30, and
LCL,=u;-30, where u, and o, are the specified IC mean
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and standard deviation of the charting statistic Y. No-
tice that, as per Excerpt 5, L=p,-30,~U=u,+30, is
P[L =py—30y =Y = uy + 30y = Ul = 09973 (14).
The same error is in other books (e.g. Montgomery D., 1996-
2019, page 192-3). The right ideas are in Galetto F. (2006, 2015,
2016). RIT will show clearly the drawbacks of those many au-
thors (Galetto 1981, 2006, 2015, 2016).

Excerpt 5. From Control Charts, Synthetic (2021), a paper in
the “Garden...”. Notice that one of the authors wrote several
papers. ..

Notice, in the Excerpt 5, the statement “... in case of individual
observations (i.e. n=1)... the Control Limits...”.

It is very interesting that a Peer Reviewer chosen by the Edi-
tors of Quality and Reliability Engineering International (QREI)
suggested (February 2024) the author to read the following pa-
per in order to learn the way to compute the Control Limits for
Individual Control Charts with Exponentially distributed data:
Khakifirooz, M., Tercero-Gomez, V. G. and Woodall, W. H.
(2021). The role of the normal distribution in statistical process
monitoring, Quality Engineering 33(3), 497-51

We anticipate our conclusion about the Excerpt 6:

the 3 authors statement (in the Excerpt 6) “We can see from this
chart that there are nine false alarms. (see the figure 1, in the
Excerpt 6)” IS WRONG.

The TRUE Control Limits (by RIT!) for the chart in (Figure in
the Excerpt 6) are actually:
LCL=0.103 and UCL>>100

From the figure 1 we cannot read the value of the data, BUT
surely there are NO ... false alarms (above the TRUE UCL) (fig-
ure 1, in the Excerpt 6).

IF we had the data, we could assess that there could be Out Of
Control, BELOW the LCL... The Peer Reviewer did not know
the TRUE Theory, as did not the authors.

Notice the wrong LCL=1.022-2.06 and UCL=1.022+2.06 in the
Figure 1 (in the Excerpt 6): they are computed with the wrong
formula given in the Excerpt 5 (as though the Exponential data
were Normal data!): Nonsense!

All the people involved did not know that also the differences
[xi+1-xi| are exponentially distributed.

The 3 authors write (authors’ statements):

Four examples involving transformations Example based on
simulation. We can demonstrate through a simple example how
the use of a power transformation can result in poor process
monitoring performance. We generated a set of 100 independent
exponential random variables which, without loss of generality,
were assumed to have a mean of one. The X-chart is shown in
Figure 1. We can see from this chart that there are nine false
alarms. After the 0.2777 power transformation recommended by
Nelson (1994) and others, we have the Xchart in Figure 2, for
which there are no signals. If we transform the upper and lower
control limits of Figure 2 back to the original units, then we have
7.456 and 0.0000192, respectively. The probability of exceed-
ing this upper control limit for the exponential distribution with
mean one is 0.00058, while the probability of falling below the
lower control limit is very low, 0.0000192. This numerical ex-
ample illustrates why the results of Santiago and Smith (2013)

I Chart of Exponential(1) Data

NI

UCL=3.082

|

Individual Value

A4

LK WW s WWU

X=1022

LCL=-1.037

1 1 21 n

Observation

Figure 1. X-chart for exponential data with a mean of one.

51 61 n 81 91

i)

I Chart of Transformed Exponential Data

Individual Value
= &

[

UCL=1.747

wre 2. X-chart for ial data after power
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Excerpt 6: From the paper the role of the normal distribution in
statistical process monitoring

Generally, the data plotted are the means #(t;), determinations
of the Random Variables ¥(t;), i=1, 2, ..., n (n=number of the
samples) computed from the collected data x., j=I, 2, ..., k
(k=sample size), determinations of the RVs x{(t;;) at very close
instants to j=1, 2, ..., k. In other applications, the data plotted
are the Individual Data x(t,), determinations of the Individual
Random Variables X{t:), i=1, 2, ..., n (n=number of the collected
data), modelling the measurement process of the “Quality
Characteristic” of the product: this model is very general because

it is able to consider every distribution of the Stochastic Process
X(0).

Shewhart on page 289 of his book (1931) writes “... we saw
that, no matter what the nature of the distribution function of

the quality is, the distribution of the arithmetic mean approaches
normality rapidly with increase in n (his n is our k, the sample
size), and in all cases the expected value of means of samples
of n (our k) is the same as the expected value of the universe”
(Central Limit Theorem in Excerpt 4). Let k be the sample
size: the RVs X(z;) are assumed to follow a normal distribution;
X(t;) [i* rational subgroup] is the mean of RVs IID X(t;;) j=1,
2, ..., k, (k data sampled, at very near times t_), we assume here
that it is distributed as [probability density function (pdf) of
“transitions from a state to the subsequent state” of a subsystem]
X(t)~N(uz(e0.0%5) Lexperimental mean #(t;)] with mean pg.,
and variance ;. X is the “grand” mean and g 2 is the “grand”
variance: ¥~ N(uz,o2 [experimental “grand” mean x]. In Fig.
8 the distribution, the determinations of the RVs %) and X
are shown. The function connecting the points x, is called a
“sampled trajectory” of the stochastic process X(t).

Figure 8: The Individuals xij, the “means” x _i of the process and the “grand mean” x .

When the process is OOC (Out of Control, i.e. assignable causes
of variation) some of the means p_(X (t_i)), estimated by the
experimental means ;= ¥(t;), are “statistically different)”
(Galetto 1981, 2006, 2015, 2016).

We said that (14) is a Probability Interval; IF we put ¥ in
place of py and 5/vk in place of &y we get the CI of % when
a sample size k is considered for each X(t;), with CL=0.9973.
The quantity ¥ is the mean of the standard deviations of each
sample. This allows us to compare each (subsystem) mean ¥zt
,q=1,2, ..., n, to any other (subsystem) mean gz =1,2, ..., n,
and to the (Stand-by system) grand mean pz = p. If two of them
are different the process is OOC. The quantities LCLx = % —35/Vk
and LCLy =% +35/Vk are the limits of the Control Limits of the
CC. When the Ranges Ri=max(x,)-min(x,) are considered for
each sample we have LCLy = ¥ — A,R, UCLy = ¥+ 4,% and LCLg = D3R,
UCLg = D4R, where the coefficients A,, D,, D, are tabulated and
depend on the sample size k [26-35].

Page No: 08 /

www.mkscienceset.com

The interval LCL,~UCL, is the “Confidence Interval” with
“Confidence Level” 1-0=0.9973 for the unknown mean .., of
the Stochastic Process X(t) (Galetto 1981-2022).

The interval LCL, UCL, is the “Confidence Interval” with
“Confidence Level” CL=1-0=0.9973 for the unknown Range
of the Stochastic Process X(t) (Galetto 1981-2022). Notice that
the Control Interval [Confidence Interval] UCL,-LCL =U-L
[Probability Interval, formula (14)] for normally distributed data
and that LCL, can be obtained from L by substituting p with ;
the same for UCL, and U.

The error highlighted, the confusion between the Probability
Interval and the Control Limits (Confidence Interval!) has NO
consequences for decisions WHEN the data are Normally dis-
tributed, as hypothesised by Shewhart. On the contrary, it has
BIG consequences for decisions WHEN the data are non-nor-
mally distributed as in the Excerpt 6. Notice!

J of Aer Eng Aer and Spa Tec 2025



Control Limits are the Confidence Interval

of the Mean of the process

For Normal Distributed datawsp UCL - LCL =T - L

| |
1 2
} f

1 ty

t; t

|
1 satnple
f

time

Figure 9: Control Limits LCLX----UCLX=L----U (=Probability interval), for Normal data.

Control Charts for TBE data

We consider now, again, TBE (Time Between Event) data, ex-
ponentially or Weibull distributed. Quite a lot of authors (see
Appendix, “Garden ...”) compute wrongly the Control Limits.

The previous section formulae are used also for NON normal
data (see Excerpt 6): for that, the NON_normal data are trans-
formed “with suitable transformations” in order to “produce Nor-
mal data” (see Excerpt 6) and to apply those formulae (above).

Sometimes we have few data and then we use the so called “in-
dividual control charts” I-CC. The I-CC are very much used for
exponentially distributed data: they are named “rare events Con-
trol Charts for TBE (Time Between Events) data”, -CC_TBE
(see Excerpt 6).

The author (FG) knew about the wrong way of dealing with
I-CC_TBE since 1996 by reading the Montgomery book where
he transformed the into Weibull data (approximately normal)
following Nelson L. S. (J. Qual. Techn., 1994): he acted wrong-
ly in all the later editions of the book. Any scholar who wants to
learn Control Charts both with normal distribution and TBE can
usefully read the book “Statistical Process Management”.

Several authors did the same as Montgomery did. See the Jour-
nal Operation Research and Decisions where the 3 authors, in
their paper “An EWMA Control Chart for the exponential distri-
bution” made the same error transforming the data into Weibull
with f=1.36; the data are the “Urinary Tract Infection” (UTI)
taken from a paper of two Minitab authors (Santiago & Smith)
in their “Control charts based on the Exponential Distribution”,
Quality Engineering;: their T Chart (figure 11) shows the pro-
cess IC: wrong decision; making the transformation we could
draw the I-CC as in figure 12 where the Control Interval=U-
CL-LCL=U-L=the Probability Interval. The process is again IC:
wrong decision. It is NOT so if we analyse directly the TBE
(figure 13).

Using RIT (the Reliability Integral Theory of F. Galetto) we get
the Figure 13 (vertical axis logarithmic, to let the OOC points
evident). The process is OOC.

The problem with the authors in the “Garden...” is that they do
not care of Theory: they do not consider that THEORY MAT-
TERS, in every field!

E)--

X34

[eezf--

Individual Control Chart,I-CC

For Normal Distributed datauep UCL ~ LCL = U - L

[

1 1
L L
i o

sample

Figure 10: Individual Control Chart (sample size k=1). Control Limits LCL----UCL=L----U (Probability interval), for Normal
data.
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T Chart of time to Urinary
Exponential fit: Scale = 0,210
147 UCL=1,389
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2
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=
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&2 CL=0126
0,01 LCL=0,000
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Observation

Figure 11: Chart of Minitab authors’ paper data (Urinary), Minitab 19 used.

os 11 | yy H
oA M _
V \'HVM

Figure 12: I-CC of the UTI, transformed into Weibull data.

On the contrary, making the same error as Montgomery, the 3  Excerpt 7. From the paper “An EWMA Control Chart ...” (the
authors transform the data into Weibull with f=1.36 and then k coefficients are to be suitably found...). Notice the errors in
they make an EWMA Chart with “double Control Limits” the formulae.

with the formulae LCL,=6cyy LCU =6cyy LCLy=6ic; LCU; =i See now the wrong [-CC in the figures 11, 12, 14; only the CC

, where 5 = Blﬂs with &a the “target of an IC process”: in the fig. 13 is right.

L)k -2 J 2 )or(1eg)
(13 ) WJ{ )l
_ ] 2 ’

36)

c“—r ]+

AW my;m

0,01

Ay S
e | CL
e UCL

0,001

Figure 13: [-CC of the UTI, y-axis logarithm mic. RIT used (F. Galetto).
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Figure 14: EWMA (F. Galetto) of the UTI.
same as for all the papers in the “Garden ...”. Remember Ju-

In the paper mentioned there is a figure: we did not find the data
used for the target 6 0 and the coefficients k. Hence, we used the
target 0 0=0.59, coefficients k=-2.7, -0.8, 0.8, 2.7 and A=0.2; we
got the figure 14.

Those authors made a mess; the Peer Reviewers did not analyse
correctly the paper, and the Editors did not do their Job. The

ran who mentioned the FG paper, at the Plenary Session of the
EOQC Conference ... [36].

Results
Now it is time to see the wrong formulae used by the “Garden
...” authors. A smal sample in in the Excerpt 8.

Typical statement by ALL ..

A uniformn model the exponential TBE charts is that the occurrence of
events 1s modelled by a Poisson process, and the time between events
(=1, 2, . )re independent and identically distributed random
variables with pdf f(x) = 87! exp(—x/0) for x = 0,
0 othelwise, where @ iz the “mmean time between events”.
T'he Control Chart plots the quantity produced before cbserving an event,
The Control Lirmnits can be calculated as

LCL = 6In(1 — a/2),

L J, Xie M., Shaima P., “A Comparative Study of Exponential
Time Between Event Charts”, Quality Technology & Quantitative
Management, 2006 Issue 3, pp. 347-359

ACTUALLY LGLeL amd UCL=Y

UCL = 6ln(a/2) |

Suppose LCL and UCL denote the lower and upper control limits of the Phase II
t,-chart respectively. Then for a given false alarm rate (FAR) 2, they can be obtained
trom P(T, < LCL|IC) = P(T, > UCL|IC) = /2 according to the equal tail probabilities
approach. Thus, we have (see also Kumar and Baranwal (2019))

¥
'Er.::.l

LCL = —
Lig

I‘L,.-,, ? ﬂ

= A ond vcL = Bt it
fa

iy o

where A, :if‘— A; :#ueﬂudesign constants and 4, is the known or speci-
fied IC rate parameter value. The z3, , denotes the a-th quantile of the chi-square distri-
bution with 2r degrees of freedom. The center line (CL) of the t,-chart can be

considered as the median of the IC distribution of T, and it is given by CL = %
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LCLy=0.00135¢,

Another statement by
INCONPETENTS

To construct a t chart, we determine the control limits baged
on a false alarm rate (o) of 0.0027, equaling that of an
individual chart of normal data, and use the median as the
centreline”. Whenever historical estimates are not available,
the scale parameter 6 can be estimated using maximum
likelihood. .... because both control limits and the centerline
are functions of solely 6, by the invariance property of
MLEs the estimates are 0.00135 €, 6.60773 t, and log(2) t.”.

E. Santiago, J. Smith, Control charts based on the Exponential
Distribution, Quality Engineering, Vol. 25, Issue 2, 8596

ACTUALLY LGLeL amd UCLsU

UCLy = 6.60773t

Excerpt 8: Typical statements in the “Garden full of errors ...”
where the authors name LCL, UCL what actually are the Proba-
bility Limits L and U.

All the authors in the “Garden ...” make the same error:
they confuse the Probability Interval with the Control Interval in
CCs (Confidence Interval!). The same happens for MINITAB,
JMP, SAS, ... software [37-40].

Now we see how RIT solves the I-CC_TBE with exponentially
distributed data. Before we computed the Confidence Interval
is CI=0 L-------- 0 U of the parameter 60, using all the data with
t O the “total of the data of the empirical sample D (n=20)” and
Confidence Level CL=1-a. When we deal with a [-CC_TBE we
have to consider the figure 10 and compute the LCL and UCL
through the empirical meant _O (mean observed time to failure
t_O=t_O/n) we only have to solve the two following equations
with unknown LCL and UCL
Ro(to|lCL) =1 - a/2, Ro(tp|LCL) = a/2 (15),
similar to (13). For exponentially distributed data (15) become
expl—to/LCL] = 1 —a/2 ynq expl—tg/LCL] = a/2
(16).
The two equations (16) show clearly the errors of the authors in
the “Garden ...”. See on the left.

See the case by the Peer Reviewer chosen by the Editors of
Quality and Reliability Engineering International about the
Control Limits for Individual Control Charts with Exponential-
ly distributed data and compare the results: Khakifirooz, M.,
Tercero-Goémez, V. G. and Woodall, W. H. (2021). The role of
the normal distribution in statistical process monitoring, Quality
Engineering 33(3), 497-51 Some papers from the “Garden ...”
Let’s see some other few cases from the “Garden ...”. Consider
the paper Box-plot based Control Charts [by Chakraborti (same
author in excerpt 5.) et al.), Quality and Reliability Engineering
International, 2011.

Notice QREI again], where the lifetime data (“valves TTF”) the
same as in Montgomery, 2013, page 334) are analysed; the au-
thors use the median (instead of the mean) and the interquartile
range (instead of the ranges). The two authors define the control
limits with a form similar to Shewhart (but significance level
0,=0.01): the process (figure 15) is found IC, as did Montgom-
ery [41-44].

Using the T Chart of Minitab (which makes use of the wrong
formulae, devised by Santiago & Smith) we can find the figure
16: the process is found IC (as in figure 15, Chakraborti, and as
Montgomery).

30|OD 40'00

1000 2000

0
1

Figure 15: I-CC of Montgomery data analysed by Chakraborti (with o, =0.01).
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T Chart of lifetime
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Figure 16: T Chart of Table 1 data. Minitab 19&20&21 used (F. Galetto).

By using Minitab, one finds the figure 17 (with wrong OOC as  DIS-quality applications/decisions by Minitab Clients, caused
in the Excerpt 8, as happened in the Excerpt 6): UCL and LCL by Minitab wrong methods.

are wrong, while the dotted line (found with RIT) is the correct

LCL. Compare figures 16 and 17: only the dotted line is the right The process is OOC. The reader can see easily from figures 17,
correct LCL, allowing taking correct decisions: huge costs of 18. The ranges too are OOC.

| Chart of Valve_TTF

ucL=2828

Individual Value
N
i,__,

LCL=-1408

1 3 5 7 9 1 12 15 17 1
Observation

Figure 17: (F. Galetto) I Chart (Control charts) for valves data (Minitab 19&20&21 used). The dotted line is the right correct LCL

when RIT is used; the UCL is wrong.

It should be clear that Managers, Professors and Scholars must  fortunately, he had little success; only few understood (one was
use the Theory. The author, for many years, has been showing Juran at 1989 EOQC Conference, Vienna).
the many drawbacks present in various books and papers: un-

L= P J | | |
N = P [ et [ 1 ]
I [ [ ] s [ f
S FAEA [l / L 1E s 2 [ '
R ] A Y
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AV AL A

T [ SR 8 £
=

FT
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o : M |

1 2 3 4 5 & 7 8 9 10 11 2 13 ¥ 15 ¥ 1T £ 19
samplke

e ¥
B2 o3 4 & B P B 9 oW oW @ oW oM oMowm o omomom
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Figure 18: (F. Galetto) Scientific Control Charts for valves data [related to the data and control charts in Mont-gomery books].
RIT is used.

Now we see another paper in the “Garden...” (found online, authors provide a wrong solution (found neither by the Peer Re-
2021) “Improved Phase... for Monitoring TBE” [Chakraborti  viewers nor by the Editor!). Nevertheless, they write in their Ac-
(same author above et al.) published by QREI (again). The two  knowledgements: ... The authors would like to thank Dr. Doug-
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las Montgomery, Co-editor, for his interest and encouragement.
In the authors’ Abstract, we read
.. In this paper, phase I control charts are considered for the observations from an
eponential distribution with an and out-gf-control performance of the proposed
chart It is seen that the proposed charts are considerably more in-control robust

than two competing charts and have comparable out-of control properties, Copwight
€ 2004 John Wiley & Sons, Ltd.

See their Concluding remarks.

We agree that “Further work is necessary on the OOC perfor-

and

Table .. shows a set of 30 failure time data generated from a Poisson distribution with
amea of 0.1. For these data, n=30,1=8 m= 13, aid u = 23. . The center line for
the proposed two-sided control chart is CL=X{13)=6.91, and the lower and UCL are
given by LCL=-33.9213 and UCL=47.2320. ... we set the LCL as LCL=0. It can be
seen from Figure (our 20) fhat the eleventh observation 52.32 plots ourside the UCL,
which indicates an Q0C situation that needs firther mvestigation. Note that for these
data, neither the Dovoedo and Chakraborti, nor the Jones and Champ contral chart
indicates any 00C situation.

mance of these charts™: the further Work must be to STUDY (see
Deming!). The wrong CC (in figure 19) shows a “false” OOC
situation and various “false” IC...

50F ! 1
————————— - ----------
[
401 [ 1
o [
g |1
o 30 } || ]
2 I
= |
s 20} qﬁ r | \ll 5‘) <
\ f N
| { 4) |
r\ /Xﬂ ". (,’1( o | .Fx‘l
10} . |': | jD f 'I “IJ \ o -
f\w x Xﬁ" M é
0-‘——tr———r—— —r---r-—-, LCl4
5 15 25 30
Observatlons
Figure 19: Control Chart from “Improved Phase... for Monitoring TBE”.

Using RIT as done previously the n=g*=30 TBE can be con-
sidered as the “transition times” between states of a stand-by
system of 30 units: the Up-states are 0, 1, ..., 29, and 30 is the
Down-state; ti is the “time to failure ” from state i-1 to state
i. R (t0) is the system reliability for the interval 0----t, given
0, and it is, as well, the Operating Characteristic Curve of the
reliability test, given t. At the end of the test, we know tO the
observed Total Time on Test [45].

We want to analyse if the “individual” TBE are significantly dif-
ferent from the “mean observed time to failure” (t o ) =tO/n.
The Control Limits are the values satisfying the two equations
(13) with tO replaced by (t_o ) =tO/n, that is two equations (15
and 16) for any single unit; so, we have 30 Confidence Intervals
[all equal, by solving formulae (16)], given (t o) and CL=1-a..

100

——TBE

e | CL == UCL

AN
v

20 25 30 35

0,1

Figure 20: Control Chart of the data from “Improved Phase...

for Monitoring TBE”; vertical axis logarithmic; UCL is >100. RIT

used (F. Galetto).
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Compare the figures 19 and 20: it is clear that the I-CC_TBE
from “Improved Phase... TBE” presents 5 errors about OOC;
the paper is wrong [46-50].

Also consider the paper Some effective control chart procedures
for reliability monitoring published in Reliability Engineering
& System Safety. Again, WRONG Control Limits! The authors
Xie et al. the “Time between failures of a component”. They
do not realise that at least 20% of the data are OOC (figure 21),
a very good result for a PR paper! All the people involved did
not know the Theory. "It is necessary to understand the theory
of what one wishes to do or to make." (Deming 1996) T Charts

and the “Garden...”
cisions...

methods make the users to take wrong de-

Also, see a paper in (Multidisciplinary Open Access) IEES Ac-
cess 2017, “EWMA Control Chart For Rayleigh Process With
Engineering Applications (Alduais, Khan)”. At the end of the
Abstract, we read the fantastic statements “An application of the
REWMA chart on simulated data also reveals that the proposed
chart is highly sensitive to smaller and persistent shifts in the
scaling parameter of Rayleigh distribution. Finally, an example
from real-life has been presented to illustrate the importance of
the suggested chart.”

100000
10000
—f—hours
1000 p—ye
== UCL
100

/\/L

A,
WALpAALY

0,1

30

Figure 21: I-CC_TBE of Xie TBF data in “Some effective ...

for reliability Monitoring”; vertical axis logarithmic; RIT used (F.

Galetto).
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Figure 22: Proposed CC, ball bearing data [EWMA of V" SQR (i)=V(x_ij*2/6) of 8 samples, size 3)].

They consider the TTF (Time to failure, Rayleigh distributed) of
24 bearings (8 samples of size 3). The process of the 8 samples
is IC (figure 22) by their “theory”. On the contrary, the process
is OOC [using RIT], both for the 24 Individuals (figure 23) and
the 8 samples (figure 24).

The two authors claim in their Conclusions: “Simulation analy-
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sis also indicates the considerable improvement of the REWMA
chart over the existing procedure in detecting shifts of smaller
sizes in the study parameter”.

We think that the readers agree will not agree on that, by seeing
the application (real) on the Ball Bearing failure data: the au-
thors “detect shifts” but do not detect OOC... (figures 23, 24).
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Figure 23: CC of the 24 Individuals TTF, RIT used.
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Figure 24: CC for ball bearing data [V" SQR (i) of the 8 samples], RIT used.

Last case: two papers (The length-biased weighted exponenti-
ated inverted Weibull distribution, Cogent Mathe-matics, 2016,

Distance between cracks in a pipe dato-set

The Weighted Exponentiated Inverted Weibull Distribution,
Journal of Informatics and Mathe-matical Sciences, 2017),

3094 18.51 16.62 51.56 22.85 22.38 15.08 4556
17.12 10,67 2543 10.24 2747 1470 1510 2093
27198 36.02 19.40 14.97 22.57 12.26 18.14 18.84
Goodness of fit summary of distance between cracks in a pipe data set.
Fitting models: WEIW EIW LBEIW LBIW Weibull
Parameter " =2 8639 ph =27347 " =3.380]1 = 13484 | p* =2.3089
Estimates: 6" = 394.0386 | 0" = 2384.5601 | 8" =9508.9505 | 6" = 26.0230 | " = 0.4815
K.5 statistic (0.0865 0.0891 0.1031 0.5129 0. 1436
P-value 0.9850 0.9822 0.9376 0. (M0 0.6532

the estimates are wrongly written for Weibull f=2.3089, 6=26.0230 and ¢ =0

Excerpt 9: From the paper “The length-biased weighted expo-
nentiated inverted ...”

The papers deal with the same data, on the “distance of cracks
in a pipe data-set”: same subject and the same real data as an
application: they are in Excerpt 9, with the estimates of the
density g(x;P,0,0)=(BON(1+c-1/B))/(T'(1+c-1/B)) x (-(1+¢)P)
{eM-x"(-B) ) }"0. The estimates of the parameters are (by the
authors): f =1.4256, 6 =100.7943 and ¢ =1.4857. Notice that
there is NO Confidence Interval... The authors do not provide
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any way to do that... When c=0 we get Length-Biased Expo-
nentiated Inverted Weibull pdf (LBEIW), with estimates of the
parameters (by the authors): =3.3891, 6=9508.9505, ¢c=0. NO
Confidence Interval and not any way to find it...

A question arises: do the data of Excerpt 9 show a process In
Control? In the papers there is no way to assess that. Using RIT,
we find that the process is OOC for the 24 Individuals (fig. 25).
Again, Authors, Peer Reviewers and Editors were wrong!
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Figure 25: CC of the Individuals (from the paper “The length-biased weighted exponentiated inverted ...”), RIT used.

Also consider the paper On designing a new control chart for
Rayleigh distributed processes with an application to monitor
glass fiber strength published in Communication in Statistics-
Simulation and Computation, January 2020. Again, WRONG
Control Limits! The authors M. Pear Hossain et al. consider the
“data on strength of 15 cm glass fibers”. They write:

Ilustrative example (section 8)
To illustrate the developed VR chart, we use the data on strength

Table 6. Strength of 15cm glass fiber.

of 15cm glass fibers. This data has been collected from the Na-
tional Physical Laboratory in England (Smith and Naylor 1987).
For illustration purpose, first, we check that the data follows
Rayleigh distribution or not using Kolmogorov-Smirnov test.
We fail to reject the null hypothesis that data follows Rayleigh
distribution at 5% level of significance with p-value 0.144.

The arrangement of the sample batches is given in Table 6 (see
our Excerpt 10). They use a=0.0027 ...

Observation

Sample Number 1 2 3 4™ 5
1 12 11 07 1.51 1.25
2 1.2 11 075 1.28 04

3 1.7 13 0.8 1.42 1.35
4 1.38 122 0.94 1.43 1.28
5 14 1.21 1.37 0.81 1.29
] 1.4 0.92 137 1.06 1.29
7 1.09 092 1.35 1.13 0.95
B 1.08 0.86 1.61 1.14 0.98
9 1.06 0.83 1.53 1.15 1.03

Excerpt 10: From the paper “On designing a new control chart  Notice the authors’ statement “We fail to reject the null hypoth-

... to monitor glass fiber strength.”

esis that data follows Rayleigh distribution at 5% level of signif-
icance with p-value 0.144.”
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Figure 26: CC of the Individuals (from the paper “On designing a new control chart ... to monitor glass fiber strength”), RIT
used.
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Figure 27: CC of the samples with sample size 5 (from the paper “On designing a new control chart ... to monitor glass fiber
strength”), Normal distribution used.

According the Rayleigh distribution can be considered a Weibull
distribution with 3=2 (shape parameter). Ana-lysing the data in
Excerpt 10, we find that 3=5.59, with a Confidence Interval
CI=[3.81, 8.86] at CL=99.5%; the value 2 is not comprised in
the CI: hence the distribution is not the Rayleigh distribution
(also for CL=95%).

All the authors’ considerations are not valid for their Illustrative
example (section 8), that is our Excerpt 10; they find that the
“process is IC”.

Analising the data with RIT we get the figure 26: the process is
OOC, using the correct distribution and directly the data in our
Excerpt 10. Analising the data with the Normal distribution (a
Weibull with =5.59 can be approximated by the Normal ) we

get the figure 27: now the process is IC ... as it was found by the
authors with the Rayleigh distribution!

RIT and the Duane method

We found this method in the software Minitab 19&20&21.
Minitab provides the data on “repairable air-conditioners” and
a graphical picture of them [see figure 28], and computes, the
mean number of failures up to time t [M(t) function], of the 13
repairable systems: M(t)=E[N(t)]; they do not give any “theory”
to interpret the results; they only inform us that (1) M(t) is in-
terpolated by a model named “power law” (t/n), with B=shape
parameter and n=scale parameter, and (2) the MLM (Maximum
Likelihood Method) is used. No “Reliability Theory” is provid-
ed by Minitab: this is extremely dangerous and costing [51, 52].
They say (with figures):

Event Plot for Failure
System Column in System

System

*

B w @ o o & w o w oo

B =

=

g4

2500 3000

Failure

Figure 28: 13 repairable air-conditioners.

AIRCONDITIONEFRELIAEILITY MTW Parametric Growth Curve: Failure
Model: Power-Law Process, Estimation Method Marimum Likelihood, Parameter Estimates
95% Normal CI

Parameter E stimate StandardError Lower Upper
Shape 1.10803 0.067 0984256 1.24738
Scale 128.763 22489 91.4369 181.325
Test for Equal Shape Parameters Barflett's Modified Likelihood Ratio Chi-Square

Test Statisic  10.88

P-Value 0.339

Df 12

Figure 29: Statistical Output for 13 repairable air-conditioners (Minitab 21 used).
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Figure 30: Graphical Output for 13 repairable air-conditioners data (Minitab 21 used).

Duane Plot for Failure
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Figure 31: Duane plot for 13 repairable air-conditioners data (Minitab 21 used).
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Figure 32: Distribution of repairable air-conditioners data tij (Minitab 21 used).
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Figure 33: Distribution of repairable air-conditioners differences dij (Minitab 21 used).
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We can compare the figure 30 [the M(t)] with the 31 [the “cu-
mulative failure rate”]; how it is related to “our” failure rate, as
defined in our theory? Think about that ... See the figures 29, 30.
The figure 31 is the Duane Model!

The figures 32 and 33 show the distribution of times tij, and their
differences dij, respectively.

From figures 30, 31, 32 we see that the shape parameter f of
M(t) is estimated by Minitab as B, =1.10803, where PL stands
for “Power Law”. Notice that this estimate tells us that “there
is no aging”; moreover, the figures 32 and 33 describe a com-
pletely different aging process of the air-conditioners! ,=1.532
(aging) and B,=0.9219 (no aging). Where is the TRUTH?

It is in the given Theory, RIT.

for any item «i»

-1
B (ti+1 4

n\n

bjj1(tjs1lt;)

==|-— exp

) (4)
n n

Figure 34: Transition Diagram of a repairable unit (BAO) and probability density of transitions (RIT).

The fundamental system (integral equations) for reliability tests
(duration 0t) [t;=0 is the start of the test and t is the end of
the test], with t times of failures is given in (10), with the ker-
nels of figure 28; at the end t of the reliability test, we know the
empirical sample D={t, t,, ..., t by t}; t, is the last failure. To
estimate the parameters f§ and , from the equations we compute
the determinant of the integral system (in matrix form) detB(s|r)
[depending on  and n]. We have, for the system (air-condition-
er) 1, with failures time t and g, failures, the formula (identical
to the Likelihood)

o " fig,. ﬁi[ ]ﬁ 1
Bite M |titiatia tig [
ldet [B(; B, n,, D == 1. Pias L
1

The values maximising det [B([; 8,, 11,, D), for the item

- &1 tg ..
1, are By = T0n (t1gue,y and M= 5% Similar results are found
for all the 13, identical and repaired, air conditioners.

Same results can be found with the MLM.
From the reliability system of 13 items, we get the estimations
B,, and n_, of the parameters 3 and M:

Bap; =099 and Nan =92.38

The Clof B is 0.8581.121, with CL=95%.

Notice: B =0.99 is slightly in the (Minitab) CI of 3 (0.984256--
————— 1.24738, with CL=95%), AND the (Minitab) [/PL=1.10803
is slightly in the CI of 8 (0.858---—-- 1.121, with CL=95%).
The contrary would happen by choosing CL=90%!

We cannot have “enough confidence” that the (Minitab)
B,,=1.10803 AND B =0.99 are “equivalent”!

Minitab provides wrong results for repairable systems and
Duane analysis: Minitab lacks scientificity and generates huge

costs for Companies using them, due to their wrong analyses
[53-55].

The wrong “Duane method” is based on the wrong “Duane Ax-
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iom”: "the MTBFc (the Mean Time Between Failures, instanta-
neous cumulated) is the ratio of the total cumulated time by the
tested items, tc, to the total number of failures M(tc) experienced
in the total time test interval t0-----tc". So, they write with o=0.2
+ 0.4, and t0 the "total time cumulated at the beginning of the
total time test interval t0-----tc" where MTBF=MTBFO0

For the Weibull distribution, we have h(t)=(B/m)(tm)*' and (by
the absurd “Duane Axiom”) MTBF=1/h(t)=t'* "/, o=1-p with
MTBEF /t,'*=constant.

The position MTBF=1/h(t) is an absolute NONSENSE, as
shown before.

Discussion and Conclusions

Applying the G-Process we could show the way to solve var-
ious cases of practical interest: analysis of repairable systems
reliability and availability, statistical estimation (and Confidence
Interval evaluation) of the parameters of distributions, correct
computation of Control Limits of the Control Charts, especially
for Individual CC with TBE exponentially distributed and of the
Douane method [56-60].

We introduced the Stochastic G-Processes which rule the rela-
tionships between the reliabilities Ri(t|s). The stochastic process-
es [HMP, NHMP, SMP, RP, A&RP] used for reliability analyses
(to the author knowledge) are particular cases of the G-Process.
We showed various cases (from papers) where errors were pres-
ent due to the lack of knowledge of RIT [61].

The author many times tried to compel several scholars to be
scientific: he did not have success (Galetto 1981-2023). Only
Juran appreciated the author’s ideas when he mentioned the pa-
per “Quality of methods for quality is important” at the plenary
session of EOQC Conference, Vienna [62-64].

J of Aer Eng Aer and Spa Tec 2025



For the control charts, it came out that RIT proved that the T
Charts, for rare events and TBE (Time Between Events), used
in the software Minitab, SixPack, JMP or SAS are wrong. So
doing the author increased the h-index of the mentioned authors
publishing wrong papers. See Appendix.

We suggest the readers to consider the various excerpts, espe-
cially those related to CCs: many authors have been diffusing
wrong concepts for years and years...

RIT allows the scholars (managers, students, professors) to find
sound methods also for the ideas shown by Wheeler in Quality
Digest documents [65-67].

We proved also that Minitab software provides wrong analysis
repairable systems Reliability (Minitab says “the items are ag-
ing”, while they are actually GAN after any failure).

We informed the authors and the Journals who published wrong
papers by writing various letters to the Editors...: no “Correc-
tive Action”, a basic activity for Quality. The same happened for
Minitab: so, people continue taking wrong decisions...

Deficiencies in products and methods generate huge cost of
DIS-quality (poor quality) as highlighted by Deming and Juran.
Any book and paper are a product (providing methods). The
books present financial considerations about reliability: their
wrong ideas and methods generate huge cost for the Companies
using them. The methods given here provide the way to avoid
such costs, especially when RIT gives the right way to deal with
Preventive Maintenance (risks and costs), Spare Parts Manage-
ment (cost of unavailability of systems and production losses),
Inventory Management, cost of wrong analyses and decisions.

We think that we provided the readers with the belief that Qual-
ity of Methods for Quality is important and with several ideas
and methods to be meditated in view of the applications, gener-
ating wealth for the companies using them.

There is no “free lunch”: metanoia and study are needed and
necessary.
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There is no “free lunch”: metanoia and study are needed and necessary.
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