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Abstract 
The stochastic processes [HMP (Homogeneous Markov), NHMP (Non-Homogeneous Markov), SMP 
(Semi-Markov), RP (Renewal), A&RP (Age and Repair)] used for reliability analyses (to the author knowl-
edge) are particular cases of the G-Process. We present the basics of RIT (Reliability Integral Theory) a theory 
able to deal with the G-processes. It can be applied to Reliability, Availability, Maintenance and Statistical 
applications (Control Charts and Time Between Events Control Charts); its power allows the readers to prove 
that the T Charts and the reliability computations for repairable sys-tems (e.g. the Duane method), used in 
Minitab 21 are wrong: various cases are considered, from pub-lished papers. due to lack of knowledge of RIT); 
moreover, with RIT anybody can prove that the T Charts and the reliability computations for repairable sys-
tems (e.g. the Duane method), used in Minitab 21 are wrong. We introduce the Stochastic G-Processes, via the 
Integral Equations, which rule the rela-tionships between the reliabilities Ri(t|s) related to the system states. 
We show the advantages of using RIT for Quality decisions (economics and business).
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Introduction
In 1999 the author met some managers of a "certified" company 
developing a new engine; he saw them using the "Duane Meth-
od" for predicting the in-service MTBF by elaborating the test 
reliability data. In 2022-25 he read various papers about Control 
Charts with wrong Control Limits. Between 1999 and 2023, the 
author read a lot of papers, of documents of Masters in RAMS 
(Reliability, Availability, Maintenance, Safety) and books on 
quality, reliability, fatigue tests, maintainability, maintenance, 
statistical tests for decision, Control charts, Six Sigma, Taguchi 
methods, …, and unfortunately, he found many doubtful ideas 
on the basics of Quality, Probability and Statistics (QPS).

Due to that, he decided to show his views about such points
These subjects can be dealt by Stochastic Processes: there are 
several documents about them; a sample is in the references 
[1-6]. Quality Methods, applied in industries, depends on Sto-
chastic Processes, information provided and on Probability and 
Statistics [7-16]. Their knowledge is fundamental for taking 
sound decisions: we will see the many wrong decisions taken by 

lack of knowledge. Since we consider Engineering Applications 
of Stochastic Processes applied to physical systems in relation 
to the analysis of their Quality and Reliability/Availability and 
state of Control, we model the systems, by an engineering point 
of view, with a finite number of states (finite state space) and 
continuous time [17-23].

We begin by presenting it here through quite a simple example, 
a stand-by repairable system of two units, A and B, with reli-
abilities RA(t) and RB(t) for the “mission time” (interval) 0----
-t. The system can be depicted as a three-state (fig. 1) process 
(representing the system with states 0 (unit A is working and B 
is in stand-by), 1 (unit A fails at some instant s<t and B starts 
working), 2 (both units are failed). The state space is denoted by 
S={0, 1, 2}; it is partitioned into disjoint sets, the set of the Up-
states S1={0, 1} and S2={2}, the set of the Down-states (only 
one in the figure 1, yellow coloured). Forward transitions are 
related to failures of the units while backward transitions are 
related to repair of the units; the system fails if it enters the set 
S2; any transition from S2 to S1 restores the system to a working 
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condition; we did not depict the “inner transitions” j→j, show-
ing that the system remains in the same state j. The system is 
reliable as soon it makes transitions within S1: for each Up-state 
j ∈ S1 we define a reliability function Rj(t) which is the proba-
bility that the system does not fail (i.e. does not enter the set S2), 

for the whole “mission time” (interval) 0-----t, while for each 
state j ∈ S we define an availability function Aj(t) which is the 
probability that the system is not failed (i.e. does not enter the 
set S2), at the instant t.

Figure 1: Transitions of a Stochastic Process.

Excerpt 1: Some Documents with Several Drawbacks
For a single unit we define the "failure rate" h(t)=f(t)/R(t) which 
generally depends on t. IF and only IF h(t)=*, a constant not 
depending on t, then MTTF=1/*, and *=1/MTTF and R(t)=-
exp(-*t): exponential reliability, the item is always "as good 
as new". In any other case the failure rate is h(t)*1/MTTF, and 
hence MTTF*1/h(t). For the Weibull distribution (* character-
istic life, * shape parameter) R(t)=exp[-(t/*)*], the failure rate 
h(t)=(*/*)(t/*)*-1, and hence MTTF*1/h(t): many professionals 
do not know that. 

Consider what we found on an EJTAS paper December 2023 
“A New Approach for Effective Reliability Management of Bio-
medical Equipment” (3 Indian authors): there “Reliability is de-
fined as the probability that an equipment or process performs 
its intended function adequately for a specified period of in a 
defined environment without failure.” What is wrong with the 
definition? The specified period is not the interval 0----t. They 
add, later, “where ′𝜇′ is mean of time between failure (MTBF), 
′σ′ is standard deviation of MTBF and ′x′ is breakdown time”. 
This is misleading because they confuse MTBF with MTTF [a 
constant value equal to the area below R(t)] and confuse the 
“standard deviation of the RV T” with the standard deviation of 
MTBF. We will see some their other problems later. They are in 
good company… See the Excerpt 1.

To be more general we define the interval reliability R(t|r) as 
the probability that the system does not fail in the interval r----t, 
given that it did not fail before r.

For reliability analysis we have to consider (in fig. 1) R0(t|r) and 
R1(t|r) where r is the instant of entrance into the states 0 and 1, 
respectively.

For availability analysis we have to consider (in fig. 1) A0(t|r), 
A1(t|r) and A2(t|r) where r is the instant of entrance into the 
states 0, 1 and 2, respectively: Aj(t|r) is the probability that the 
system is not failed at the instant t.

The functions Rj(t|r) and Aj(t|r) depend on the probabilities of 
the various transitions (failures or repair of the units). Letting 
S(t) the state occupied by the system at time t, we have that S(t), 
at time t, is a Random Variable taking the values in the state 
space S=S1∪S2={0, 1, …, nU, nU+1, …, N}: N+1 is the num-

ber of states. The (“real”) variable t is a parameter indexing the 
Stochastic Process S(t).

Safety, Reliability, Maintainability, Conformity, Durability, Ser-
vice, Process Control, Testing, are some of the most important 
dimensions of Quality; they must be taken into account during 
Product Development. To make Quality of products and ser-
vices, knowledge of Quality ideas and Quality tools for achiev-
ing Quality are absolutely needed, for any person involved in 
any Company management (Universities, as well …). To find 
and use the Quality tools for Quality achievement, education 
of Managers on Quality is essential. Unfortunately, too many 
managers [and not only managers ...] do not know much about 
Quality ideas and Methods; see Deming statements (in his ex-
ceptionally good books) [24, 25].
 
Excerpt 2. Some statements of Deming about Knowledge and 
Theory (Deming 1986, 1997)

In the author's opinion, the first step to Quality achievement, 
through problem prevention, is to define logically what Quality 
is. It is very important defining correctly what Quality means, 
because Quality is a serious and difficult business; to provide a 
practical and managerial definition, since 1985 F. Galetto was 
proposing the following one: Quality is the set of characteristics 
of a system that makes it able to satisfy the NEEDS of the Cus-
tomer, of the User and of the Society. This definition highlights 
the importance of the needs of the three actors: the Customer, the 
User and the Society. Prevention is the fundamental idea present 
in this definition: you possibly satisfy the needs only by prevent-
ing the occurrence of any problem against the needs.

To measure and analyse the «Characteristics» of Quality during 
the total life of a product, from its design until its use in the 
field we NEED Probability Theory: for this reason, we decided 
to write this paper on the Stochastic Processes.

Materials and Methods
Reliability Integral Theory (RIT)
Let’s now show how RIT manages the (Stochastic Processes) 
for reliability analysis of physical systems. We use the figure 2 
(it is like the fig. 1, without the transition 2→1): if the system 
fails, enters the state 2, it remains there forever. In the model the 
transitions are ruled by some functions bi,j(s|r) named kernels, 
related to the interval reliability Runit(t|r) of the units and by 
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the probability of repair of the failed units. The instant “r” is 
the time of entrance into a state, while “s” is the time instant of 
leaving a state. 

Rj(t|r) [reliability associated to the state j] is the probability that 

the system is working, at time t, i.e. [S(t)=j]∈S1={0, 1, …, nU}, 
when it entered the state j at time r of the “mission time”, r∈0--
--t. The functions bi,j(s|r) ds are the instantaneous probability of 
transition from state i to state j and W ̅_i (t│r) are the probabili-
ties of staying in the state i for the whole interval r----t.

Figure 2: Transitions of a Reliability Stochastic Process.

Applying the probability theory, we can write the two general 
equations (1) [related to the model in fig. 2]

       

                                                    (1)
The two equations (1) are Integral Equations with unknown 
functions Rj(t|r) [j=0. 1]; we name the previous equations the 
fundamental system of the Reliability Integral Theory (RIT). 
We name G-Processes the stochastic processes ruled by the In-
tegral Equations (1).
For any type of system, we write 

   			               (2)
where R(t|r) is the column vector of the reliabilities Rj(t|r), 

j∈S1={0, 1, …, nU}, B(s|r) is the kernel matrix and W ̅(t|r), 
j∈S1={0, 1, …, nU}, is the diagonal matrix of the waiting func-
tions in the up-states before any transition.
It is the fundamental system of the Reliability Integral Theory.

The unknown reliabilities Rj(t|r) depends on the kernels bi,-
j(s|r), related to the failure rate and the repair rate of the units; 
if they assume some particular form then the G-Processes be-
come known processes (see fig. 3): Homogeneous Markov Pro-
cesses (HMP), Non-Homogeneous Markov Processes (NHMP), 
Semi-Markov Processes (SMP), Poisson Processes (PP), Wiener 
Processes (WP), Branching Processes (BP), Birth and Death 
Processes (BDP), …

Figure 3: G-Processes comprise several Stochastic Processes (depending on the kernels).

To the author knowledge, there is no Theory (but RIT) able to 
deal the Age& Repair (A&R) processes, where the forward tran-
sitions depend on the age of the system, i.e. bi,j(s|r)=bi,j(s), and 
the repair (backward transitions) depend on the time interval r--

---s from the entrance r into a state, i.e. bi,j(s|r)=bi,j(s-r). The 
transition rates are as in the figure 4 (an example of a “parallel 
system of 2 identical units” with Weibull reliability and Erlang 
repair of the failed unit)

Figure 4: Transitions of an Age & Repair Stochastic Process (transition rates).
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Generally, we are interested to the interval 0-----t (mission 
time) and then we compute the two functions R0(t)=R0(t|0) and 
R1(t)=R1(t|0).

If both the kernels are exponential (no aging behaviour) we can 
draw a flow graph with the transition rates λ (failure rate) and 
µ (repair rate) and write the matrix equation where R(t) is the 
column vector with entries R0(t) and R1(t) and A the “transition” 
matrix (see fig. 4 for the parallel, where there is no age)

	               (3)
(3) is the model of a Homogeneous Markov Processes (HMP).
For a renewable system we write 

  			                 (4)
It is the fundamental system of the Reliability Integral Theory, 
for SEMI-Markov processes (SMP).
From the reliabilities we compute the two Mean Time To (sys-
tem) Failure MTTF0 and MTTF1: (MTTF not MTBF…)

		               (5)
For HMP and SMP we can get the MTTFs without actually com-
puting R0(t) and R1(t), as follows

  	
		                                                                        (6a)
where m0 and m1 are the mean holding time in the up-states 0 
and 1, and p0,1 and p1,0 are the steady state transition probabil-
ities from 0 to 1 and from 1 to 0.

It is very useful (figure 5) to see the difference of the various 
reliabilities R0(t) and R1(t) dealt with the three stochastic pro-

cesses: Homogeneous (red curves), Non-Homogeneous (blue 
curves), Age&Repair (green curves). Notice that the reliabili-
ties generated by the NHMP (with linear failure and repair rates) 
are the highest curves; that does not mean that they are the best 
curves: the linear repair rate is such that it depends on the age 
of the system (the older the system, the higher the repair rate: 
absurd!): this causes huge costs, due to wrong analyses and de-
cisions. 

It is clear that when the failure rate is increasing (due to wear 
out) we can benefit from “Preventive Maintenance”: the units 
are replaced before they fail. Optimized Maintenance Actions 
(based on reliability, costs of repairs and cost of Preventive 
Maintenance, and Spare parts Availability) improve the earning 
of Systems.

To do that we need suitable Methods.
By integrating from 0 to ∞ the column vector R(t) in the formula 
(4) we find the column vector of the system MTTFj, j∈S1={0, 
1, …, nU},

			                 (6)
where P is the matrix of the steady transition probabilities be-
tween the Up-states and M the diagonal matrix of the “Mean 
Holding Time mj“ (the length of time in the state j, before tran-
sition).

So, we see that we can compute the MTTF, without actually 
computing the column vector R(t); we need only the matrices 
M and P

   				                   (7)

Figure 5: R0(t) and R1(t) for the HMP (red curves), for the NHMP (blue curves) and for the A&RP (green curves).

The matrix [I-P]-1 provides the “Mean Number of Transitions 
Between the Up-states, before the system failure”. Notice that 
we can use the formula (7) only for the Semi-Markov Processes; 
hence in the figure 5 we must compute by numerical methods the 
area below the blue and green curves.

Availability Integral Theory (AIT)
If we (fig. 1) allow that the failed system, in the state 2, be re-
paired [transition from 2 to 1, with kernel b2,1(s|r)] we can study 
the system Availability associated to the states S={0, 1, 2}, 
A0(t|r), A1(t|r), A2(t|r); S is divided into two disjoint sets S=S1(up 
states {0, 1})∪ S2(down states {2}); Ai(t|r) [availability associ-

ated to state i], [S(t)=i]∈S={0, 1, …, nU, nU +1, N}, is the prob-
ability that the system is working [in the up states, S1], when 
it entered the state i∈S at time r. Following the same lines, we 
can write the following fundamental system of the Availability 
Integral Theory, AIT) [holding whichever is the distributions of 
the time to failures and times to repair of the various units]; the 
stochastic process ruling the transitions is named G-Process: all 
the quantities are computed using the kernels bi,j(s|r).
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	            (8)
When t→∞ all the availabilities A0(t), A1(t), A2(t) approach the 
same value ASS=MUT/MTBF =MUT/(MUT+MDT), the steady 
state Availability (proved in the author’s books).

Notice the differences with the EJTAS paper December 2023 
“A New Approach… of Biomedical Equipment” where we find 
(…, excerpt 3)
Same problems are found in the Excerpt 1.
For a general SMP we can derive that 
ASS=MUT/MTBF =MUT/(MUT+MDT) 	                           (9)

where MUT is the Mean Up Time, a suitable mean of the MTTFi, 
from i∈S1={0, 1, …, nU} to S2={nU+1,…, N} in the steady state, 
and MDT is the Mean Down Time, a suitable mean of the MT-
TRj, from j∈ S2={nU+1,…, N} to S1={0, 1, …, nU} in the steady 
state. 

Excerpt 3. From “A New Approach…”
Statistics and RIT
RIT (G-Processes) can be used for parameters estimation and 
Confidence Intervals (CI), (n 1981, 1982, 1995, 2010, 2015, 
2016), in particular for Control Charts (Deming, 1986, 1997, 
Shewhart 1931, 1936, Galetto 2004, 2006, 2015). In fact, any 
Statistical (or Reliability) Test can be depicted by an “Associ-
ated Stand-by System” whose transitions are ruled by the ker-
nels bk,j(s); we can write the fundamental system of integral 
equations for the reliability tests, whose duration t is related to 
interval 0-----t; the collected data tj can be viewed as the times 
of the various failures (of the units comprising the System) [t0=0 
is the start of the test, t is the end of the test and g is the number 
of the data]

 	                             (10)
R_,j (t|t_j ) is the probability that the stand-by system (statistical 
test or CC) does not enter the state g, at time t, when it starts in 
the state j at time tj, W ̅_j (t│t_j ) is the probability that the sys-
tem does not leave the state j, b_(j,j+1) (s|t_j )ds is the probability 
that the system makes the transition j → j+1.

The reliability system (10) can be written in matrix form,

			               (11)
At the end of the reliability test, at time t, we know the data (the 
times of the transitions tj) and the empirical sample D={x1, x2, 
…, xg}, with xj=tj – tj-1 is the length between the transitions; the 
transition instants are tj = tj-1  + xj giving D*={t1, t2, …, tg-1, tg, t}; 
t is the duration of the test.

We consider now that we want to estimate the unknown 

MTTF=θ=1/λ of each item comprising the stand-by system: each 
datum is a measurement from the exponential pdf; we compute 
the determinant  
of the integral system (11), where T(t) is the “Total Time on Test” 

. At the end time t, the integral equations, constrained by 
the constraint D*, provide the equation

	           (12)
In the case of exponential distribution, it is exactly the same 
result as the one provided by the MLM Maximum Likelihood 
Method.

If the data are normally distributed, 
, with sample size n, then we 

get the usual estimator  such that .

The same happens with any other distribution provided that we 
can write the kernel .

The reliability function , [formula (10)], with the 
parameter , of the “Associated Stand-by System” pro-
vides the Operating Characteristic Curve (OC Curve, re-
liability of the system) [8-23, 30, 35] and allows to find 
the Confidence Limits (  Lower and Upper) of the 
“unknown” mean , to be estimated, for any type of distri-
bution (Exponential, Weibull, Rayleigh, Normal, Gamma, 
…); by solving, with unknown , the two equations ( |

)  we get the two val-
ues ( , ) such that

 (13) 
where t_o is the “total of the length of the transitions xi=tj - tj-1 
data of the empirical sample D” and CL=1-α is the Confidence 
Level. CI= --------   is the Confidence Interval of θ.

For example, from the Reliability R_0 (λt_0 ) of a “4 units 
Stand-by system” with MTTF=θ=123 days and t_0 is the total 
time on test of the 4 units, by R_0 (λ_L t_0 )=0.9 and R_0 (λ_U 
t_0 )=0.1 we can derive θ_L=62.5 days=1/λ_U and θ_U=200 
days=1/λ_L, with CL=0.8. It is quite interesting that the book 
Meeker et al., “Statistical Intervals: A Guide for Practitioners 
and Researchers”, John Wiley & Sons (2017) use the same ideas 
of FG (shown in the formula 13) for computing the CI; the only 
difference is that the author FG defined the procedure in 1982, 
35 years before Meeker.

The same procedure can be used for normal data as those of 
the paper “The mixed CUSUM-EWMA (MCE) Control Chart 
as a new alternative in the Monitoring of a Manufacturing Pro-
cess” published in the Brazilian Journal of Operations & Pro-
duction Management, pp. 1-13, DOI: 10.14488/BJOPM.2019.
v16.n1.a1, written by 6 authors. 

Consider the 30 data and the authors’ Control Chart
69.80 69.50 68.80 70.90 69.20 70.40 71.00 71.30 70.00 70.10
72.10 69.90 70.10 70.30 71.20 70.80 70.70 69.95 71.20 71.35
71.35 69.90 70.25 70.50 70.28 71.30 70.20 70.35 70.15 70.10
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Figure 6: Shewhart I-CC from Brazilian Journal of Op. & Prod. Management (fig. 12 in their paper).

Figure 7: Shewhart I-CC computed by F. Galetto; notice the OOC points.

Notice: the process appears IC because in the fig. 6 the Control 
Limits do not depend on the collected data; actually, they are 
the Probability Limits of the Probability Interval. The process is 
OOC! It is very clear that the Process is Out Of Control (OOC), 
due to two causes: a) two points out of the Control Limits, and b) 
the points from 8 to 30 have a mean larger than the mean of the 
first seven points; notice that the process is OOC in two ways: 
a) because one point is below LCL and one point is above UCL, 
b) because the mean of the last 23 points is statistically different 
form the mean of the first 7 points. 

The Brazilian Journal … Management, did not publish the letter 
sent by FG to the Editors.

Control Charts for Process Management
Statistical Process Management (SPM) entails statistical Theory 
and tools used for monitoring any type of a process, industrial 
or not. The Control Charts are the tool used for monitoring a 
process, to assess two states: the first, when the process, named 
IC (In Control), operates under the common causes of variation 
(variation is always naturally present) and second, named OOC 
(Out Of Control), when the process operates under some assign-
able causes of variation. The CCs, using the observed data, allow 
us to decide if the process is IC or OOC.

Control Charts were very considered by Deming (1986, 1997) 
and Juran (1988) after Shewhart invention (1931, 1936). We 

start with Shewhart ideas (see the excerpt 4). He wrote on page 
294, where X ̅ is the “Grand Mean”, computed from D, σ is “es-
timated standard of each sample” (with sample size n), σ ̅ is the 
“estimated mean standard deviation of all the samples”. 
        
Excerpt 4. From Shewhart book (1931)
From Excerpt 4, we clearly see that Shewhart, the inventor of 
the CCs, used the “Normal Approximation (Central Limit The-
orem)” [8-16] and the data to compute the Control Limits, LCL 
(Lower Control Limit) and UCL (Upper Control Limit) both for 
the mean μ_X (the 1st parameter of the Normal pdf) and for 
σ_X (the 2nd parameter of the Normal pdf). Similar ideas can 
be found in Dore, 1962, Belz, 1973, Ryan, 1989, Rao, 1965, 
Cramer, 1961, Mood, 1963, Rozanov, 1975 (where we see the 
idea that CCs can be viewed as a Stochastic Process). See also F. 
Galetto [19, 30, 35].

Compare Excerpt 4 (where LCL, UCL depend on the data) 
with Excerpt 5 (where LCL, UCL depend on the Random 
Variables) and appreciate the profound difference: this is the 
cause of the many errors in the CCs for TBE (Time Between 
Events (see the “Garden…” ). Notice that an author wrote 
several papers… Notice the wrong statement (with k=3) 
“The control limits of the standard Shewhart chart (

 chart or the X chart) are given by UCL1=𝜇Y+3𝜎Y and 
LCL1=𝜇Y-3𝜎Y where 𝜇Y and 𝜎Y are the specified IC mean 
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and standard deviation of the charting statistic Yi”. No-
tice that, as per Excerpt 5, L=𝜇Y-3𝜎Y

------U=𝜇Y+3𝜎Y is 
       (14). 

The same error is in other books (e.g. Montgomery D., 1996-
2019, page 192-3). The right ideas are in Galetto F. (2006, 2015, 
2016). RIT will show clearly the drawbacks of those many au-
thors (Galetto 1981, 2006, 2015, 2016).
 
Excerpt 5. From Control Charts, Synthetic (2021), a paper in 
the “Garden…”. Notice that one of the authors wrote several 
papers…

Notice, in the Excerpt 5, the statement “… in case of individual 
observations (i.e. n=1)… the Control Limits…”.

It is very interesting that a Peer Reviewer chosen by the Edi-
tors of Quality and Reliability Engineering International (QREI) 
suggested (February 2024) the author to read the following pa-
per in order to learn the way to compute the Control Limits for 
Individual Control Charts with Exponentially distributed data:
Khakifirooz, M., Tercero-Gómez, V. G. and Woodall, W. H. 
(2021). The role of the normal distribution in statistical process 
monitoring, Quality Engineering 33(3), 497–51

We anticipate our conclusion about the Excerpt 6: 

the 3 authors statement (in the Excerpt 6) “We can see from this 
chart that there are nine false alarms. (see the figure 1, in the 
Excerpt 6)” IS WRONG.

The TRUE Control Limits (by RIT!) for the chart in (Figure in 
the Excerpt 6) are actually:
LCL=0.103      and      UCL>>100

From the figure 1 we cannot read the value of the data, BUT 
surely there are NO … false alarms (above the TRUE UCL) (fig-
ure 1, in the Excerpt 6).

IF we had the data, we could assess that there could be Out Of 
Control, BELOW the LCL… The Peer Reviewer did not know 
the TRUE Theory, as did not the authors.

Notice the wrong LCL=1.022-2.06 and UCL=1.022+2.06 in the 
Figure 1 (in the Excerpt 6): they are computed with the wrong 
formula given in the Excerpt 5 (as though the Exponential data 
were Normal data!): Nonsense!

All the people involved did not know that also the differences 
|xi+1-xi| are exponentially distributed.

The 3 authors write (authors’ statements):
Four examples involving transformations Example based on 
simulation. We can demonstrate through a simple example how 
the use of a power transformation can result in poor process 
monitoring performance. We generated a set of 100 independent 
exponential random variables which, without loss of generality, 
were assumed to have a mean of one. The X-chart is shown in 
Figure 1. We can see from this chart that there are nine false 
alarms. After the 0.2777 power transformation recommended by 
Nelson (1994) and others, we have the Xchart in Figure 2, for 
which there are no signals. If we transform the upper and lower 
control limits of Figure 2 back to the original units, then we have 
7.456 and 0.0000192, respectively. The probability of exceed-
ing this upper control limit for the exponential distribution with 
mean one is 0.00058, while the probability of falling below the 
lower control limit is very low, 0.0000192. This numerical ex-
ample illustrates why the results of Santiago and Smith (2013) 
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Excerpt 6: From the paper the role of the normal distribution in 
statistical process monitoring
Generally, the data plotted are the means , determinations 
of the Random Variables , i=1, 2, ..., n (n=number of the 
samples) computed from the collected data xij, j=1, 2, ..., k 
(k=sample size), determinations of the RVs  at very close 
instants tij, j=1, 2, ..., k. In other applications, the data plotted 
are the Individual Data , determinations of the Individual 
Random Variables , i=1, 2, ..., n (n=number of the collected 
data), modelling the measurement process of the “Quality 
Characteristic” of the product: this model is very general because 
it is able to consider every distribution of the Stochastic Process 

.

Shewhart on page 289 of his book (1931) writes “… we saw 
that, no matter what the nature of the distribution function of 

the quality is, the distribution of the arithmetic mean approaches 
normality rapidly with increase in n (his n is our k, the sample 
size), and in all cases the expected value of means of samples 
of n (our k) is the same as the expected value of the universe” 
(Central Limit Theorem in Excerpt 4). Let k be the sample 
size; the RVs  are assumed to follow a normal distribution; 

 [ith rational subgroup] is the mean of RVs IID  j=1, 
2, ..., k, (k data sampled, at very near times tij), we assume here 
that it is distributed as [probability density function (pdf) of 
“transitions from a state to the subsequent state” of a subsystem] 

 [experimental mean ] with mean  
and variance .  is the “grand” mean and  is the “grand” 
variance:  [experimental “grand” mean ]. In Fig. 
8 the distribution, the determinations of the RVs  and  
are shown. The function connecting the points xij is called a 
“sampled trajectory” of the stochastic process X(t).

Figure 8: The Individuals xij, the “means” x ̅_i of the process and the “grand mean” x ̿.

When the process is OOC (Out of Control, i.e. assignable causes 
of variation) some of the means μ_(X ̅(t_i)), estimated by the 
experimental means , are “statistically different)” 
(Galetto 1981, 2006, 2015, 2016). 

We said that (14) is a Probability Interval; IF we put  in 
place of  and  in place of  we get the CI of  when 
a sample size k is considered for each , with CL=0.9973. 
The quantity  is the mean of the standard deviations of each 
sample. This allows us to compare each (subsystem) mean 
, q=1,2, …, n, to any other (subsystem) mean r=1,2, …, n, 
and to the (Stand-by system) grand mean . If two of them 
are different the process is OOC. The quantities  
and  are the limits of the Control Limits of the 
CC. When the Ranges Ri=max(xij)-min(xij) are considered for 
each sample we have ,  and , 
U , where the coefficients A2, D3, D4 are tabulated and 
depend on the sample size k [26-35].

The interval LCLX
-------UCLX is the “Confidence Interval” with 

“Confidence Level” 1-α=0.9973 for the unknown mean  of 
the Stochastic Process X(t) (Galetto 1981-2022).

The interval LCLR
----------UCLR is the “Confidence Interval” with 

“Confidence Level” CL=1-α=0.9973 for the unknown Range 
of the Stochastic Process X(t) (Galetto 1981-2022). Notice that 
the Control Interval [Confidence Interval] UCLX-LCLX=U-L 
[Probability Interval, formula (14)] for normally distributed data 
and that LCLX can be obtained from L by substituting µ with ; 
the same for UCLX and U.

The error highlighted, the confusion between the Probability 
Interval and the Control Limits (Confidence Interval!) has NO 
consequences for decisions WHEN the data are Normally dis-
tributed, as hypothesised by Shewhart. On the contrary, it has 
BIG consequences for decisions WHEN the data are non-nor-
mally distributed as in the Excerpt 6. Notice!
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Figure 9: Control Limits LCLX----UCLX=L----U (=Probability interval), for Normal data.

Control Charts for TBE data
We consider now, again, TBE (Time Between Event) data, ex-
ponentially or Weibull distributed. Quite a lot of authors (see 
Appendix, “Garden …”) compute wrongly the Control Limits.

The previous section formulae are used also for NON_normal 
data (see Excerpt 6): for that, the NON_normal data are trans-
formed “with suitable transformations” in order to “produce Nor-
mal data” (see Excerpt 6) and to apply those formulae (above).

Sometimes we have few data and then we use the so called “in-
dividual control charts” I-CC. The I-CC are very much used for 
exponentially distributed data: they are named “rare events Con-
trol Charts for TBE (Time Between Events) data”, I-CC_TBE 
(see Excerpt 6).

The author (FG) knew about the wrong way of dealing with 
I-CC_TBE since 1996 by reading the Montgomery book where 
he transformed the into Weibull data (approximately normal) 
following Nelson L. S. (J. Qual. Techn., 1994): he acted wrong-
ly in all the later editions of the book. Any scholar who wants to 
learn Control Charts both with normal distribution and TBE can 
usefully read the book “Statistical Process Management”. 

Several authors did the same as Montgomery did. See the Jour-
nal Operation Research and Decisions where the 3 authors, in 
their paper “An EWMA Control Chart for the exponential distri-
bution” made the same error transforming the data into Weibull 
with β=1.36; the data are the “Urinary Tract Infection” (UTI) 
taken from a paper of two Minitab authors (Santiago & Smith) 
in their “Control charts based on the Exponential Distribution”, 
Quality Engineering;: their T Chart (figure 11) shows the pro-
cess IC: wrong decision; making the transformation we could 
draw the I-CC as in figure 12 where the Control Interval=U-
CL-LCL=U-L=the Probability Interval. The process is again IC: 
wrong decision. It is NOT so if we analyse directly the TBE 
(figure 13). 

Using RIT (the Reliability Integral Theory of F. Galetto) we get 
the Figure 13 (vertical axis logarithmic, to let the OOC points 
evident). The process is OOC. 

The problem with the authors in the “Garden…” is that they do 
not care of Theory: they do not consider that THEORY MAT-
TERS, in every field!

Figure 10: Individual Control Chart (sample size k=1). Control Limits LCL----UCL=L----U (Probability interval), for Normal 
data.
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Figure 11: Chart of Minitab authors’ paper data (Urinary), Minitab 19 used.

Figure 12: I-CC of the UTI, transformed into Weibull data.

On the contrary, making the same error as Montgomery, the 3 
authors transform the data into Weibull with β=1.36 and then 
they make an EWMA Chart with “double Control Limits” 
with the formulae 
, where  with  the “target of an IC process”: 

Excerpt 7. From the paper “An EWMA Control Chart …” (the 
k coefficients are to be suitably found…). Notice the errors in 
the formulae.
See now the wrong I-CC in the figures 11, 12, 14; only the CC 
in the fig. 13 is right.

Figure 13: I-CC of the UTI, y-axis logarithm mic. RIT used (F. Galetto).
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Figure 14: EWMA (F. Galetto) of the UTI.

In the paper mentioned there is a figure: we did not find the data 
used for the target θ_0 and the coefficients k. Hence, we used the 
target θ_0=0.59, coefficients k=-2.7, -0.8, 0.8, 2.7 and λ=0.2; we 
got the figure 14.

Those authors made a mess; the Peer Reviewers did not analyse 
correctly the paper, and the Editors did not do their Job. The 

same as for all the papers in the “Garden …”. Remember Ju-
ran who mentioned the FG paper, at the Plenary Session of the 
EOQC Conference … [36].

Results
Now it is time to see the wrong formulae used by the “Garden 
…” authors. A smal sample in in the Excerpt 8.
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Excerpt 8: Typical statements in the “Garden full of errors …” 
where the authors name LCL, UCL what actually are the Proba-
bility Limits L and U.

All the authors in the “Garden …” make the same error: 
they confuse the Probability Interval with the Control Interval in 
CCs (Confidence Interval!). The same happens for MINITAB, 
JMP, SAS, … software [37-40].

Now we see how RIT solves the I-CC_TBE with exponentially 
distributed data. Before we computed the Confidence Interval 
is CI=θ_L--------θ_U of the parameter θ, using all the data with 
t_O the “total of the data of the empirical sample D (n=20)” and 
Confidence Level CL=1-α. When we deal with a I-CC_TBE we 
have to consider the figure 10 and compute the LCL and UCL 
through the empirical mean t ̅_O  (mean observed time to failure 
t ̅_O=t_O/n) we only have to solve the two following equations 
with unknown LCL and UCL

         (15), 
similar to (13). For exponentially distributed data (15) become

 and  		
                                                                                                    (16). 
The two equations (16) show clearly the errors of the authors in 
the “Garden …”. See on the left.

See the case by the Peer Reviewer chosen by the Editors of 
Quality and Reliability Engineering International about the 
Control Limits for Individual Control Charts with Exponential-
ly distributed data and compare the results: Khakifirooz, M., 
Tercero-Gómez, V. G. and Woodall, W. H. (2021). The role of 
the normal distribution in statistical process monitoring, Quality 
Engineering 33(3), 497–51 Some papers from the “Garden …” 
Let’s see some other few cases from the “Garden …”. Consider 
the paper Box-plot based Control Charts [by Chakraborti (same 
author in excerpt 5.) et al.), Quality and Reliability Engineering 
International, 2011.

Notice QREI again], where the lifetime data (“valves TTF”) the 
same as in Montgomery, 2013, page 334) are analysed; the au-
thors use the median (instead of the mean) and the interquartile 
range (instead of the ranges). The two authors define the control 
limits with a form similar to Shewhart (but significance level 
α0=0.01): the process (figure 15) is found IC, as did Montgom-
ery [41-44].

Using the T Chart of Minitab (which makes use of the wrong 
formulae, devised by Santiago & Smith) we can find the figure 
16: the process is found IC (as in figure 15, Chakraborti, and as 
Montgomery).

Figure 15: I-CC of Montgomery data analysed by Chakraborti (with α0=0.01).
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Figure 16: T Chart of Table 1 data. Minitab 19&20&21 used (F. Galetto).

By using Minitab, one finds the figure 17 (with wrong OOC as 
in the Excerpt 8, as happened in the Excerpt 6): UCL and LCL 
are wrong, while the dotted line (found with RIT) is the correct 
LCL. Compare figures 16 and 17: only the dotted line is the right 
correct LCL, allowing taking correct decisions: huge costs of 

DIS-quality applications/decisions by Minitab Clients, caused 
by Minitab wrong methods.

The process is OOC. The reader can see easily from figures 17, 
18. The ranges too are OOC.

Figure 17: (F. Galetto) I Chart (Control charts) for valves data (Minitab 19&20&21 used). The dotted line is the right correct LCL 
when RIT is used; the UCL is wrong. 

It should be clear that Managers, Professors and Scholars must 
use the Theory. The author, for many years, has been showing 
the many drawbacks present in various books and papers: un-

fortunately, he had little success; only few understood (one was 
Juran at 1989 EOQC Conference, Vienna).

Figure 18: (F. Galetto) Scientific Control Charts for valves data [related to the data and control charts in Mont-gomery books]. 
RIT is used.

Now we see another paper in the “Garden…” (found online, 
2021) “Improved Phase… for Monitoring TBE” [Chakraborti 
(same author above et al.) published by QREI (again). The two 

authors provide a wrong solution (found neither by the Peer Re-
viewers nor by the Editor!). Nevertheless, they write in their Ac-
knowledgements: … The authors would like to thank Dr. Doug-
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las Montgomery, Co-editor, for his interest and encouragement. 
In the authors’ Abstract, we read

and 

Figure 19: Control Chart from “Improved Phase… for Monitoring TBE”.

Using RIT as done previously the n=g*=30 TBE can be con-
sidered as the “transition times” between states of a stand-by 
system of 30 units: the Up-states are 0, 1, …, 29, and 30 is the 
Down-state; ti is the “time to failure ” from state i-1 to state 
i. R0(t|θ) is the system reliability for the interval 0----t, given 
θ, and it is, as well, the Operating Characteristic Curve of the 
reliability test, given t. At the end of the test, we know tO the 
observed Total Time on Test [45].

We want to analyse if the “individual” TBE are significantly dif-
ferent from the “mean observed time to failure” (t_o ) ̅=tO/n. 
The Control Limits are the values satisfying the two equations 
(13) with tO replaced by (t_o ) ̅=tO/n, that is two equations (15 
and 16) for any single unit; so, we have 30 Confidence Intervals 
[all equal, by solving formulae (16)], given (t_o ) ̅ and CL=1-α.

Figure 20: Control Chart of the data from “Improved Phase… for Monitoring TBE”; vertical axis logarithmic; UCL is >100. RIT 
used (F. Galetto).

See their Concluding remarks. 
 
We agree that “Further work is necessary on the OOC perfor-

mance of these charts”: the further Work must be to STUDY (see 
Deming!). The wrong CC (in figure 19) shows a “false” OOC 
situation and various “false” IC…
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Compare the figures 19 and 20: it is clear that the I-CC_TBE 
from “Improved Phase… TBE” presents 5 errors about OOC; 
the paper is wrong [46-50].

Also consider the paper Some effective control chart procedures 
for reliability monitoring published in Reliability Engineering 
& System Safety. Again, WRONG Control Limits! The authors 
Xie et al. the “Time between failures of a component”. They 
do not realise that at least 20% of the data are OOC (figure 21), 
a very good result for a PR paper! All the people involved did 
not know the Theory. "It is necessary to understand the theory 
of what one wishes to do or to make." (Deming 1996) T Charts 

and the “Garden…” methods make the users to take wrong de-
cisions...

Also, see a paper in (Multidisciplinary Open Access) IEES Ac-
cess 2017, “EWMA Control Chart For Rayleigh Process With 
Engineering Applications (Alduais, Khan)”. At the end of the 
Abstract, we read the fantastic statements  “An application of the 
REWMA chart on simulated data also reveals that the proposed 
chart is highly sensitive to smaller and persistent shifts in the 
scaling parameter of Rayleigh distribution. Finally, an example 
from real-life has been presented to illustrate the importance of 
the suggested chart.”

Figure 21: I-CC_TBE of Xie TBF data in “Some effective … for reliability Monitoring”; vertical axis logarithmic; RIT used (F. 
Galetto).

Figure 22: Proposed CC, ball bearing data [EWMA of V ̂_SQR (i)=√(x_ij^2/6) of 8 samples, size 3)].

They consider the TTF (Time to failure, Rayleigh distributed) of 
24 bearings (8 samples of size 3). The process of the 8 samples 
is IC (figure 22) by their “theory”. On the contrary, the process 
is OOC [using RIT], both for the 24 Individuals (figure 23) and 
the 8 samples (figure 24).

The two authors claim in their Conclusions: “Simulation analy-

sis also indicates the considerable improvement of the REWMA 
chart over the existing procedure in detecting shifts of smaller 
sizes in the study parameter”.

We think that the readers agree will not agree on that, by seeing 
the application (real) on the Ball Bearing failure data: the au-
thors “detect shifts” but do not detect OOC… (figures 23, 24).
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Figure 23: CC of the 24 Individuals TTF, RIT used.

Figure 24: CC for ball bearing data [V ̂_SQR (i) of the 8 samples], RIT used.

Last case: two papers (The length-biased weighted exponenti-
ated inverted Weibull distribution, Cogent Mathe-matics, 2016, 

The Weighted Exponentiated Inverted Weibull Distribution, 
Journal of Informatics and Mathe-matical Sciences, 2017), 

the estimates are wrongly written for Weibull β ̂=2.3089, θ ̂=26.0230 and c ̂=0

Excerpt 9: From the paper “The length-biased weighted expo-
nentiated inverted …”
The papers deal with the same data, on the “distance of cracks 
in a pipe data-set”: same subject and the same real data as an 
application: they are in Excerpt 9, with the estimates of the 
density g(x;β,θ,c)=(βθ^((1+c-1/β)))/(Γ(1+c-1/β)) x^(-(1+c)β) 
{e^(-x^(-β) ) }^θ. The estimates of the parameters are (by the 
authors): β ̂=1.4256, θ ̂=100.7943 and c ̂=1.4857. Notice that 
there is NO Confidence Interval… The authors do not provide 

any way to do that… When c=0 we get Length-Biased Expo-
nentiated Inverted Weibull pdf (LBEIW), with estimates of the 
parameters (by the authors): β ̂=3.3891, θ ̂=9508.9505, c ̂=0. NO 
Confidence Interval and not any way to find it… 

A question arises: do the data of Excerpt 9 show a process In 
Control? In the papers there is no way to assess that. Using RIT, 
we find that the process is OOC for the 24 Individuals (fig. 25). 
Again, Authors, Peer Reviewers and Editors were wrong!
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Figure 25: CC of the Individuals (from the paper “The length-biased weighted exponentiated inverted …”), RIT used.

Also consider the paper On designing a new control chart for 
Rayleigh distributed processes with an application to monitor 
glass fiber strength published in Communication in Statistics- 
Simulation and Computation, January 2020. Again, WRONG 
Control Limits! The authors M. Pear Hossain et al. consider the 
“data on strength of 15 cm glass fibers”. They write:

Illustrative example (section 8)
To illustrate the developed VR chart, we use the data on strength 

of 15cm glass fibers. This data has been collected from the Na-
tional Physical Laboratory in England (Smith and Naylor 1987). 
For illustration purpose, first, we check that the data follows 
Rayleigh distribution or not using Kolmogorov-Smirnov test. 
We fail to reject the null hypothesis that data follows Rayleigh 
distribution at 5% level of significance with p-value 0.144.
The arrangement of the sample batches is given in Table 6 (see 
our Excerpt 10). They use α=0.0027 …

Excerpt 10: From the paper “On designing a new control chart 
… to monitor glass fiber strength.”

Notice the authors’ statement “We fail to reject the null hypoth-
esis that data follows Rayleigh distribution at 5% level of signif-
icance with p-value 0.144.”

Figure 26: CC of the Individuals (from the paper “On designing a new control chart … to monitor glass fiber strength”), RIT 
used.
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Figure 27: CC of the samples with sample size 5 (from the paper “On designing a new control chart … to monitor glass fiber 
strength”), Normal distribution used.

According the Rayleigh distribution can be considered a Weibull 
distribution with β=2 (shape parameter). Ana-lysing the data in 
Excerpt 10, we find that β=5.59, with a Confidence Interval 
CI=[3.81, 8.86] at CL=99.5%; the value 2 is not comprised in 
the CI: hence the distribution is not the Rayleigh distribution 
(also for CL=95%).

All the authors’ considerations are not valid for their Illustrative 
example (section 8), that is our Excerpt 10; they find that the 
“process is IC”.

Analising the data with RIT we get the figure 26: the process is 
OOC, using the correct distribution and directly the data in our 
Excerpt 10. Analising the data with the Normal distribution (a 
Weibull with β=5.59 can be approximated by the Normal ) we 

get the figure 27: now the process is IC … as it was found by the 
authors with the Rayleigh distribution!

RIT and the Duane method
We found this method in the software Minitab 19&20&21. 
Minitab provides the data on “repairable air-conditioners” and 
a graphical picture of them [see figure 28], and computes, the 
mean number of failures up to time t [M(t) function], of the 13 
repairable systems: M(t)=E[N(t)]; they do not give any “theory” 
to interpret the results; they only inform us that (1) M(t) is in-
terpolated by a model named “power law” (t/η)β, with β=shape 
parameter and η=scale parameter, and (2) the MLM (Maximum 
Likelihood Method) is used. No “Reliability Theory” is provid-
ed by Minitab: this is extremely dangerous and costing [51, 52].
They say (with figures):

Figure 28: 13 repairable air-conditioners.

Figure 29: Statistical Output for 13 repairable air-conditioners (Minitab 21 used).
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Figure 30: Graphical Output for 13 repairable air-conditioners data (Minitab 21 used).

Figure 31: Duane plot for 13 repairable air-conditioners data (Minitab 21 used).

Figure 32: Distribution of repairable air-conditioners data tij (Minitab 21 used).

Figure 33: Distribution of repairable air-conditioners differences dij (Minitab 21 used).
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We can compare the figure 30 [the M(t)] with the 31 [the “cu-
mulative failure rate”]; how it is related to “our” failure rate, as 
defined in our theory? Think about that ... See the figures 29, 30. 
The figure 31 is the Duane Model! 
The figures 32 and 33 show the distribution of times tij, and their 
differences dij, respectively.

From figures 30, 31, 32 we see that the shape parameter β of 
M(t) is estimated by Minitab as βPL=1.10803, where PL stands 
for “Power Law”. Notice that this estimate tells us that “there 
is no aging”; moreover, the figures 32 and 33 describe a com-
pletely different aging process of the air-conditioners! βW=1.532 
(aging) and βd=0.9219 (no aging). Where is the TRUTH? 
It is in the given Theory, RIT.

Figure 34: Transition Diagram of a repairable unit (BAO) and probability density of transitions (RIT).

The fundamental system (integral equations) for reliability tests 
(duration 0-----t) [t0=0 is the start of the test and t is the end of 
the test], with tj times of failures is given in (10), with the ker-
nels of figure 28; at the end t of the reliability test, we know the 
empirical sample D={t1, t2, …, tg-1, tg, t}; tg is the last failure. To 
estimate the parameters β and , from the equations we compute 
the determinant of the integral system (in matrix form) detB(s|r) 
[depending on β and η]. We have, for the system (air-condition-
er) 1, with failures time t1,j, and g1 failures, the formula (identical 
to the Likelihood)

 
The values maximising , for the item 
1, are    and    Similar results are found 
for all the 13, identical and repaired, air conditioners.

Same results can be found with the MLM.
From the reliability system of 13 items, we get the estimations 
βall and ηall of the parameters β and η:

   and   

The CI of βall is 0.858-------1.121, with CL=95%.
Notice: βal=0.99 is slightly in the (Minitab) CI of β (0.984256--
-----1.24738, with CL=95%), AND the (Minitab) PL=1.10803 
is slightly in the CI of βall (0.858-------1.121, with CL=95%). 
The contrary would happen by choosing CL=90%!
We cannot have “enough confidence” that the (Minitab) 
βPL=1.10803 AND βall=0.99 are “equivalent”! 
Minitab provides wrong results for repairable systems and 
Duane analysis: Minitab lacks scientificity and generates huge 
costs for Companies using them, due to their wrong analyses 
[53-55].

The wrong “Duane method” is based on the wrong “Duane Ax-

iom”: "the MTBFc (the Mean Time Between Failures, instanta-
neous cumulated) is the ratio of the total cumulated time by the 
tested items, tc, to the total number of failures M(tc) experienced 
in the total time test interval t0-----tc". So, they write with α=0.2 
÷ 0.4, and t0 the "total time cumulated at the beginning of the 
total time test interval t0-----tc" where MTBF=MTBF0
 
For the Weibull distribution, we have h(t)=(β/η)(t/η)β-1 and (by 
the absurd “Duane Axiom”) MTBF=1/h(t)=t1-β ηβ/β, α=1-β with 
MTBF0/t0

1-β=constant.

The position MTBF=1/h(t) is an absolute NONSENSE, as 
shown before.

Discussion and Conclusions
Applying the G-Process we could show the way to solve var-
ious cases of practical interest: analysis of repairable systems 
reliability and availability, statistical estimation (and Confidence 
Interval evaluation) of the parameters of distributions, correct 
computation of Control Limits of the Control Charts, especially 
for Individual CC with TBE exponentially distributed and of the 
Douane method [56-60].

We introduced the Stochastic G-Processes which rule the rela-
tionships between the reliabilities Ri(t|s). The stochastic process-
es [HMP, NHMP, SMP, RP, A&RP] used for reliability analyses 
(to the author knowledge) are particular cases of the G-Process. 
We showed various cases (from papers) where errors were pres-
ent due to the lack of knowledge of RIT [61].

The author many times tried to compel several scholars to be 
scientific: he did not have success (Galetto 1981-2023). Only 
Juran appreciated the author’s ideas when he mentioned the pa-
per “Quality of methods for quality is important” at the plenary 
session of EOQC Conference, Vienna [62-64].
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For the control charts, it came out that RIT proved that the T 
Charts, for rare events and TBE (Time Between Events), used 
in the software Minitab, SixPack, JMP or SAS are wrong. So 
doing the author increased the h-index of the mentioned authors 
publishing wrong papers. See Appendix.

We suggest the readers to consider the various excerpts, espe-
cially those related to CCs: many authors have been diffusing 
wrong concepts for years and years…
RIT allows the scholars (managers, students, professors) to find 
sound methods also for the ideas shown by Wheeler in Quality 
Digest documents [65-67].
We proved also that Minitab software provides wrong analysis 
repairable systems Reliability (Minitab says “the items are ag-
ing”, while they are actually GAN after any failure).

We informed the authors and the Journals who published wrong 
papers by writing various letters to the Editors…: no “Correc-
tive Action”, a basic activity for Quality. The same happened for 
Minitab: so, people continue taking wrong decisions…

Deficiencies in products and methods generate huge cost of 
DIS-quality (poor quality) as highlighted by Deming and Juran. 
Any book and paper are a product (providing methods). The 
books present financial considerations about reliability: their 
wrong ideas and methods generate huge cost for the Companies 
using them. The methods given here provide the way to avoid 
such costs, especially when RIT gives the right way to deal with 
Preventive Maintenance (risks and costs), Spare Parts Manage-
ment (cost of unavailability of systems and production losses), 
Inventory Management, cost of wrong analyses and decisions.

We think that we provided the readers with the belief that Qual-
ity of Methods for Quality is important and with several ideas 
and methods to be meditated in view of the applications, gener-
ating wealth for the companies using them.
There is no “free lunch”: metanoia and study are needed and 
necessary.
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L, U: 	               Probability Limits related to a probability 1-α
θ: 	               Parameter of the Exponential Distribution
θL-----θU :          Confidence Interval of the parameter θ
RIT: 	               Reliability Integral Theory
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Appendix A
The “Garden of flowers” (anthology, florilegium)
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